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Abstract— This paper presents a novel approach for remotely
monitoring a user’s breathing rate in real-time using a high
precision, single-point infrared sensor. Remote breathing detec-
tion is especially useful for rehabilitative robotic applications
such as post-stroke and post-operative cardiac therapies, where
continuous monitoring of a patient’s physical stress level can
be used to adjust the level and duration of physical exertion
throughout the course of therapy. Additionally, socially assis-
tive robots which discreetly collect breathing information from
their users, can customize interactions based on the perceived
physiological state of the patient. The proposed approach is
an important potential improvement for therapies where user
mobility is an inherent part of the therapy and when users have
a general aversion to being fitted with sensors. Further, due to its
relatively small size and modular design, existing rehabilitative
robot systems can be retrofitted with the proposed breathing
detection system to enhance and extend their functionality. This
research delivers a new technique for capturing changes in the
sub-nasal skin surface temperature to monitor breathing events.
Temperatures are obtained by tracking the sub-nasal region
of the face, continuously targeting and sampling the infrared
sensor. The breathing rate is automatically extracted using a
sinusoidal curve-fitting function which provides an estimated
rate in breaths per minute. Results from preliminary tests show
this system effectively captures breathing rates within an error
rate of under 2 breaths per minute in excess of 70% of typical
test cases.

I. INTRODUCTION

Detecting and tracking the physical and physiological state

of humans is becoming a major focus of research in reha-

bilitative robotics (RR) and socially assistive robotics (SAR)

because it promises to make robots better-suited to work more

closely and more cooperatively with humans. For example,

stroke patients undergoing physical therapy with RR are

often asked to engage in exercises that repeatedly work a

particular limb or muscle. A robot that is able to monitor the

patient’s heart and breathing rate can provide encouragement

or increase the workload when those indicators are within

the normal range and suggest a break when some predefined

threshold is exceeded. Another example is in the field of

SAR where children with autism interact with a robot during

therapy in order to improve their basic communication and

social skills. If the child becomes distraught during the course

of the therapy, he or she may not be able to immediately

communicate this fact to the therapist or teacher. A robot that

is continually collecting information about the child’s heart

and breathing rate can detect subtle shifts in the his or her

emotional state and alert the child’s therapist before the child’s

frustration escalates. Finding a way to detect stress remotely

will be the necessary next step towards fully realizing this

potential.

A variety of methods have been used to collect data about

a user’s emotional or stress state including measuring the

amount of eye contact, body pose, number, quality and content

of verbal utterances, and several physiological indicators such

as galvanic skin response, EEG, breathing and heart rate.

Galvanic skin response measures changes in the electrical

conductance of skin [17] while EEG is used to measure the

voltage fluctuations resulting from ionic current flows within

the neurons of the brain [23]. Breathing is a physiological

indicator which has been referred to as the “neglected vital

sign” and is used as a critical measure of a user’s psychophys-

iological state [14], [19].

Two basic modalities have been employed to capture

breathing events: contact and non-contact. Contact approaches

have used wearable sensors such as thermistors, respira-

tory gauge transducers and acoustic sensors. These devices

typically deliver accurate breathing data, but are generally

not suitable for mobile applications or for people who are

generally averse to wearing sensors. In addition, although

solutions exist using non-contact methods such as infrared

video cameras, radar and doppler modalities, these approaches

rely on high-cost equipment and collecting and analyzing very

large amounts of data at a high processing cost.

This research presents the first non-contact breathing rate

measurement technique suitable for most RR and SAR ap-

plications. This is accomplished by tracking changes in the

sub-nasal skin surface temperature. Recorded temperatures

are fit to a sinusoidal curve and the breathing rate is then

extracted. The novel contribution of this paper is a simple,

low cost system for the remotely collecting and monitoring

of breathing rate.



II. RELATED WORK

Studies related to the remote collection and use of phys-

iological information have been published across multiple

disciplines including computer vision [11], image and signal

processing [15], human-computer interaction [2], biomedical

engineering [18], plant science [10] and robotics [12].

Traditional approaches include using devices such as ther-

mistors to measure the air temperature changes near the nasal

region [5], respiratory belt transducers to measure changes in

the circumference of the chest or abdomen [4] and battery-

powered wearable sensors to detect the sound created by

turbulence occurring in the human respiratory system [6].

Unfortunately, these devices are impractical for use in many

real-world scenarios which require patient mobility or for

patients who are disinclined to wearing sensors of any kind.

A. REMOTE BREATHING DETECTION TECHNIQUES

Remote breathing detection can be used in many appli-

cations when it is important to measure changes in breath-

ing rate but it is not practical to attach sensors or receive

frequent feedback from the user. One of the first published

works which measures breathing rate remotely uses an active

radar detector to measure movements of the chest caused

by cardiac and breathing events [9]. Since then, other non-

contact modalities have been explored including laser doppler

vibrometry (LDV) [21], radio frequency scanners [1] and

mid-wave infrared video cameras [18]. One study remotely

collects physiological information using LDV to deduce the

stress state of an individual based on vibrations of the skin

directly covering the carotid artery [21]. The main drawbacks

to this approach include problems with accurate tracking due

to variances in patient physiology and the prohibitive cost of

the technology.

The biomedical engineering field has published a great deal

of research dedicated to the acquisition of a wide variety of

physiological information. A recent study uses a midwave

infrared camera to capture breathing and heart rate based

on air temperature changes near the nasal region [8]. This

particular implementation was designed for polysomnography

and relies initially on the manual identification of a primary

region of interest in order to track the outer extent of the

nostril region. Because of the large amount of image and

data processing required and the small size of the nostril

location to be tracked, segmentation becomes challenging and

computationally expensive.

Medical applications including polysomnography and the

diagnosis and management of respiratory diseases may re-

quire a high level of precision that demands the collection

and analysis of data relating to the entire breath waveform

not just the number of breathing events. Our research uses

a simpler, less expensive method which does not require

capturing a large amount of precise data relating to the full

breath spectrum.

B. BREATH-DETECTING ROBOTS

While the collection of physiological data for diagnosing

disorders and stress in humans is not new, remotely recovering

this information for use in robotics is an emerging field.

Important recent research using robots and contact sensors

have shown that physiological responses alone can be used to

successfully recognize anxiety in humans [20].

One study uses a reasonably-priced, commercially-

available biofeedback device to control an iRobot Roomba

[22]. Muscle tension signals from an OCZ NIA neural impulse

actuator (typically used for video games) were used to deduce

a user’s stress state and use that perceived state to adapt the

Roomba’s movements accordingly.

Other research applies the fundamental concept of human

stress detection to the study of autism therapy [16]. Partici-

pants of the study were fitted with biofeedback sensors which

measured heart rate variability, skin conductivity, eyebrow

movement, jaw clenching, and body temperature. The key to

this approach includes designing an affective control archi-

tecture and creating rules by which the robot decides how to

respond when the threshold anxiety level is reached.

The modes of collecting physiological data described in

these studies have been effective but each method still requires

that the subject be fitted with the proper biofeedback sensors.

In some controlled settings and with certain subjects, this

may not be an issue. However, their efficacy in dynamic

environments where people cannot be fitted with biofeedback

sensors or in certain medical or therapeutic settings where

persons are averse to wearing sensors is still somewhat

limited. This paper presents a complementary approach in

which one important physiological indicator - breathing - is

collected using a non-contact modality.

III. METHODOLOGY

This research presents a new technique for remotely captur-

ing and measuring breathing rates to ultimately deduce a user

stress state. Although resting breathing rates may vary from

one individual to the next, healthy adults have a typical resting

breathing rate between 8-16 breaths per minute [7]. Normal

breathing consists of three phases: inspiration, expiration and

a postexpiratory pause. Inspiration occurs when the diaphram

contracts, creating negative pressure inside the chest cavity

and the passive process of expiration follows as a function

of the elastic recoil property of the lungs [13]. In our

research, one complete breathing cycle is measured as the

interval between the beginning of the expiration phase and

the beginning of the next expiration phase.

The breathing rate measurement system described in this

research (see Figure 1) employs a single-point infrared sensor.

To measure breathing rate with this sensor, our system: (1)

aims the sensor at a pre-defined sub-nasal target region using

the location of the nose as extracted from the most recent

video frame and, (2) extracts the temperature information pro-

vided by the sensor analog signal. To achieve these objectives,



Fig. 1. Remote breathing monitoring system. Front view (left) and profile view (right).

a specific combination of hardware and software was included

in the overall system design.

A. HARDWARE

Our breathing measurement system uses a custom-built ac-

tuated platform, on which we mounted a non-contact infrared

temperature sensor and a camera. The primary hardware

components of this system are enumerated below.

1) Infrared Sensor: The infrared sensor is a FAR infrared

(spectral range 8− 14 microns) sensor. The sensor is

capable of reading a range of temperatures between

30−150◦C. This single-point sensor has an optical res-

olution of 15 : 1 with a reading precision or temperature

resolution of 0.025◦C and an accuracy of approximately

±1◦C or 1% of the reading.

2) Camera: A consumer-grade USB camera is mounted

below the IR sensor to assist maintaining a correct aim

of the IR sensor at the user’s sub-nasal region.

3) Pan-tilt platform: Both the IR sensor and the camera are

mounted on a direct-drive pan-tilt platform, actuated by

two titanium gear servos. The servos are powered by a

7.4V, 2100mA lithium polymer battery, and controlled

over USB via an 8-channel servo controller board.

B. SOFTWARE

The software developed for our system manages three

main functions: (1) infrared sensor positioning, (2) infrared

temperature collection, (3) data pre-processing and breathing

rate calculation. Sensor positioning is accomplished through

repeated nose detection and automatic adjustment of the

infrared sensor’s pan and tilt angles in order to maintain the

region of interest within a pre-defined target. Temperatures are

obtained by sampling the IR sensor and processing the signal

to convert to a Fahrenheit temperature reading. Finally, the

Fig. 2. Nose and infrared sensor regions of interest.

data set is smoothed with a low-pass filter and curve-fit using

a sinusoidal function to extract the breathing rate as measured

by the infrared sensor.

1) Targeting the IR sensor: A camera is used to assist with

the positioning of the infrared sensor. Because the camera is

mounted on the same pan-tilt platform as the infrared sensor,

the center of the sensor’s target region remains at a constant

(x,y) offset from the center of each camera image. In this

paper we refer to the sensor’s target region as the “infrared

region of interest” (irROI.) For the sensor to be positioned

properly, a corresponding target point on the image of the

subject’s face is defined and aligned with the irROI from one

image to the next. We use the nose classifier from the freely-

available OpenCV library [3] to perform nose detection,

extract the nose region of interest (ROI) and compute the

(x,y) coordinates of the nose centroid. Positioning the sensor

to point at the sub-nasal target area is accomplished by

maintaining the nose centroid within the irROI in each image



video frame.

Continuous positioning of the infrared sensor is driven by

repeated nose detections which provide the (x,y) coordinates

of the centroid of the nose ROI. This centroid position must

be maintained within the rectangular irROI in order to keep

the sensor in a stable position. Should the nose centroid move

outside of the irROI, incremental pan and tilt commands are

automatically generated and executed until the sensor returns

to a stable position.

2) Infrared temperature collection: The infrared sensor is

initially sampled for 15 seconds, the temperature data set is

stored and an initial breathing rate is computed. Subsequent

data sets consist of the last 10 seconds from the previous

data set and the next 5-second window of temperature data.

Samples are collected at a rate of approximately 6 times

per second and each is recorded along with a corresponding

timestamp. The breathing rate is recalculated each time a full

5-second window of breathing data is collected. This “sliding

window” approach enables the system to detect subtle changes

in the breathing rate quickly since small increases or decreases

in breathing begin to affect the overall breathing rate within

a few seconds (Figure 3).

3) Data pre-processing and breathing rate calculation:

Temperatures are continuously sampled from the infrared

sensor regardless of whether the sensor is stable or not. For

this reason, readings too low to be considered human body

temperature are assumed to be room temperature or another

non-human source and are excluded from the collected data

set. Additionally, in order to smooth out occasional noise from

the sensor signal, a low-pass filter is applied to each set of

data collected by the infrared sensor.

Obtaining individual breathing rates for the infrared sensor

data sets is achieved by fitting a sinusoidal curve to the

infrared data. We observed the best curve-fitting results using

four basic fitting parameters: period T , mean B, amplitude A,

and offset C.

FittedSine(x) = Asin(2π/Tx+C)+B (1)

Based on the results of this curve-fitting operation, we use the

value assigned to the variable T as the breathing rate output

of the system. To perform the curve fitting we use the curve-

fitting command provided by the freely-available graphing

utility, gnuplot [24]. Gnuplot uses an implementation of

the nonlinear least-squares Marquardt-Levenberg algorithm,

where a user-defined function is fit to a set of input data.

After each iteration of the algorithm, the quality of the

fit is determined by the sum of the squared differences or

“residuals” between the input data points and the function

values, evaluated at the same places. Each iteration of the

algorithm attempts to minimize the residuals, and terminates

only when a specific residual minimum or limit is reached. In

our implementation, we are curve-fitting data sets in real-time

so it is important to set the residual low enough for an accurate

fit but not so low that computation causes delay in processing
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Fig. 3. Successive sliding windows of IR sensor readings. Solid line
corresponds to infrared temperature data. Dashed line corresponds to the
curve-fit results.

each consecutive data set. After testing several values, we

found that the best residual limit for our implementation is

10−15. The function we defined to fit the collected temperature

data sets is a sinusoidal curve, with several fitting parameters

added.

To help in assessing the quality of the curve-fit and the

resulting breathing rate output, a running average of the resid-

uals was computed for each data set and an error threshold

was defined. Residuals in excess of five times the residual

average for each data set were not considered successful and

were classified as “no response.” This technique allows the

system to determine when it has succeeded in fitting a curve

to the infrared data and to avoid generating erroneous results

when this is not the case.

IV. EXPERIMENTS

Experiments were conducted to measure the effectiveness

of the single-point infrared sensor for monitoring breathing

rate, the accuracy of the nose detection classifier and the

reliability of the self-reporting mechanism.

A. PREMILINARY TESTS

Early tests revealed occasional drifting with the OpenCV

nose-detection classifier due to changes in ambient light and

the angle of the nose. Additionally, because typical breathing

can vary in terms of breath length and frequency, collected

temperature data did not always conform to a uniform si-

nusoidal wave within each data set. Finally, collecting the

ground truth for breathing using manually reported data was

susceptible to inconsistencies caused by participants failing



to report breaths or inadvertant pushes of the self-reporting

button. Each of these issues were addressed in the formal

experiments that followed.

To reduce potential drifting in the nose detection system,

formal testing was conducted in a temperature-controlled

setting with controlled lighting conditions. In order to manage

errors resulting from a poor fit of the sine wave function to the

breathing data, the sum of squares residuals were extracted

from curve-fitting results in order to assess the quality of the

fit between each data set and the curve generated. Inaccura-

cies in manually reported data were mitigated by removing

instances when it was clear that the study participant failed

to report breathing events. It would be impossible to remove

all inaccurately reported data since a participant may fail to

report just one or two breaths per minute for a given data set.

However, data sets in which manually reported breaths were

0.00 per minute for a given window were discarded. Even

though the error contributed by each of these factors was

minimized, it was not completely eliminated. Consequently,

we believe formal test results were still somewhat influenced

by errors from limitations in nose detection, curve-fitting and

manually reported data and resulted in higher residual values

and lower values for accuracy.

Data Sets Typical Anomaly All

Successful

response

74.8% 16.4% 68.8%

No response 25.2% 83.6% 31.2%

Fig. 4. Response rate across data sets.

B. FORMAL TESTS

1) Experiment setup: Formal experiments were conducted

with ten study participants, four females and six males,

between the ages of 18 and 60. Individuals who participated

in this study were not taking medication which could interfere

with their breathing at the time of the experiment. Each

participant sat in a chair that was placed approximately 30

inches from a rolling table equipped with the infrared sensor

system and a laptop computer. Each study subject watched a

video playing on the laptop computer for approximately 10

minutes. The primary purpose of the video was to maintain

the participant’s attention in a forward-facing, relatively still

position. In addition, participants were provided a push-button

sensor to self-report their breaths. We used this self-reported

data as ground truth to evaluate our system’s performance.

Each individual was asked to breathe naturally through the

nose and to push the button through the entire expiration

phase.

As with the infrared temperature collection, manual reports

of each expiration were collected in 15-second windows and

subsequent data sets consist of the last 10 seconds of the

previous window and the next 5-second window. Each data

entry in the window includes a timestamp and a corresponding

“high” (expiration) or “low” (other) temperature. Breathing

rates based on manually reported expirations are calculated by

dividing the number of complete breaths recorded in a given

window by the total number of seconds elapsed between the

beginning of the first complete expiration and the beginning

of the last reported expiration.

Data Sets Typical Anomaly All

< 4 bpm 94.1% 76.9% 91.2%

< 3 bpm 86.9% 71.2% 83.2%

< 2 bpm 70.9% 53.8% 63.5%

< 1 bpm 42.4% 38.5% 37.4%

Fig. 5. Successful response results in breaths per minute.

2) Experiment Results: Ten test sets, consisting of approxi-

mately 120 infrared and 120 manually reported breathing rates

each, were collected and analyzed. Of those 10 sets, three

were identified as anomalous due to frequent nose detection

problems observed while the test was being conducted or

a large number of missing manually reported entries. The

other 7 test sets contain typical data collected when the nose

detection and tracking was working properly and there were

few, if any, missing manually reported entries. Approximately

75% of the typical test sets yielded breathing rates at or below

the residual threshold (five times the residual average) and

were classified as “successful” compared to approximately

25% of the anomalous test sets. Data from both typical

and anomalous test sets exceeding the error threshold were

classified as “no response.” A summary of the successful and

“no response” rates for typical and anomalous data sets is

shown in Figure 4.

Accuracy was evaluated by computing the difference be-

tween breathing rates detected by the infrared sensor and

breathing rates reported by study participants. Typical and

anomalous test sets were analyzed separately and accuracy

was measured in breaths per minute (bpm). Breathing rate

entries were classified into one of four basic categories: (1)

under 4 bpm, (2) under 3 bpm, (3) under 2 bpm and, (4)

under 1 bpm, as illustrated in Figure 5.

An important factor in assessing the accuracy of test data is

the error threshold for determining which breathing rates were

fitted successfully with the curve-fitting function and which

were not. As the error threshold is increased, the number

of breathing rates in the “no response” category decreases

along with the number of breathing rates in the “successful”

category. Conversely, with a very low error threshold, the

number of successful breathing rates increases as does the

number of breathing rates classified as “no response.” We

selected a relatively low error threshold so as to evaluate only

the data which most accurately reflects the effectiveness of



the infrared sensor. If a higher error threshold were used,

the number of breathing rates with a poor fit would be

increased and the resulting accuracy would reflect more about

the performance of the curve-fit function and less about the

sensor’s ability to detect temperature changes corresponding

to breathing.

V. CONCLUSIONS

This paper presents a new non-contact technique for mon-

itoring changes in the sub-nasal skin surface temperature to

calculate breathing rate. The main objective of our research

was to examine the effectiveness of using a non-contact,

simple and low cost sensor for accurately measuring breathing

rate. Overall, the results obtained from our formal experi-

ments are very promising. Data from the typical test sets

clearly demonstrate that a single-point infrared sensor, when

accurately positioned, can detect subtle temperature changes

corresponding to inspiration and expiration. Given the small

size of the sensor and the minimal computation required for

non-contact breathing monitoring (as compared to existing

methods), this research demonstrates the usefulness of this

sensing modality for RR and SAR applications.

Preliminary experiments highlighted limitations with the

methods used to position the sensor, collect ground truth and

automatically compute breathing rates, but it is our expecta-

tion that they will be reasonably easy to overcome. Collecting

ground truth can be accomplished using a respiratory belt

transducer or thermistors. Nose detection can be improved

by training a more robust nose classifier or by extracting

depth map information from an RGBD sensor to identify the

nose in an image frame. Results obtained from the curve-

fitting function can be further improved by using a fast fourier

transform (FFT.)

Future experiments will engage the study participant in

a light activity that will require minimal movement while

breathing is monitored. Additionally, sensitivity analysis of

imprecise nose detection and an examination of the possible

cross-effect of perspiration in the perinasal region will be

considered in future tests.
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