
csce215 — UNIX/Linux Fundamentals
Fall 2021 — Lecture Notes: Building with blocks

This document contains slides from the lecture, formatted to be suitable for printing or
individual reading, and with some supplemental explanations added. It is intended
as a supplement to, rather than a replacement for, the lectures themselves — you
should not expect the notes to be self-contained or complete on their own.

(3.1) Last time
Last time we learned some commands for creating and changing files and directories:

• vim

• mkdir, rmdir

• mv, cp, rm, rm -r

• output redirection with > and >>

Today, we will learn how to combine multiple programs into larger, more powerful com-
mands.

(3.2) Input and Output
Each time we run a program, that program has access to two primary data streams.

• Input comes from standard input.

1 of 12

• Output goes to standard output.

(3.3) You already know this
Your favorite programming language has a way to read from standard input:

System.in, cin, read, sys.stdin...

And write to standard output:

System.out, cout, print(), sys.stdout...

(3.4) Typical behavior
Usually:

• Standard input is connected to the keyboard.

• Standard output is connected to your terminal window.

(3.5) Example: A calculator program

bc

Read simple arithmetic expressions from standard input and write the answers to
standard output.

csce215 Lecture Notes: Building with blocks 2 of 12

$ bc
2+2
4

(3.6) Review: Output redirection
We can redirect standard output to go to a file instead of the terminal. We saw this last
time.

> and >>

Send the standard output of a command to a file.

> If the file exists, replace it.

>> If the file exists, add to the end.

(3.7) Input redirection
We can redirect standard input come from a file instead of the keyboard.

<

Read the standard input to a command from a file.

csce215 Lecture Notes: Building with blocks 3 of 12

Many programs read from standard input until they reach an end of file (EOF) condition.
To generate EOF from the keyboard, press Ctrl-D.

(3.8) Examples with bc

$ bc > output.txt
2+2
$cat output.txt
4

$ bc < abc.txt
4

$ bc < abc.txt > output.txt

csce215 Lecture Notes: Building with blocks 4 of 12

$ echo 2+2+ > abc.txt
$ bc < abc.txt > output.txt
(standard_in) 2: syntax error

(3.9) Standard Error
In addition to standard input and standard output:

• Error messages go to standard error.

Your favorite programming language has a way to write to standard error:

System.err, cerr, print(file=sys.stderr,...), ...

Key idea: Standard error lets us see error messages, even when we are not looking at
standard output.

(3.10) Error redirection
Just like standard output and standard input, we can redirect standard error to a file.

csce215 Lecture Notes: Building with blocks 5 of 12

2 > and 2 >>

Send the standard error of a command to a file.

2 > If the file exists, replace it.

2 >> If the file exists, add to the end.

(3.11) Example: Catching compile errors
A poorly-written C++ program can generate lots of errors. Here’s a mild example:

$ g++ broken.cpp
broken.cpp:6:11: warning: missing terminating " character

6 | cout << "hello world’ >> cin;
| ˆ

broken.cpp:6:11: error: missing terminating " character
6 | cout << "hello world’ >> cin;

| ˆ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
broken.cpp:1:1: error: include does not name a type

1 | include <iostreem>
| ˆ˜˜˜˜˜˜

broken.cpp: In function int mina():
broken.cpp:6:3: error: cout was not declared in this scope

6 | cout << "hello world’ >> cin;
| ˆ˜˜˜

broken.cpp:7:1: error: expected primary-expression before } token
7 | }

| ˆ
broken.cpp:7:1: warning: no return statement in function returning non-void [-Wreturn-type]

Instead: Capture errors to take a closer look:

$ g++ broken.cpp 2> errors

csce215 Lecture Notes: Building with blocks 6 of 12

(3.12) Multiple commands
Suppose we want the output of one program to be the input of another program. How
can we do that?

One (not so great) option:

$ program1 > temp
$ program2 < temp
$ rm temp

But...

• Three separate steps: Three chances to mess up.

• The programs run one at a time.

• We have to keep track of the temporary file temp.

Conclusion:

(3.13) Pipes
A pipe runs two or more commands, connect the standard output of each command to
the standard input of the next.

| (pipe)

Use the standard output of one command as the standard input of the next.

csce215 Lecture Notes: Building with blocks 7 of 12

(3.14) Why?
The example from before becomes simply:

$ program1 | program2

• One compact line.

• Faster: program2 can begin processing its input while program1 is still producing
more output.

• No temporary files. Data flows directly from one program to the other.

And: It’s easy to combine more than 2 programs into a pipeline to get the answer we
want.

Conclusion:

(3.15) Filters
A program that is designed to be used in pipelines is called a filter. There are lots of useful
filters.

csce215 Lecture Notes: Building with blocks 8 of 12

head

Copy the first 10 lines of standard input to standard output. Ignore the rest.

-n k show k lines instead of 10.

tail

Copy the last 10 lines of standard input to standard output. Ignore the rest.

-n k show k lines instead of 10.

$ cat /usr/share/dict/american-english | head
A
A’s
AMD
AMD’s
AOL
AOL’s
AWS
AWS’s
Aachen
Aachen’s

$ ls /dev | tail -n 5
video5
video6
video7
zero
zfs

(3.16) More filters
Here are some more examples.

You’ll explore these in Lab 3. (Don’t forget about the man command to find out more
about each one!)

csce215 Lecture Notes: Building with blocks 9 of 12

grep

Find lines that match a pattern.

-i case insensitive

-v find lines that don’t match

sort

Put lines in order.

-n numerical order

-r reverse order

uniq

Eliminate duplicated adjacent lines.

-c count duplicates

wc

Count the number of lines, words, and characters.

nl ‘en-ell’

Number the lines

tac

Reverse the order of the lines

csce215 Lecture Notes: Building with blocks 10 of 12

tac

Reverse each line, character by character

cut

Extract only part of each line.

-c select ranges of characters

-f select fields

-d’x’ specify delimiter character for fields

(3.17) Pipes are powerful!
What camera devices are connected?

$ lsusb | grep -i camera
Bus 001 Device 002: ID 13d3:56bb IMC Networks Integrated Camera

Show me files here, one page at a time.

$ find | less

What sort of a file has a cpp extension?

$ cat /etc/mime.types | grep cpp
text/x-c++src c++ cpp cxx cc

Which course that I’ve taught uses the most disk space?

$ du ˜/teaching -d1 | sort -n | tail -n 5

How many times was my research cited in papers published at ICRA 2021, accounting
for misspellings and different sorts of apostrophe characters, but not counting other re-
searchers with somewhat similar names?

csce215 Lecture Notes: Building with blocks 11 of 12

grep -r Kane * | grep -v Kanehiro | grep -v Kanerva \
| grep -v Kanehioro | grep -v Johnson | grep -v Kaneko \
| grep -v Kanesiroo | wc -l

csce215 Lecture Notes: Building with blocks 12 of 12

	Last time
	Input and Output
	You already know this
	Typical behavior
	Example: A calculator program
	Review: Output redirection
	Input redirection
	Examples with `1̃3 `# 12 `_ 13 bc
	Standard Error
	Error redirection
	Example: Catching compile errors
	Multiple commands
	Pipes
	Why?
	Filters
	More filters
	Pipes are powerful!

