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Abstract 

Background 

Computational prediction of protein subcellular localization can greatly help to elucidate its 

functions. Despite the existence of dozens of protein localization prediction algorithms, the 

prediction accuracy and coverage are still low. Several ensemble algorithms have been 

proposed to improve the prediction performance, which usually include as many as 10 or 

more individual localization algorithms. However, their performance is still limited by the 

running complexity and redundancy among individual prediction algorithms. 

Results 

This paper proposed a novel method for rational design of minimalist ensemble algorithms 

for practical genome-wide protein subcellular localization prediction. The algorithm is based 

on combining a feature selection based filter and a logistic regression classifier. Using a 

novel concept of contribution scores, we analyzed issues of algorithm redundancy, consensus 

mistakes, and algorithm complementarity in designing ensemble algorithms. We applied the 

proposed minimalist logistic regression (LR) ensemble algorithm to two genome-wide 

datasets of Yeast and Human and compared its performance with current ensemble 

algorithms. Experimental results showed that the minimalist ensemble algorithm can achieve 

high prediction accuracy with only 1/3 to 1/2 of individual predictors of current ensemble 

algorithms, which greatly reduces computational complexity and running time. It was found 

that the high performance ensemble algorithms are usually composed of the predictors that 

together cover most of available features. Compared to the best individual predictor, our 

ensemble algorithm improved the prediction accuracy from AUC score of 0.558 to 0.707 for 



the Yeast dataset and from 0.628 to 0.646 for the Human dataset. Compared with popular 

weighted voting based ensemble algorithms, our classifier-based ensemble algorithms 

achieved much better performance without suffering from inclusion of too many individual 

predictors 

Conclusions 

We proposed a method for rational design of minimalist ensemble algorithms using feature 

selection and classifiers. The proposed minimalist ensemble algorithm based on logistic 

regression can achieve equal or better prediction performance while using only half or one-

third of individual predictors compared to other ensemble algorithms. The results also 

suggested that meta-predictors that take advantage of a variety of features by combining 

individual predictors tend to achieve the best performance. The LR ensemble server and 

related benchmark datasets are available at http://mleg.cse.sc.edu/LRensemble/cgi-

bin/predict.cgi 
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Background 

Functions of proteins are closely correlated with their subcellular locations. For example, 

Assfalg et al. [1] showed that there exists strong correlation between localization and proteins 

fold and localization can be utilized to predict structure class of proteins. It is thus desirable 

to accurately annotate subcellular location of proteins to elucidate their functions. In the past 

ten years, dozens of protein localization algorithms have been proposed based on different 

information sources such as amino acid composition, sorting signals, functional motifs, 

conserved domains, homology search, and protein-protein interaction [2]. A variety of 

machine learning techniques, such as SVM and K-nearest neighbour classifiers, have been 

used in these prediction algorithms. Although existent methods have achieved success at 

different degrees, a comprehensive evaluation study has shown that many of the reported 

prediction accuracies are far from being sufficient for genome wide protein localization 

prediction [3]. 

Recently, several research groups proposed to apply ensemble or integration of algorithms to 

protein localization prediction [4-8]. Liu et al. [4] proposed weighted and adaptive weighted 

voting algorithms in which the overall accuracy of a standalone algorithm is used as the 

weight. Laurila and Vihinen [5] proposed an integrated method (PROlocalizer) which 

combines the predictions of multiple specialized binary localization prediction algorithms 

such as TMHMM and Phobius. Park et al. [6] developed a Linear Discriminant Analysis 

(LDA) method (ConLoc) to assign LDA optimal weights for weighted voting. Assfalg et al. 

[7] proposed two ensemble localization algorithms; one is a scored voting scheme based on 

the ranks of the prediction accuracy of the predictors; the other chose J48 decision tree (DT) 

classifier as the integration scheme. Shen and Burger [8] proposed a two-layer decision tree 

method to improve the prediction accuracy of a single subcellular location. Most of these 

ensemble algorithms integrated 10 or more standalone prediction methods for localization 

prediction without considering their relationships such as redundancy and complementarity. 

This makes these ensemble algorithms computationally intensive. Furthermore, incorporation 



of unnecessary predictors into an ensemble algorithm may overfit the training data and result 

in degradation of its prediction performance, which has been reported recently for ensemble 

mitochondrion predictors [9]. 

In this paper, we evaluated 9 standalone localization prediction algorithms and analyzed their 

bias and relationships in the prediction space of the resulting ensemble algorithms. We found 

that ensemble algorithms based on the combination of several specific predictors achieved 

comparable prediction performance as using all 9 predictors, suggesting that a high degree of 

redundancy exists among all individual predictors. We thus proposed a minimalist ensemble 

prediction algorithm for subcellular localization prediction and evaluated its performance on 

two data sets, which showed high performance and significant reduction of computational 

complexity and running time. 

Methods 

Standalone protein localization predictors 

To implement our ensemble localization predictor, we selected 8 published localization 

prediction algorithms provided that the software or web server is publicly available, and 

batch submission is supported. These algorithms include YLoc [10], MultiLoc2 [11], 

KnowPred [12], Subcell [13], WoLFPSORT [14], BaCelLo [15], CELLO [16], SubLoc [17]. 

We also included NetLoc [18], a protein-protein interaction (PPI) based prediction method. 

These prediction methods differ in the features that characterize proteins targeting different 

subcellular locations (Table 1) and the prediction algorithms. These diverse features include 

sorting signals, amino acid composition, known motifs or domains, homology search against 

a known dataset or database such as SwissProt, evolutionary information such as 

phylogenetic profiles or sequence profiles, and protein-protein interaction. The overlap of the 

used features among localization predictors suggests that redundant predictions could be 

made when these prediction methods are combined to build an ensemble algorithm, which 

could mislead the prediction behaviour of the resulting ensemble algorithm. 

Table 1 Features used in localization prediction algorithms 

 sorting 

signal 

amino acid 

composition 

known 

domains or 

motifs 

homology 

search 

evolutionary 

information 

PPI 

NetLoc      X 

YLoc X X X X   

MultiLoc2 X X X  X  

KnowPred    X   

Subcell  X     

WoLFPSORT X X X    

BaCelLo  X   X  

CELLO  X     

SubLoc  X     

In addition to amino acid sequence information, protein-protein interaction has been known 

as external information correlated to protein subcellular localization. A number of algorithms 

have been developed to utilize PPI features to predict protein localization (Hishigaki et al. 



[19], Lee et al. [20] and Shin et al. [21]). Recently, our group developed NetLoc [18], a 

kernel-based logistic regression (KLR) method, which can effectively extract PPI features to 

predict protein localization. Considering that NetLoc simply used PPI as its features, we 

integrated NetLoc into our ensemble algorithms to compare the ensemble performances with 

and without a PPI-based predictor. In our experiments, PPI data of NetLoc is based on the 

whole Saccharomyces cerevisiae physical PPI dataset obtained from BioGRID database [22]. 

We exclude proteins overlapped with our Yeast datasets from the PPI dataset to ensure 

independency between the training and testing datasets. 

Mapping of subcellular locations 

Different localization predictors may have different subcell resolutions. In order to compare 

their performances on genome wide datasets, we applied a location mapping scheme to map 

the subcellular locations of standalone predictors to unified 5 locations in the ensemble 

algorithms, including Cytosol, Mitochondrion, Nucleus, Secretory (secretory pathway), and 

Others. Six classes of subcellular locations are mapped to Secretory according to [11]: 

extracellular, plasma membrane, endoplasmic reticulum, golgi apparatus, lysosomal, and 

vacuolar. Except for Cytosol, Mitochondrion, Nucleus, and Secretory, the remaining 

subcellular locations are categorized as Others. For example, for CELLO, the following 

subcellular locations are mapped to Secretory: extra, plas, er, vacu, golgi, and lyso; chlo, 

pero, and cytos are mapped to Others. For WoLFPSORT, E.R., extr, plas, golg, lyso, and 

vacu are mapped to Secretory; chlo, cysk, and pero are mapped to Others. 

Contribution score 

To explore the complementary relationship among the individual predictors used in an 

ensemble algorithm, we calculated contribution scores [23] of component standalone 

prediction methods. This measure is used to evaluate the contribution of each individual 

classifier to the ensemble algorithm, and has been used for pruning large ensemble set. The 

main idea of the contribution score is that predictors that tend to make correct and minority 

predictions among other predictors will be scored higher since they make unique contribution 

and thus are essential for the ensemble algorithm. On the other hand, predictors with low 

contribution scores tend to make incorrect and majority predictions. The contribution score of 

a predictor in an ensemble algorithm is calculated as follows: 

max sec correct max

1
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i j i j

N
j j j j j j

ij ij ijp p
j
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Symbols in the formula are explained as follows: for a protein j, the prediction results of nine 

predictors in the order of predictor 1 to predictor 9 are Cytosol, Nucleus, Nucleus, 

Mitochondrion, Nucleus, Cytosol, Nucleus, Nucleus, and Nucleus, while the real localization 

of protein j is Cytosol. In this case, the majority votes (predictions) are for Nucleus, the 

number of the majority votes is denoted as  , which is 6; the number of the second 

majority votes is denoted as  , which is 2; the number of the correct votes is denoted as 

 , which is 2; the prediction result of predictor i is denoted as  ; the 

number of predictors having the same prediction result with predictor i is denoted as 

  From the formula, we can see that predictor 1 and predictor 6 have the same 

positive contribution, which is 2*6-2 = 10; predictor 4 has minor negative contribution, which 

is −5; predictors 2,3,5,7,8,9 have the most negative contribution, which is −10. If the dataset 

used to learn contribution scores has N proteins, then the final contribution score of a 

predictor is summation of its N contributions. We normalized the final contribution scores 

(CS) with the formula: (CS – μ)/σ, where μ and σare mean and standard deviation of 

contribution scores among predictors. 

Minimalist ensemble prediction algorithm 

Existing ensemble algorithms tend to include as many as possible component classifiers for 

better prediction performance. However, including redundant predictors not only increases 

computational complexity and collecting effort, but also may lead to over-fitting [9]. 

Moreover, predictors with poor performance could mislead the ensemble algorithms 

especially those using majority voting schemes. It is thus desirable to find the minimal subset 

of predictors for achieving equally good or better prediction performance. 

Several strategies can be used to find the minimal set of predictors: exhaustive search of all 

possible combinations of component predictors, feature selection, and selecting top k most 

accurate predictors. We did an exhaustive search for all combinations of K individual 

predictors to build different ensemble algorithms. It shows that combining 6 out of 9 

predictors can achieve the best performance when the logistic regression classifier was used 

to integrate the predictions. However, exhaustive search is a time consuming process 

especially when the set of available predictors is large. Top-K accuracy selection method is 

straightforward and fast, but has the limitation of neglecting the redundancy among 

individual predictors. 



Here we proposed a minimalist ensemble design method to approximate the smallest set of 

predictors with the best possible prediction accuracy. The rationale is to find the smallest 

subset of predictors whose predictions are highly correlated to the real locations. The 

minimalist ensemble design problem is similar to feature selection when the prediction labels 

of individual predictors are considered as features. Here, we chose the correlation based 

feature subset evaluator (CfsSubsetEval) [24] as the attribute evaluator to evaluate correlation 

between a feature subset and the class. Greedy-Stepwise method is used to search optimal 

feature subsets in different size of K through the space: the starting point of search is set as 

the set with all available predictors (assume size N). Each time Greedy-Stepwise algorithm 

will remove one feature or predictor from the set which would produce a reduced set with the 

highest possible CfsSubsetEval Score. We continue the process until set size is 1, while along 

the way the predictors in the set with size K are recorded as the output of our minimalist 

ensemble algorithm. After the K individual predictors are selected based on the training 

dataset, their predicted localizations for all proteins in the training dataset will be used as 

features, and a machine learning based classifier, such as naive Bayes, logistic regression, or 

decision trees is used to train a classifier to predict the final subcellular localization. This 

method used to select minimalist set of individual predictors can also be used for building 

ensemble algorithms based on weighted voting or LDA. 

Datasets preparation 

Two genome-wide protein localization databases are used to build three datasets in our 

experiments. The yeast dataset is obtained from Huh et al. [25]. We excluded proteins 

localized to Others (after location mapping) and multi-location proteins from the yeast 

dataset. Two versions of the yeast dataset with different resolutions are prepared; for the low-

resolution yeast dataset (Yeast Low-Res), we extracted proteins in Cytosol, Nucleus, 

Mitochondrion, Secretory after location mapping. For the high-resolution yeast dataset (Yeast 

High-Res), we extracted proteins in Cytosol, Nucleus, Mitochondrion, ER, Vacuole, Golgi, 

and Cell Periphery (plasma membrane and extracellular). The Human dataset is obtained 

from the LOCATE database [26] by extracting proteins in 4 locations (Cytoplasmic, 

Mitochodria, Nuclear, and Extracellular). Then we removed all multi-location proteins. For 

both Yeast and Human datasets, Blastclust with 30% sequence identity was used to remove 

redundant sequences. In addition, proteins overlapped with the training datasets of 

component predictors in the corresponding ensemble experiment are removed. It should be 

noted that the Yeast High-Res dataset is highly overlapped with the Yeast Low-Res datasets. 

The final distribution of proteins in different locations for the three datasets is shown in Table 

2. 

Table 2 The distributions of proteins in different locations for the test datasets 

Dataset Cytosol Mitochondrion Nucleus Secretory Total 

Yeast-

LowRes 

498 175 234 315 1222 

Human 361 327 159 458 1305 

 Cytosol Mitochondrion Nucleus ER Vacuole Golgi Cell 

Periphery 

 

Yeast-

HighRes 

530 165 233 149 103 33 34 1247 

1
Overlap 451 133 218 132 90 32 0 1056 

1
Overlap of Yeast LowRes and Yeast HighRres 



Evaluation of individual predictors and ensemble algorithms 

To evaluate the performance of predictors, accuracy and MCC were calculated using the 

equations below: 

Accuracy :
TP TN

TP TN FP FN   
 

MCC :
TP TN FP FN

TP FN TP FP TN FP TN FN
  

 

where TP, TN, FP, FN means true positive, true negative, false positive and false negative 

predictions. It should be noted that since localization prediction is a multi-class classification 

problem, MCC can only be calculated for each location while an overall accuracy can be 

calculated for each prediction method for a given dataset. In our experiments, 10-fold cross-

validation was used to evaluate all the ensemble algorithms. 

Results and discussion 

Evaluation of individual predictors 

We obtained the prediction results on three test datasets (Yeast Low-Res, Yeast High-Res and 

Human) from the selected individual predictors using the web servers or standalone programs 

and then evaluated their accuracy and MCC scores. The results of 9 predictors for the Yeast 

Low-Res dataset are shown in Table 3, the results of 6 predictors for the Yeast High-Res 

dataset are shown in Table 4, and the results of 8 predictors for the Human dataset are shown 

in Table 5. 



Table 3 Prediction performance (MCC Scores) of individual predictors for the Yeast Low-Res dataset 

 YLoc 

(2010) 

NetLoc 

(2010) 

MultiLoc2 

(2009) 

KnowPred 

(2009) 

Subcell 

(2008) 

WoLFPSORT 

(2007) 

BaCelLo 

(2006) 

CELLO 

(2006) 

SubLoc 

(2001) 

LR with 8 

predictors 

without 

NetLoc 

LR with all 

9 predictors 

Cytosol 0.146 0.270 0.268 0.286 0.134 0.265 0.164 0.261 0.184 0.429 0.504 

Mitochondrion 0.556 0.350 0.581 0.415 0.243 0.549 0.526 0.547 0.354 0.668 0.666 

Nucleus 0.367 0.484 0.420 0.345 0.181 0.312 0.291 0.302 0.260 0.476 0.550 

Secretory 0.314 0.473 0.339 0.534 0.326 0.568 0.339 0.534 0.391 0.607 0.664 

Overall Accuracy 0.453 0.556 0.558 0.51 0.399 0.484 0.468 0.493 0.439 0.668 0.707 

Table 4 Prediction performance (MCC Scores) of individual predictors for the Yeast High-Res dataset 

 YLoc 

(2010) 

MultiLoc2 

(2009) 

Subcell 

(2008) 

WoLFPSORT 

(2007) 

CELLO 

(2006) 

NetLoc 

(2010) 

LR with 5 predictors 

without NetLoc 

LR with all 6 

predictors 

Cytosol 0.441 0.293 0.146 0.251 0.255 0.247 0.459 0.555 

Mitochondrion 0.689 0.496 0.251 0.510 0.501 0.318 0.684 0.713 

Nucleus 0.405 0.275 0.181 0.311 0.306 0.434 0.351 0.473 

ER 0.207 0.203 0.022 0.059 0.000 0.340 0.431 0.463 

Vacuole 0.115 0.045 0.034 0.000 0.061 0.189 0.174 0.191 

Golgi 0.008 0.010 0.054 0.118 −0.005 0.465 0.038 0.275 

Cell Periphery 0.107 0.044 0.068 0.142 0.090 0.449 0.04 0.269 

Overall 

accuracy 

0.506 0.473 0.300 0.362 0.354 0.523 0.585 0.640 

Table 5 Prediction performance (MCC Scores) of individual predictors for the Human dataset 

 YLoc 

(2010) 

MultiLoc2 

(2009) 

KnowPred 

(2009) 

Subcell 

(2008) 

WoLFPSORT 

(2007) 

BaCelLo 

(2006) 

CELLO 

(2006) 

SubLoc 

(2001) 

LR with all 8 

predictors 

Cytosol 0.308 0.334 0.307 0.050 0.261 0.220 0.117 0.065 0.362 



Mitochondrion 0.546 0.451 0.048 0.080 0.329 0.439 0.369 0.264 0.515 

Nucleus 0.454 0.293 0.419 0.122 0.277 0.233 0.234 0.162 0.375 

Secretory 0.720 0.627 0.477 0.205 0.553 0.607 0.428 0.339 0.712 

Overall 

Accuracy 

0.628 0.581 0.514 0.303 0.527 0.54 0.419 0.375 0.646 



For the Yeast dataset (Tables 3, 4), most algorithms have better performance on predicting 

Mitochondrion proteins. For the Yeast High-Res dataset (Table 4), we can see that all 

predictors except NetLoc showed poor performance on predicting proteins localized to 

secretory pathway compartments especially golgi, and cell periphery. This suggests that PPI 

can be an effective feature for predicting low-resolution compartments. Predictors with 

relatively high accuracy on the Yeast Low-Res Secretory proteins, such as CELLO and 

WoLFPSORT, don’t have corresponding performance on predicting proteins localized to ER, 

Golgi, Vacuole in the Yeast High-Res dataset which are highly overlapped with the Yeast 

Low-Res Secretory proteins (Table 3). This means those predictors have difficulties in 

distinguishing smaller compartments of secretory pathway. YLoc and MultiLoc2 have very 

different performances between the Yeast Low-Res and High-Res datasets, which could be 

due to the use of different training datasets. For the Human dataset (Table 5), the Secretory 

proteins (which are exclusively Extracellular proteins) are the easiest for YLoc, MultiLoc2, 

and WoLFPSORT, which may suggest that these proteins have more distinct features such as 

secretory pathway signals than the Yeast Secretory proteins. As shown in Table 1, YLoc, 

MultiLoc2, and WoLFPSORT all use sorting signals as one of their features. The variation of 

prediction performance of the individual predictors implies that an ensemble algorithm may 

be able to integrate their strengths and achieve better overall performance. 

Ensemble performance 

From Tables 3, 4, 5 we can compare the performances between logistic regression (LR) 

ensemble algorithms and their element predictors on the three test datasets. We can see that 

LR ensemble has better overall accuracy than the best element predictor over the three 

datasets; for the Yeast Low-Res dataset and Yeast High-Res dataset, LR ensemble have more 

than 10% improvement over the best element predictors when integrating all available 

element predictors. However, LR ensemble does not always have the best performance on 

each compartment. This is because the ensemble training process is to optimize the overall 

accuracy while performance of certain compartment(s) could be compromised. We can also 

see that when all of the element predictors failed on certain compartments, such as Golgi and 

Cell Periphery in the Yeast High-Res dataset, LR ensemble doesn’t have any improvement on 

predicting those compartments. 

Prediction performance of the optimal ensemble algorithms using exhaustive 

search 

Here we evaluated the prediction accuracy of the logistic regression ensemble algorithm with 

all combinations of K (K = 2…9) predictors using 10-fold cross-validation. Figure 1 (a) 

shows the result tested on the Yeast Low-Res dataset. First, we found that by using just three 

predictors, the ensemble algorithm can achieve comparable performance as using nine 

predictors. The 3 predictors are NetLoc (PPI), WoLFPSORT and YLoc which cover most of 

the available features among the predictors. On the other hand, the ensemble algorithm 

composed of predictors with low coverage of features has poor prediction efficiency. It is 

also observed that when more predictors were used, the performance discrepancy between the 

ensemble algorithms based on different predictors became smaller. This indicates that the 

prediction performance is more reliable as the number of predictors increases. 

Figure 1 Prediction performance of the logistic regression ensemble methods with K 

individual predictors selected by exhaustive search. (a) Performance on the Yeast Low-



Res dataset, (b) Performance on the Human dataset. Each dot represents one combination of 

predictors. The number of predictors is annotated on the X axis. The performance of the 

logistic regression ensemble method is annotated on the Y axis. The dots connected by the 

line represent the combinations of predictors determined by the minimalist algorithm for 

different K values 

We also evaluated the ensemble performance on the Human dataset with all combinations of 

predictors including YLoc, MultiLoc2, WoLFPSORT, CELLO, SubLoc, Subcell, BaCelLo 

and KnowPred. However, relatively limited accuracy improvement over the best individual 

predictor has been achieved by the LR ensemble compared to the Yeast dataset. One reason is 

that the ensemble algorithm for the Yeast dataset includes NetLoc which uses protein-protein 

correlation network information for localization prediction. This distinctive feature makes it 

complementary to the other algorithms, which leads to significant performance boosting. 

Another reason may be that the strengths and bias of different predictors are enlarged or 

reduced to different degrees on different datasets, which may result in the change of 

complementary relationship among predictors. The varying complementary relationship thus 

leads to different prediction accuracy of the ensemble composed of the same set of predictors 

on different datasets. 

Contributions of individual predictors to the ensemble algorithm 

To explore the contributions of individual predictors to the ensemble algorithm and their 

redundant or complementary relationships, we calculated their contribution scores in the 

ensemble algorithm for the Yeast Low-Res and Human datasets. Nine predictors are available 

for the Yeast Low-Res dataset and 8 predictors for the Human dataset. Figure 2(a) and (b) 

show the normalized contribution scores and prediction accuracies of the 9 (8) predictors on 

the Yeast Low-Res dataset and Human dataset respectively. For the Yeast Low-Res dataset, 

YLoc2, Subcell, WolfPSORT, BaCelLo, CELLO, and SubLoc all have relatively low 

contribution scores, which suggests that their predictions are highly redundant with the other 

predictors’ predictions. We also found that the predictors simply using the most common 

features(amino acids composition) such as CELLO, SubLoc, Subcell, all have relatively low 

contribution scores, which suggests that the proteins whose localizations can be correctly 

predicted by these predictors can also be predicted correctly by other predictors. On the other 

hand, it can be observed that predictors using distinct features such as NetLoc and KnownP 

have relatively high contribution scores. NetLoc (PPI) has the highest contribution score 

because it used very different PPI information compared to other predictors, which allows it 

to correctly predict proteins that other individual predictors cannot. KnowPred applies a 

sophisticated local similarity method to detect remote sequence homology and therefore 

might correctly predict some proteins that most of others cannot. Another reason why NetLoc 

and KnowPred have relatively high contribution scores is that they don’t use other common 

features so they are less likely to make the same wrong predictions like other predictors. For 

the Human dataset, YLoc, MultiLoc2 and KnowPred have the highest contribution scores 

while CELLO, SubLoc, and Subcell still have the lowest contribution scores, which suggests 

that the latter three predictors’ correct predictions can be covered by the other component 

predictors or that they tend to mislead the ensemble algorithm by making majority incorrect 

predictions. This contribution score analysis can thus be applied to evalute future new protein 

localization predictors in terms of their unique prediction capability. 

Figure 2 Contribution scores of individual predictors. (a) 9 predictors for the Yeast Low-

Res dataset, (b) 8 predictors for the Human dataset 



Prediction performance of the minimalist ensemble algorithm 

To test the performance of our minimalist LR ensemble algorithm with K component 

predictors, we run the minimalist algorithm to generate the combination of predictors for each 

K to build the minimalist ensemble algorithms and then tested them on the Yeast Low-Res 

and Human datasets. The results in Figure 1 show that for the LR ensemble method, our 

minimalist ensemble algorithm can achieve near-optimal performance for any given K value. 

We also found that using 3–4 individual predictors can obtain near-best performance for all 

possible K values on the Yeast Low-Res dataset. This means that our minimalist ensemble 

algorithm can use 1/2 to 1/3 of individual predictors used by existing ensemble algorithms to 

achieve similar performance while remarkably reducing the computational effort. 

To examine the complementary relationships of the selected algorithms in the ensemble 

algorithms, Table 6 shows the most frequent predictors selected by the minimalist ensemble 

algorithms during the 10-fold cross-validation and the best combination for each K according 

to the exhaustive search of the LR ensemble on the Yeast Low-Res dataset. It is interesting to 

find that NetLoc and WoLFPSORT are the key component algorithms that are selected by the 

best combination and the minimalist ensemble with different K components. YLoc is the 

second tier of algorithms selected by the best combination, while MultiLoc2 is the second tier 

of algorithm selected by the minimalist algorithm. The consistent difference of the selected 

component predictors between the best combination and the minimalist after the key 

component algorithms is due to that our minimalist algorithm used greedy and stepwise 

method to search the optimal K component predictors. 

Table 6 The most frequent predictors selected by the minimalist algorithm with size of 

each K (noted by M) during the 10-fold cross-validation and the best combination of K 

predictors (noted by B) according to the exhaustive search result of the logistic 

regression ensemble on the Yeast dataset 

Number 

of 

predictors 

YLoc 

(2010) 

NetLoc 

(2010) 

MultiLoc2 

(2009) 

KnowPred 

(2009) 

Subcell 

(2008) 

WoLFPSORT 

(2007) 

BaCelLo 

(2006) 

CELLO 

(2006) 

SubLoc 

(2001) 

2  BM    BM    

3 B BM M   BM    

4 B BM BM M  BM    

5 B BM M BM  BM  M B 

6 BM BM M BM  BM  BM B 

7 BM BM M M B BM BM BM B 

8 BM BM BM BM B BM M BM BM 

Comparison of computational complexity 

The computational complexity of the ensemble involves the effort to collect prediction results 

from individual predictors either from local software running or from web servers and the 

total running time. Since most of the predictors are available only via web servers which are 

sometimes offline, it is desirable to have fewer component predictors. As demonstrated in 

Figure 1, the minimalist algorithm can efficiently find the key component predictors. Since 

only 4 predictors are needed for the ensemble algorithm to achieve comparable performance 



of using 9 predictors, about 1/2 to 2/3 amount of computation time to collect prediction 

results can be saved. 

Comparison of different ensemble schemes 

Several ensemble schemes have been proposed for building ensemble localization prediction 

algorithms, including weighted voting [4] (weight is assigned based on predictor accuracy), 

LDA [6], and classifiers-based ensemble algorithms such as decision tree (DT) [7]. It is 

interesting to compare their performance on the genome-wide Yeast and Human datasets. 

Here we compared their best performance given K individual predictors selected by 

exhaustive search. As shown in Figure 3, weighted voting has the worst performance and its 

performance degrades dramatically when more individual predictors are included. This is 

because its prediction can be easily biased by redundant low-performance predictors. LDA 

ensemble is better than weighted voting because it can assign LDA optimal weights to 

predictors and avoid the prediction results being biased by low-performance predictors. 

However, it is still a voting based algorithm which might not be able to capture the rules 

relating the predictions of predictors to the real locations. For other classifiers-based (such as 

naive Bayes, decision tree and logistic regression) ensemble methods, they yield better 

prediction accuracy because these machine learning algorithms can better find and learn the 

rules between the features (predictions of individual predictors) using supervised learning. 

For these machine learning ensemble methods, the capability to handle redundancy is 

essentially the capability to handle over-fitting. As Figure 3 shows, if too many predictors are 

included, voting based ensemble algorithms such as weighted voting and LDA show the trend 

of downgrading the performance. 

Figure 3 Performance of the best ensemble on the Yeast dataset using different 

ensemble schemes with K (K = 2..9) predictors selected by exhaustive search. (a) 9 

predictors including NetLoc (PPI) (b) 8 predictors without NetLoc (PPI) 

Figure 3(a) and (b) showed the performance of the ensemble algorithms with or without 

including the PPI based predictor NetLoc. It is observed that ensemble algorithms without 

NetLoc have much less improvement over the best individual predictors, which means that 

these ensemble algorithms except weighted voting can automatically take advantage of the 

unique/beneficial component predictors (such as NetLoc which uses a unique protein-protein 

interaction features) to improve the performance. From Figure 3(b) we also noticed that LDA 

ensemble’s performance could degrade dramatically when too many redundant predictors are 

included without including predictor(s) with distinct property such as NetLoc. 

We also compared the performances of the minimalist ensemble algorithms on the Yeast 

Low-Res dataset. The result is shown in Figure 4(a), which demonstrates similar relationship 

of the performance for the evaluated ensemble algorithms in Figure 3(a). Figure 4(b) shows 

the performance of the ensemble methods by selecting the top K accurate predictors. We can 

see that the main peformance difference between the minimalist ensemble and top-K 

ensemble is when K is less than 4, which means the top 4 accurate predictors can form a very 

complimentary group. However, top K method is not reliable especially when the predictor 

with distinct features has relatively low accuracy, or when many included predictors are 

highly redundant. 

Figure 4 Performance of different ensemble schemes on the Yeast Low-Res dataset with 

K (k = 2..9) predictors selected by Minimalist algorithm and Top-K accurate method. (a) 



Different ensemble methods with K (k = 2..9) predictors selected by Minimalist algorithm. (b) 

Different ensemble methods with K (k = 2..9) predictors selected by Top-K accurate 

algorithm 

Comparison with other ensemble algorithms 

There are several published and publicly available ensemble algorithms such as ConLoc [6] 

and PROlocalizer [5]. ConLoc intergrated 13 different predictors and used LDA as the 

ensemble scheme. PROlocalizer intergrated 11 different programs to predict localization of 

animal proteins. We tested ConLoc on our Yeast Low-Res and Human datasets. The results 

are shown in Tables 7 and 8. It should be noted that although our datasets are not overlapped 

with ConLoc ensemble training dataset, the performance result of ConLoc can still be 

overestimated since we didn’t exclude proteins of our datasets that are overlapped with the 

training datasets of ConLoc’s 13 element predictors. To test our minimalist ensemble 

algorithm, we first collected predictions of ConLoc’s 13 element predictors on the Yeast 

Low-Res and Human datasets and then tested LR ensemble with 10-fold cross-validation. 

The results (Tables 7 and 8) showed that LR ensemble achieved higher accuracy than LDA 

based ConLoc on both datasets, which is consistent with our previous experiment results 

(Figure 3(a) and 3(b)) alghough ConLoc LDA used a different ensemble training dataset. 

Table 7 Comparison of the performance of ConLoc and Minimalist LR ensemble 

algorithm with 13 predictors on the Yeast Low-Res dataset 

 The best element 

predictor of ConLoc: 

SherLoc 

ConLoc LR ensemble with 13 

predictors as used in 

ConLoc 

LR + minimalist algorithm to 

select K out of 13 predictors in 

ConLoc, K = 4 

Cytosol 0.301 0.441 0.489 0.472 

Mitochondrion 0.574 0.622 0.708 0.731 

Nucleus 0.341 0.461 0.537 0.541 

Secretory 0.533 0.537 0.608 0.605 

Overall Accuracy 0.529 0.616 0.696 0.693 

Table 8 Comparison of the performance of ConLoc and Minimalist LR ensemble 

algorithm with 13 predictors on the Human dataset 

 The best element 

predictor of ConLoc: 

Proteome Analyst 

ConLoc LR ensemble with 13 

predictors used in 

ConLoc 

LR + minimalist algorithm to 

select K out of 13 predictors 

used in ConLoc, K = 3 

Cytosol 0.390 0.414 0.429 0.460 

Mitochondrion 0.613 0.628 0.641 0.645 

Nucleus 0.463 0.415 0.371 0.392 

Secretory 0.754 0.721 0.749 0.758 

Overall Accuracy 0.644 0.664 0.689 0.703 

To investigate the redundancy among ConLoc’s 13 predictors, we applied our minimalist 

algorithm to select K out of the 13 predictors and tested them on the Yeast Low-Res dataset 

and the Human dataset. The results (Tables 7 and 8, column 5) showed that for the Yeast 

Low-Res dataset, using only 4 predictors can achieve equally good performance as using all 

the 13 predictors. The most frequent 4 predictors selected by our minimalist algorithm during 

the 10-fold cross-validation are CELLO, Proteome Analyst, PTS1Prowler, and SherLoc. For 

the Human dataset, using only 3 predictors can achieve better performance than using all the 



13 predictors. The most frequent 3 predictors selected by our minimalist algorithm during the 

10-fold cross-validation are Proteome Analyst, PTS1Prowler, and SherLoc. 

We also tested PROlocalizer which is an integration algorithm based mainly on binary 

classifiers. However, the server was able to generate prediction results for only 399 out of 

1305 proteins in our Human dataset. The overall prediction accuracy of PROlocalizer on 

those 399 proteins is 0.81 while the standalone predictor YLoc alone has an overall accuracy 

0.84 on the same dataset. We argue that it is difficult to construct a reliable protocol-based 

ensemble algorithm such as PROlocalizer when the predictions of individual predictors are 

still not reliable leading to accumulation of errors along its sequential inference steps. 

Instead, the machine learning based ensemble methods can learn complementary rules among 

the predictors to function as a “protocol” to determine protein localization. 

Conclusions 

Although many protein localization prediction algorithms have been developed, the 

prediction performance remains low and the features used to predict localizations are still 

limited. Ensemble algorithms have shown some promise to take advantage of a variety of 

features by combining individual predictors. However, combining as many as possible 

individual predictors, which is the most common strategy, has the drawback of high running 

complexity and low availability as well as risk of performance degradation. The result of our 

minimalist ensemble algorithm showed that it is possible to significantly reduce the number 

of individual predictors in a given ensemble algorithm while maintaining comparable 

performance. It is also observed that the best component algorithm set tends to keep 

predictors with unique features, which indicates that new features are the key to further 

improve the prediction accuracy for localization prediction. The success of our minimalist 

ensemble algorithm based on feature selection and logistic regression showed that supervised 

ensemble algorithms based on machine learning can effectively capture the complex 

relationships among individual predictors and achieve better performance than the voting 

methods. 

We found that our ensemble algorithm works best when predictors with unique features are 

combined. For example, the PPI based NetLoc algorithm can significantly improve the 

ensemble performance, which is however limited by the fact that many proteins do not have 

PPI information. It should be also noted that the PPI information and ensemble predictor 

itself are species specific. So our ensemble predictor trained on human/yeast dataset may not 

work well for proteins of other species. However, the design methodology of minimalist 

ensemble predictors can be used to develop predictors tailored to specific organisms or 

available training datasets. 
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