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Abstract

Computational identification of heme-binding residues is beneficial for predicting and designing novel heme proteins. Here
we proposed a novel method for heme-binding residue prediction by exploiting topological properties of these residues in
the residue interaction networks derived from three-dimensional structures. Comprehensive analysis showed that key
residues located in heme-binding regions are generally associated with the nodes with higher degree, closeness and
betweenness, but lower clustering coefficient in the network. HemeNet, a support vector machine (SVM) based predictor,
was developed to identify heme-binding residues by combining topological features with existing sequence and structural
features. The results showed that incorporation of network-based features significantly improved the prediction
performance. We also compared the residue interaction networks of heme proteins before and after heme binding and
found that the topological features can well characterize the heme-binding sites of apo structures as well as those of holo
structures, which led to reliable performance improvement as we applied HemeNet to predicting the binding residues of
proteins in the heme-free state. HemeNet web server is freely accessible at http://mleg.cse.sc.edu/hemeNet/.
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Introduction

Heme proteins, a group of proteins containing an iron–

porphyrin complex as a prosthetic group, are found in all living

organisms [1]. These proteins carry out a wide variety of basic

functions essential for the survival of organisms, such as electron

transfer, catalysis, oxygen transport and storage, ligand binding,

signal transduction, and gene expression [2,3,4,5,6,7,8]. Due to

the diversity of their functions, heme proteins have been the

central scientific interest of a great deal of work over the past half

century, in which the application of different experimental

techniques plays an irreplaceable role in exploring the nature of

these biologically important proteins. Although we have gained

large amounts of general knowledge about the interactions

between heme and its host proteins, the intensive labor and high

cost remain the major limitation for experimental techniques. As a

consequence, it is necessary to develop effective computational

schemes that can assist experimental methods in elucidating the

mechanism of heme–protein interactions.

As is well known, the most common types of hemes in nature

are heme b and heme c. Heme b binds non-covalently to the

protein, whereas heme c differs from heme b in that the heme vinyl

groups covalently contact with two cysteine residues. With the

progress of structural genomics, an increasing number of protein

structures carrying heme b and heme c are deposited into the

Protein Data Bank [9], which makes it possible to conduct

structural and functional studies on heme proteins using

computational approaches. Recently, some efforts have been

made in this field by several research groups. By means of

structural superposition, Schneider et al. [10] first demonstrated

that b-type heme proteins with different folding topologies are

possible for binding the chemically identical heme ligand. They

also found that key residues shared by distinct proteins can define

some common structural heme-binding motifs, despite consider-

able diversity existing in heme–protein interactions. Fufezan et al.

[11] analyzed the geometric properties of heme-binding motifs

and conducted electrostatic and molecular mechanics calculations

based on b- and c-type heme proteins. They proposed that the b-

and c- type hemes have different propensities for different ligation

motifs and for the orientations of the histidine heme ligands

relative to the heme plane. Subsequently, Smith et al. [12]

performed a comprehensive analysis on a dataset of non-

homologous heme proteins, and further concluded the character-

istics of the binding pockets that recognize and bind heme ligands

as well as the features that enable heme groups to perform

different biological functions. More recently, Li et al. [13]

investigated the differences between the apo and holo structures

of heme proteins according to their global structures and binding

pockets. It was found that heme proteins generally undergo small

conformational changes after heme binding. Even though the

aforementioned studies provided a wealth of information on

heme–protein interactions and gave some invaluable insights into

computational prediction of key residues involved in these

interactions, no algorithm has been developed for specifically

detecting heme-binding residues, which would be very useful in

predicting and designing novel heme proteins and helping to

illuminate heme binding mechanisms. Accordingly, our group

[14] proposed the first specialized algorithm, HemeBind, to
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identify these important residues. This method was developed by

combining support vector machines with a group of sequence and

structural features, such as evolutionary conservation, solvent

accessibility, depth and protrusion. Despite its encouraging

performance, the prediction accuracy remains to be further

improved. It is thus desirable to find new features that can well

characterize heme- binding residues and complement convention-

al features for predicting these residues.

On the other hand, there has been increasing interest in

studying proteins by representing their three-dimensional struc-

tures as residue interaction networks and analyzing the topological

properties of functionally important residues. Greene et al. [15]

and Bagler et al. [16] showed the small-world and scale-free

properties of protein residue networks, and further validated that

these attributes are independent of the protein structural class.

Vendruscolo et al. [17,18] found that key residues in the process of

protein folding generally correlate with residues having larger

connectivity values in a residue network. Brinda and Vishveshwara

[19] demonstrated that hub residues in protein structures usually

play a critical role in protein folding and stability. Additionally,

Amitai et al. [20] revealed that active site residues in enzymes tend

to have higher closeness values and developed a method that

effectively identified these residues by combining closeness and

surface accessibility. Del Sol et al. [21,22] showed that protein

complexes can also be represented as small-world networks and

used this fact to predict the hot spots in protein–protein interfaces.

Recently, Li et al. [23] characterized non-synonymous single

nucleotide polymorphisms (nsSNPs) by residue interaction net-

works and predicted these crucial residues using topological

features. In summary, the application of network concepts has

significantly enhanced our understanding of protein structure,

function and dynamics. However, to the best of our knowledge,

there is no study that conducted a systematic characterization of

ligand-binding sites from the network perspective and tried to

predict ligand-binding residues based on their topological features.

This study aims to explore the possibility of utilizing the

topological information extracted from residue interaction net-

works to identify the binding residues of heme ligands in protein

structures. We found that four well-established network-based

features, including degree, closeness, betweenness and clustering

coefficient, can be used to well characterize heme-binding

residues. To predict these critical residues, we developed

HemeNet, a support vector machine based algorithm by

integrating topological features with various sequence and

structural features, which significantly improved the prediction

performance. In addition, we demonstrated that these network-

based features can effectively depict the heme-binding regions of

apo structures as well as those of holo structures. Moreover,

incorporation of these features also improved the accuracy for

predicting the binding residues of heme proteins in their free state.

The proposed method provides an additional way to characterize

heme-binding residues and could aid in improving other ligand-

binding residue prediction.

Materials and Methods

Data collection
Three datasets prepared in [14] were used in the current study.

For convenience, the main, alternative and independent test

datasets were renamed as Dataset 1, Dataset 2 and Dataset 3,

respectively. Dataset 1 is a non-redundant set composed of 141

heme proteins with mutual sequence identity less than 30%.

Dataset 2 contains 75 non-redundant heme proteins originally

prepared by Fufezan et al. [11], where no two chains share more

than 25% sequence identity. Dataset 3 including 62 single-heme

and 10 multi-heme proteins was used for independent testing. In

addition, Li et al. [13] collected 10 non-redundant holo-apo heme

protein pairs with high sequence similarity recently which we

called Dataset 4. This dataset gave us a chance to further test our

algorithm on the unbound form of heme proteins. More details

about these four datasets can be found in related references.

In our previous study, all residues of heme proteins were

considered as the potential heme-binding residues. Currently, we

have only reserved the residues with a non-zero solvent accessible

surface area, considering that few of the totally buried residues in

heme proteins are in contact with heme ligands and thus we can

directly skip them when predicting heme-binding residues. On the

other hand, compared to the rest of the protein, these buried

residues usually have higher topological attribute values, such as

degree and closeness [20,24], which may result in a bias for

characteristics analysis if they were considered as non-binding

residues. Accordingly, as we defined the binding interface for each

heme protein, the residues with a zero accessible surface area were

filtered out, and the remaining residues were then divided into

binding and non-binding groups using the Ligand Protein Contact

(LPC) server [25]. Table 1 shows detailed information about the

four datasets used in this study.

Network-based feature extraction
The three-dimensional structure of each heme protein can be

converted into a residue interaction network, in which residues are

denoted as nodes and the contacts between them are denoted as

edges. Here, residue i is considered to be in contact with residue j if

the distance between any heavy atom of residue i and that of

residue j is less than 5 Å. This cutoff approximates the upper limit

for attractive London-van der Waals forces [15]. Further, the

residue network can be expressed by its adjacency matrix A with

an element is equal to 1 if residues i and j are in contact and 0

otherwise. Based on the adjacency matrix, four well known

network-based measures, such as degree, closeness, betweenness

and clustering coefficient, were used to describe the topological

characteristics of each residue in a given protein structure. The

detailed description of these features is given below.

Degree. Degree is a commonly used measure to reflect the

local connectivity of a node. In a residue interaction network, the

degree of residue i is the number of its direct connections to other

residues and can be calculated as:

D ið Þ~
XN

j~1

aij ð1Þ

Table 1. Summary of four datasets used in this study.

Dataset Chains
Binding
Residues

Non-binding
Residues Ratioa

Dataset 1 141 5035 29234 14.7%

Dataset 2 75 2490 14376 14.8%

Dataset 3 72 2632 14167 15.7%

Dataset 4 10 (10)b 252 (217) 2210 (2088) 10.2% (9.4%)

aRatio = number of binding residues/(number of binding residues+number of
non-binding residues).

bThe information of apo heme proteins used in Dataset 4.
doi:10.1371/journal.pone.0025560.t001

Computational Prediction of Heme-Binding Residues
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where aij is the element of adjacency matrix A, and N is the total

number of nodes in the residue network.

Closeness. Closeness is a global centrality metric used to

determine how critical a residue is in a residue interaction

network. The closeness of residue i is defined as the inverse of the

average geodesic distance (shortest path) from residue i to all other

residues in the network. Generally, the residues with shorter

geodesic distances to the remaining residues tend to have higher

closeness values. The shortest paths between all pairs of residues

were identified using the Dijkstra’s algorithm [26]. The closeness

values can be calculated as:

C ið Þ~ N{1P
i=j

dij

ð2Þ

where dij is the shortest path from residue i to residue j, and N is the

total number of nodes.

Betweenness. Betweenness is another important global

centrality measure for a residue in our study. The betweenness

of residue i is defined to be the sum of the fraction of shortest paths

between all pairs of residues that pass through residue i. Hence the

residues that occur more often on the shortest paths between other

residues should have a higher betweenness than those that do not.

The betweenness values should be normalized by the total number

of residue pairs as:

B ið Þ~ 1

N{1ð Þ N{2ð Þ
X

j=i=k

gjk ið Þ
gjk

ð3Þ

where gjk is the number of shortest paths between residues j and k,

and gjk(i) is the number of these shortest paths passing through

residue i.

Clustering coefficient. The clustering coefficient of a

residue is a local measure that quantifies how close its neighbors

are to being a clique. The clustering coefficient of residue i is given

by the proportion of connections between the neighboring residues

divided by the maximum possible connections within the

neighborhood and can be represented as:

CC ið Þ~ 2ei

ki ki{1ð Þ ð4Þ

where ei is the number of edges between the neighbors of residue i,

and ki is the number of its neighbors.

Standardization. To make the topological features

comparable among different proteins, the raw attribute values

should be converted into z-scores for each residue as follows:

Z ið Þ~ Vi{ �VV

s
ð5Þ

where Vi is the attribute value of residue i for a given topological

feature, �VV is the average value over all residues in a given protein

structure, and s is the standard deviation.

Conventional feature extraction
In addition to the network-based attributes, several sequence

and structural features widely used in protein functional site

prediction were also extracted to depict the residues located in

heme-binding interfaces, including sequence profile, solvent

accessibility, depth and protrusion. The detailed description of

these features is given below.

Position specific scoring matrix (PSSM). PSSM is

commonly used to reflect the residue evolutionary conservation

in a particular protein of interest. The PSI-BLAST program [27]

was used to generate the PSSM of amino acid sequences with

parameters j = 3 and e = 0.001. The search was performed against

the non-redundant (NR) database from NCBI.

Relative accessible surface area (RASA). Accessible

surface area (ASA) is the atomic surface area of a molecule that

is accessible to solvent. The DSSP program [28] was used to

calculate the ASA value of each residue in the unbound chain. To

obtain the RASA of each residue, the ASA value was divided by

the maximum ASA of its residue type in a tri-peptide state [29].

Depth index (DPX) and protrusion index (CX). DPX and

CX are important metrics used to describe the geometric shape of

a protein, which measure the local concavity and convexity of the

protein surface respectively. In our study, the PSAIA software [30]

with default parameters was utilized to generate the DPX- and

CX-related features of each residue in the unbound chain,

including the average and standard deviation of all atom values,

the average and standard deviation of all side-chain atom values,

and the minimal and maximal atom values.

Prediction model construction
In this work, support vector machine (SVM) based classifiers are

proposed to identify key residues involved in heme-binding

interfaces. Based on the nature of the features aforementioned,

they can be divided into three subsets: (i) network-based features

(including degree, closeness, betweenness and clustering coeffi-

cient); (ii) geometry-based features (including solvent accessibility,

depth and protrusion); (iii) conservation-based features (including

sequence profile). These three feature subsets were then used

separately or combined to construct the SVM predictors by

integrating with a structural window composed of the target

residue and its 14 spatially nearest residues. In order to benchmark

the new algorithm, we chose the predictor based on the

conservation- and geometry-based feature subsets as the baseline

model, which was the default feature combination of the structure-

based predictor in our previous study. To implement our

algorithm, the LIBSVM package [31] was used to build the

predictors and the radial basis function was chosen as the kernel. It

is worth mentioning that with the exception of the RASA feature,

the remaining features should be scaled to the range [0, 1] using

the standard logistic function. The values of C and c were 2 and

0.03125 for all predictors respectively.

Performance evaluation
To validate the effectiveness of our method, we first tested our

algorithm on Dataset 1 and Dataset 2 by a 5-fold cross-validation.

The protein chains were randomly divided into five subsets, four of

which were used for training and the remaining one for testing. In

order to overcome the imbalance issue of positive and negative

samples, we used all heme-binding residues and an equal number

of randomly extracted non-binding residues for training the

predictors in each validation. Furthermore, Dataset 3 and Dataset

4 were used as the independent test sets to check our prediction

models. Here, recall, precision, accuracy, F1-score and Matthews

correlation coefficient (MCC) were adopted for model evaluation.

The definitions of these measures are given in our previous study.

In addition, the receiver operating characteristic (ROC) curve, in

which one plots false positive rate on the x-axis against true

positive rate on the y-axis in terms of different prediction

thresholds, was used to evaluate the overall performance. The

area under the ROC curve (AUC) was also calculated to assess the

Computational Prediction of Heme-Binding Residues
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Table 2. Comparison of the potential predictive capability of different features.

Feature F-score Mean ± SD (Binding) Mean ± SD (Non-binding) P-value

Degree 0.23 0.2760.92 20.1760.96 1.626102199

Closeness 0.39 0.5961.01 20.1860.95 0

Betweenness 0.38 0.6761.30 20.1660.88 0

Clustering Coefficient 0.30 20.4160.81 0.1461.03 0

Sequence Conservationa 0.25 4.6963.40 3.1762.65 5.456102188

Solvent Accessibility 0.19 0.2660.21 0.3560.27 1.826102159

Depthb 0.06 0.6960.57 0.6260.58 1.92610216

Protrusionc 0.20 0.5360.53 0.7760.68 2.836102172

aThe diagonal element of PSSM at each residue position was used to measure the conservation of each residue.
bThe average of all atom DPXs was used to measure the depth of each residue.
cThe average of all atom CXs was used to measure the protrusion of each residue.
doi:10.1371/journal.pone.0025560.t002

Figure 1. Distribution comparison of network-based features of heme-binding and non-binding residues. (a) Degree; (b) Closeness; (c)
Betweenness; (d) Clustering Coefficient. For each topological feature, the z-scores of binding and non-binding residues in Dataset 1 are divided into
high, medium and low score sections, and then the fraction occupied by each section was calculated.
doi:10.1371/journal.pone.0025560.g001

Computational Prediction of Heme-Binding Residues
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robustness of our method. Generally, an AUC value closer to 1

indicates a better prediction performance.

Statistical inference
The student’s t-test was used to check whether there is a

significant difference for a given property between heme-binding

residues and other residues on the protein surface. To evaluate the

potential discriminatory power of this property, we calculated its

F-score as defined below [32]:

F~
�xxhi{�xxnij j
shizsni

ð6Þ

Figure 2. Comparison of network-based features of heme-binding and non-binding residues based on residue type. (a) Degree; (b)
Closeness; (c) Betweenness; (d) Clustering Coefficient. For each topological feature, we compared the means of the z-scores of binding and non-
binding residues in Dataset 1 for different residue types.
doi:10.1371/journal.pone.0025560.g002

Table 3. Performance of different predictors tested on Dataset 1.

Feature Set Recall (%) Precision (%) Accuracy (%) F1-score (%) MCC

Network 55.71 35.61 78.69 43.43 0.323

Geometry 55.87 41.77 82.08 47.78 0.378

Conservation 56.48 41.60 81.90 47.87 0.379

Geometry+Network 59.37 47.31 84.32 52.62 0.438

Conservation+Geometry 58.72 47.98 84.52 52.72 0.440

Conservation+Network 58.84 48.11 84.60 52.92 0.442

Conservation+Geometry+Network 62.70 52.05 85.99 56.76 0.489

doi:10.1371/journal.pone.0025560.t003

Computational Prediction of Heme-Binding Residues
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Where �xxhi and �xxni are the averages over the heme-binding and

non-binding groups, and shi and sni are the corresponding

standard deviations. The F-score reflects the separation of means

for two populations according to their variances. Additionally, the

Wilcoxon signed-rank test was applied to assessing the statistically

significant difference between paired predictors in this work.

Results and Discussion

Network-based features of heme-binding residues
The main idea of our algorithm is based on the incorporation of

novel topological properties extracted from residue interaction

networks to improve the prediction of heme-binding residues. We

first sought to examine whether the network-based features have

the potential predictive capability in distinguishing the heme-

binding residues from the rest of non-buried residues. Moreover,

we compared the network features with other conventional

features. To address this problem, the residues in Dataset 1 were

divided into binding and non-binding groups, and the t-test

combined with the F-score estimation were used to assess the

discriminatory power of each individual feature.

As shown in Table 2, the mean values of degree, closeness and

betweenness measures for binding residues were significantly

higher than those of non-binding residues, suggesting that the

residues with greater connectivity and/or centrality values in

residue interaction networks are more likely to be involved in the

binding of heme ligands. This is in line with the topological

knowledge about ligand-binding sites reported by other groups.

For example, for the degree measure, Illingworth et al. [33]

observed that the residues within ligand-binding regions have

about 25% more contact neighbors than surface residues in

general, and they gave a possible rationale that there will be the

less loss of conformational entropy on ligand binding. On the

other hand, Amitai et al. [20] demonstrated that ligand-binding

residues have typically high closeness values for several well-

studied protein structures. In addition, Del Sol et al. [34] revealed

that in the 33 protein families binding hetero-atoms, 64% of the

centrally conserved residues related to the residues in hetero-atoms

binding sites. The main reason for ligand-binding residues

generally having high centrality values might be that these residues

(including heme-binding residues) are usually located in the largest

pockets or clefts which are closer to the protein center of mass than

the non-binding surface. So they could fulfill important roles in

integrating and propagating information to the remaining residues

of the protein. Interestingly, in this study we found that compared

with non-binding residues, the mean clustering coefficient of

heme-binding residues was obviously lower. This is probably

owing to the fact that the neighborhoods of residues in the binding

pockets are less packed relative to the rest of the protein, allowing a

certain degree of flexibility for heme-binding sites.

To clearly demonstrate the distributions of network-based

features, we classified all residues into three sections based on

the z-scores of each topological property as following: high score

(z-score$1), medium score (21#z-score,1), and low score (z-

score,21). From Figure 1, we see that heme-binding residues

appeared more frequently than non-binding residues in the high

score section of degree, closeness and betweenness measures.

Instead, for the clustering coefficient measure, the binding residues

had a relatively higher proportion in the low score section. These

results further confirmed, to some extent, the network-based

features can be used to quantitatively depict the difference

between heme-binding regions and the rest of the protein surface.

We also compared the mean values of other sequence and

structural features in Table 2. The differences of these conven-

tional features for binding and non-binding residues are largely

consistent with our previous study, with the exception of the depth

feature. Here, the average depth of binding residues was slightly

higher compared to that of non-binding residues. This is mainly

due to the fact that the totally buried residues with greater depth

values were not considered as non-binding residues in this work.

On the other hand, considering the F-scores of different attributes,

we found that the F-score of the degree feature was just slightly

lower than that of evolutionary conservation, which is widely

considered to be the most important feature for protein functional

residue prediction in existing studies. Furthermore, the F-scores of

the other three network-based features were clearly greater than

Figure 3. The ROC curves of different predictors tested on
Dataset 1. Seven SVM-based predictors were built in terms of different
feature combination (N/G/C = Network/Geometry/Conservation) and
evaluated by a 5-fold cross-validation on Dataset 1.
doi:10.1371/journal.pone.0025560.g003

Table 4. Performance of baseline model and HemeNet tested on Dataset 3.

Subset Model Recall (%) Precision (%) Accuracy (%) F1-score (%) MCC

Single-heme Baseline 53.29 41.46 85.43 46.63 0.388

HemeNet 59.44 44.77 86.40 51.08 0.439

Multi-heme Baseline 66.77 61.30 74.91 63.92 0.448

HemeNet 70.46 62.74 76.24 66.38 0.483

All Baseline 58.28 48.06 83.59 52.68 0.432

HemeNet 63.53 50.74 84.62 56.42 0.477

doi:10.1371/journal.pone.0025560.t004

Computational Prediction of Heme-Binding Residues
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those of the conventional features. This result suggested that the

new topological features should have the potential capability for

identifying heme-binding residues.

Focusing on the network-based features, we compared the

average values of the binding and non-binding groups for each

residue type. The results are presented in Figure 2 and Table S1. It

can be seen from Figure 2A that except for cysteine, the binding

residues had greater average degrees for the remaining residue

types. Figure 2B–C indicated that for all residue types, the average

closeness and betweenness values of heme-binding groups were

obviously higher than those of non-binding groups. Figure 2D

showed that the average clustering coefficients of all residue types

except for cysteine were relatively lower in heme-binding regions.

These results demonstrated that the differences between binding

and non-binding residues in these topological measures do not

have a preference for specific residue types. Taken together, the

analysis of potential predictive power for topological features

implied that they could be combined with existing sequence and

structural features to improve the prediction of heme-binding

residues.

Performance of 5-fold cross-validation
To systematically evaluate the usefulness of different feature

subsets, seven SVM predictors were built based on different

feature combinations. The prediction results tested on Dataset 1

by a 5-fold cross-validation are summarized in Table 3. It can be

seen that when these feature subsets were used individually, the

conservation- and geometry-based features achieved a similar

performance, with a F1-score of about 48% and MCC of about

0.38. However, the network-based feature subset did not perform

as well as the other two subsets. Even so, we obtained a promising

result with a F1-score of 43.43% and MCC of 0.323, which

indicates that the topological features could be helpful in

distinguishing heme-binding residues from non-binding residues.

Further, as different subsets were combined for prediction, the

three predictors based on the combination of two subsets all

demonstrated a remarkably better performance compared to the

Table 5. Comparison of network-based features of holo-apo heme protein pairs.

Holo Chain
Residue
Number Degree Closeness Betweenness

Clustering
Coefficient Apo Chain

Residue
Number Degree Closeness Betweenness

Clustering
Coefficient

1KBI:A 31a 0.30 0.47 0.54 20.62 1SZF:B 11 0.01 0.23 20.04 20.11

413b 20.17 20.13 20.07 0.13 324 20.16 20.14 20.06 0.11

1N45:A 25 0.41 0.80 0.89 20.26 1S8C:D 25 0.31 0.63 0.80 20.24

166 20.21 20.24 20.22 0.14 166 20.19 20.22 20.21 0.13

1N5U:A 24 0.26 0.95 1.03 20.50 3CX9:A 24 0.19 0.74 0.53 20.38

532 20.07 20.05 20.04 0.06 530 20.06 20.04 20.01 0.04

2ITF:A 19 20.20 20.46 0.13 0.03 2ITE:B 19 20.25 20.48 0.14 0.12

96 20.03 0.01 20.14 0.04 96 20.03 0.01 20.14 0.02

2NWB:A 29 0.41 1.07 0.89 20.43 1ZEE:B 26 0.22 1.04 0.84 20.32

311 20.18 20.16 20.13 0.12 300 20.14 20.13 20.10 0.10

2OFR:X 28 0.49 0.87 0.99 20.59 2OFM:X 28 0.55 0.93 1.01 20.57

143 20.19 20.26 20.25 0.16 143 20.20 20.26 20.25 0.16

2R7A:A 22 20.09 1.04 1.23 20.35 2RG7:D 22 20.25 0.69 0.88 20.14

202 20.14 20.19 20.17 0.13 206 20.10 20.11 20.11 0.09

2ZDO:A 25 0.42 0.89 1.06 20.72 1XBW:D 23 0.37 0.79 0.93 20.60

79 20.22 20.32 20.38 0.27 71 20.22 20.29 20.35 0.24

3CQV:A 24 20.06 0.37 0.68 20.49 2V7C:A 16 0.16 0.29 0.63 20.32

150 20.12 20.13 20.16 0.16 133 20.11 20.11 20.14 0.09

3EMM:A 25 0.23 0.01 0.48 20.32 2A13:A 23 0.04 20.10 0.49 20.26

118 20.15 20.07 20.17 0.13 119 20.10 20.05 20.15 0.10

aThe number of heme-binding residues in each heme protein and the mean topological parameters of these residues are given in the upper row.
bThe number of non-binding residues in each heme protein and the mean topological parameters of these residues are given in the lower row.
doi:10.1371/journal.pone.0025560.t005

Figure 4. The ROC curves of baseline model and HemeNet
tested on Dataset 3. The baseline model was the predictor
considering only conventional features, while HemeNet incorporated
network-based features into the baseline model.
doi:10.1371/journal.pone.0025560.g004
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predictors based on individual subset. Interestingly, although we

observed from Table 3 that the optimal performances of these

three predictors were similar, the ROC curves in Figure 3 showed

that the predictor based on network- and geometry-based features,

a purely structure-based prediction model, slightly outperformed

the other two predictors in terms of overall performance. This

result indicated that the topological features in conjunction with

other structural information could effectively recognize the

potential binding sites in heme proteins without enough homologs

and result in considerable savings in computational time. Finally, if

all the three subsets were combined, the predictor yielded the best

result with a F1-score of 56.76% and MCC of 0.489. We called

this predictor HemeNet. In particular, HemeNet achieved a

significantly better performance than the baseline model consid-

ering conventional features alone (Wilcoxon signed-rank test, p-

value = 1.516102181). The recall, precision and F1-score in-

creased by about 4% respectively, and the MCC value raised by

about 5%. Similar improvement was observed as Dataset 2 was

tested and the results are given in Table S2 and Figure S1. In the

baseline model, the geometry-based features have reflected the

local structural characteristics of a given residue. In addition to the

local consideration, HemeNet took advantage of the topological

features, especially closeness and betweenness, which measured

the importance of this residue in the global structure, giving rise to

the improved performance. In Figure 3, we clearly showed the

ROC curves and AUCs of different predictors. This highlighted

that the network-based features are distinct from various sequence

and structure features and can thus complement them in the

prediction of heme-binding residues.

It should be pointed out that as 5-fold cross-validation was

conducted on Dataset 1, the structural homologs in this dataset

were not removed. To further test the robustness of our method,

we collected a structurally non-redundant dataset by following Li

et al.’s method [13]. In Dataset 1, we identified a total of 66

protein chains with SCOP annotations and belonging to 26

distinct structural folds. We then collected 26 chains by randomly

selecting one chain from each fold and conducted cross-validation

on these chains. As expected, there was a dramatic decrease in the

performances of both the baseline model and HemeNet according

to Table S3. This result indicated that utilizing structural similarity

is critical for achieving accurate heme-binding residue prediction.

Compared with the baseline model, however, HemeNet still

significantly raised the F1-score and MCC values by about 4%

respectively, suggesting that incorporation of topological features

can help to improve the prediction performance in this challenging

case with much less structural redundancy.

Independent testing on single- and multi-heme proteins
As is well known, heme proteins can interact with either a single

heme molecule or multiple heme molecules. Accordingly, it was

interesting to examine whether the network-based features can be

used to improve the accuracy for predicting binding residues in

both types of heme proteins. Herein we used Dataset 2 as a

training set to train the baseline model and HemeNet, and

evaluated their performances based on Dataset 3. As demonstrated

in Table 4, by incorporating the topological features, the F1-score

and MCC were increased from 46.63% to 51.08% and 0.388 to

0.439 for single-heme proteins, respectively. On the other hand,

for multi-heme proteins, the performance of the baseline model

Figure 5. Visualization of the surface of holo-apo protein pair (2ZDO:A-1XBW:D). (a) Degree; (b) Closeness; (c) Betweenness; (d) Clustering
Coefficient. The color of the surface was changed according to the z-scores of each network-based feature (red/white/yellow = high/medium/low).
The heme molecule was shown as a cyan stick. The holo structures (2ZDO:A) were presented in the upper row, and the apo structures (1XBW:D) were
presented in the lower row. This figure was produced by PyMOL (www.pymol.org).
doi:10.1371/journal.pone.0025560.g005

Table 6. Performance of baseline model and HemeNet tested
on Dataset 4.

Baseline HemeNet

Holo Apo Holo Apo

Recall (%) 50.00 (48.58)a 43.78 (43.21) 58.73 (57.77) 53.46 (51.95)

Precision (%) 31.03 (39.41) 29.87 (38.56) 35.07 (42.01) 34.02 (40.64)

Accuracy (%) 83.51 (83.93) 85.03 (85.00) 84.65 (84.51) 85.86 (85.25)

F1-score (%) 38.30 (40.19) 35.51 (36.90) 43.92 (45.93) 41.58 (42.95)

MCC 0.305 (0.336) 0.280 (0.311) 0.373 (0.395) 0.351 (0.366)

aThe average measures of holo-apo protein pairs in Dataset 4.
doi:10.1371/journal.pone.0025560.t006
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was much better than that obtained on single-heme proteins,

which was in agreement with the observation in our previous

study. However, compared to the baseline model, HemeNet

modestly improved the prediction accuracy, yielding an approx-

imate 3% increase in the F1-score and MCC values, respectively.

These results indicated that the incorporation of network-based

features is beneficial for identifying the binding residues of both

single- and multi-heme proteins. Additionally, for Dataset 3 the

HemeNet algorithm also significantly outperformed the baseline

model (Wilcoxon signed-rank test, p-value = 3.826102126), with a

F1-score of 56.42% and MCC of 0.477 which was just marginally

lower compared to the performance of 5-fold cross-validation on

Dataset 1. The ROC curves in Figure 4 further confirmed the

advantage of HemeNet over the baseline model in terms of overall

performance on this dataset.

Network-based feature comparison between holo and
apo heme proteins

Recently, Li et al. [13] collected 10 holo-apo heme protein pairs

and checked the conformational differences between the holo and

apo protein structures. They demonstrated that 9 out of 10

proteins had very small global conformational changes after heme

binding with RMSDs (root mean square deviations) of 1.03 Å or

less. Intuitively, we would expect that the topological structure of

residue interaction networks of heme proteins should also undergo

small changes upon heme–protein complex formation, and thus

the network-based features could well characterize the binding

residues of apo structures as well as those of holo structures. To

validate this hypothesis, we calculated the average values of each

topological feature for heme-binding and non-binding residues

and compared the average values of each holo-apo protein pair. A

detailed comparison is given in Table 5. Compared with non-

binding residues in the holo structures, we found that the heme-

binding residues of each individual protein generally had higher

averages of degree, closeness and betweenness, but a lower mean

of clustering coefficient. This was consistent with the results

obtained by analyzing the topological features on the whole

Dataset 1. More importantly, as expected, similar phenomena

were also observed on the apo structures, suggesting that the

network-based features indeed pre-exist in the unbound form of

heme proteins.

In most cases, the average degree, closeness and betweenness

values of binding residues were obviously higher in the holo

structures compared to those in the apo structures, whereas the

average clustering coefficient value was relatively lower. The

increases in the connectivity and centrality values further

confirmed the important role of binding residues in forming

heme–protein complexes. Conversely, for non-binding residues,

with the exception of the clustering coefficient, the means of the

remaining topological measures were slightly smaller in the holo

structures. As a result, the discrepancy between the average

topological measures of heme-binding group and those of non-

binding group became more apparent after heme binding. For

example, the protein pair 2ZDO:A-1XBW:D with a RMSD of

0.59 Å clearly showed this change. In the apo structure

(1XBW:D), the differences between binding group and non-

binding group were 0.59, 1.08, 1.28 and 0.84 (absolute value) for

degree, closeness, betweenness and clustering coefficient measures,

respectively. Upon complex formation, the corresponding values

increased to 0.64, 1.21, 1.44 and 0.99 (absolute value) in the holo

structure (2ZDO:A), which reflected the structural change from

the topological perspective of residue interaction network. Figure 5

demonstrated the three-dimensional structures of this holo-apo

protein pair in terms of network-based attribute values. We can see

that the four topological features of the heme-binding pocket

unambiguously differed from those of the remaining protein

surface for both holo and apo structures. Overall, the aforemen-

tioned analysis implied that the topological information in the

residue interaction network should be helpful for the identification

of binding residues in the heme-free state.

Figure 6. The ROC curves of baseline model and HemeNet tested on Dataset 4. (a) Holo structures; (b) Apo structures.
doi:10.1371/journal.pone.0025560.g006

Table 7. Performance comparison of ConCavity and
HemeNet.

ConCavity HemeNet

Holo Apo Holo Apo

Recall (%) 58.80 52.60 59.23 54.17

Precision (%) 42.02 29.36 34.24 30.77

Accuracy (%) 87.86 84.70 84.66 85.25

F1-score (%) 49.02 37.69 43.40 39.25

MCC 0.431 0.314 0.370 0.332

doi:10.1371/journal.pone.0025560.t007
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Independent testing on holo and apo heme proteins
In this section, we checked the performance of HemeNet on

Dataset 4 compared with that of the baseline model. To train these

two predictors, the non-homologous chains in Dataset 1 that share

less than 30% sequence identity with any chain in Dataset 4 were

retrieved. Owing to the fact that the number of chains in this dataset

is relatively few, besides the overall measures generally used in this

paper, we applied the average measures to evaluating the

performance. The overall measures denote that the measures were

calculated based on the total predictions of all proteins, while the

average measures mean that the measures were obtained by

averaging the performance of each protein. As shown in Table 6,

when we just extracted sequence and structural features for

prediction, the overall F1-score and MCC values for the apo and

holo structures were 35.51% and 0.280, and 38.30% and 0.305,

respectively. However, if the network-based features were incorpo-

rated into the baseline model, the corresponding measures

significantly increased to 41.58% and 0.351 for the apo structures

(Wilcoxon signed-rank test, p-value = 2.08610217), and to 43.92%

and 0.373 for the holo structures (Wilcoxon signed-rank test, p-

value = 5.88610216). Furthermore, when the average measures

were considered as evaluation metrics, the prediction performance

was better and similar improvements were also observed. More

concretely, we can see that except for 1SZF:B and 2ITE:B, the F1-

score and MCC values of the remaining apo chains and all holo

chains were improved to a certain degree in Table S4, S5. In

addition, the ROC curves and AUCs of these two predictors are

shown in Figure 6. According to the results given in Table 6 and

Figure 6, we can conclude that the baseline and HemeNet models

are both insensitive to the conformational changes triggered by heme

binding, and that the use of topological features indeed effectively

improved the prediction accuracy for both holo and apo structures.

Comparison with ConCavity
To further show the effectiveness of the proposed algorithm, we

compared HemeNet with ConCavity [35] based on Dataset 4,

which was one of the state-of-art algorithms in general ligand-

binding residue prediction by incorporating residue evolutionary

conservation into pocket detection. In Dataset 4, one holo-apo

structure pair and three apo structures have no prediction results

in the web server of ConCavity. However, for these three apo

structures, the results of their identical chain in the same complex

can be downloaded. Hence, to make a fair comparison, we

replaced the original chains with their identical chains to test

HemeNet. From Table 7 and Figure 7, we can see that ConCavity

remarkably outperformed HemeNet for the holo structures.

However, when the apo structures were tested, there was a

dramatic decrease in its prediction performance, indicating that

the ConCavity algorithm is sensitive to conformational changes in

heme-binding regions. Compared with ConCavity, HemeNet

achieved a better performance on the apo structures. The main

reason might be that network-based features not only uniquely

reflect the role of binding residues in the global structure, but also

tolerate a certain degree of conformational change similar to

conventional features. As expected, we found that the performance

discrepancy of HemeNet between the holo and apo structures was

much smaller than that of ConCavity. Since the final aim of

binding residue prediction should be finding the potential binding

residues in the apo structures, the HemeNet algorithm has its

advantage by considering the topological features derived from

residue interaction networks. Accordingly, these features could

provide some complementary information for existing ligand-

binging residue prediction algorithms.

Conclusions
We have applied topological features to heme-binding residue

prediction by representing protein structures as residue interaction

networks. It was found that network-based features can be used to

effectively characterize heme-binding residues in the networks. By

combining these topological features with various sequence and

structural features, we significantly improved the performance of

heme-binding residue prediction. In addition, due to the small

conformational changes of heme proteins after ligand binding, the

topological features can also be used to quantitatively depict the

binding regions in apo structures, resulting in the prediction of

binding residues in the heme-free state achieving a reasonable

enhancement. In conclusion, the topological features extracted

from residue interaction networks suggest a new way to

characterize heme-binding residues and could provide new

insights into general ligand-binding site prediction.

Supporting Information

Figure S1 The ROC curves of baseline model and HemeNet

tested on Dataset 2.

(PDF)

Figure 7. The ROC curves of ConCavity and HemeNet tested on holo-apo protein pairs. (a) Holo structures; (b) Apo structures.
doi:10.1371/journal.pone.0025560.g007
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Table S1 Comparison of network-based features based on

different residue type.

(PDF)

Table S2 Comparison of the prediction performance on Dataset 2.

(PDF)

Table S3 Comparison of the prediction performance on 26

heme proteins.

(PDF)

Table S4 Comparison of the prediction performance for

individual holo structure.

(PDF)

Table S5 Comparison of the prediction performance for

individual apo structure.

(PDF)
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