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Abstract

Background: Accurate prediction of binding residues involved in the interactions between proteins and small

ligands is one of the major challenges in structural bioinformatics. Heme is an essential and commonly used ligand
that plays critical roles in electron transfer, catalysis, signal transduction and gene expression. Although much effort
has been devoted to the development of various generic algorithms for ligand binding site prediction over the last
decade, no algorithm has been specifically designed to complement experimental techniques for identification of
heme binding residues. Consequently, an urgent need is to develop a computational method for recognizing
these important residues.

Results: Here we introduced an efficient algorithm HemeBIND for predicting heme binding residues by integrating
structural and sequence information. We systematically investigated the characteristics of binding interfaces based

on a non-redundant dataset of heme-protein complexes. It was found that several sequence and structural
attributes such as evolutionary conservation, solvent accessibility, depth and protrusion clearly illustrate the
differences between heme binding and non-binding residues. These features can then be separately used or
combined to build the structure-based classifiers using support vector machine (SYM). The results showed that the
information contained in these features is largely complementary and their combination achieved the best
performance. To further improve the performance, an attempt has been made to develop a post-processing
procedure to reduce the number of false positives. In addition, we built a sequence-based classifier based on SYM
and sequence profile as an alternative when only sequence information can be used. Finally, we employed a
voting method to combine the outputs of structure-based and sequence-based classifiers, which demonstrated
remarkably better performance than the individual classifier alone.

Conclusions: HemeBIND is the first specialized algorithm used to predict binding residues in protein structures for
heme ligands. Extensive experiments indicated that both the structure-based and sequence-based methods have
effectively identified heme binding residues while the complementary relationship between them can result in a
significant improvement in prediction performance. The value of our method is highlighted through the
development of HemeBIND web server that is freely accessible at http://mleg.cse.scedu/hemeBINDY/.

Background

The heme cofactor, an extremely versatile prosthetic
group, is essential and important for virtually all organ-
isms [1]. Hemes can be classified into different types
based on their chemical structures. In nature, the most
common type is b-type and its derivatives such as a-, c-,
d-, and o-type, all use b-type as a template [2]. Heme
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cofactors are usually bound by heme proteins, which
play an important role in a wide variety of biological
processes, including electron transfer [3], oxygen trans-
port [4], metal ion storage [5], chemical catalysis [6],
gene expression [7], and cellular signaling [8]. Identifica-
tion of residues involved in heme binding sites can help
to better understand the biological functions of heme
proteins, to uncover the mechanism of heme-protein
interactions, and to provide valuable clues for bio-
inspired protein design. However, experimental
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determination of heme binding residues is time-consum-
ing and labor-intensive. It is therefore highly desirable to
develop computational methods capable of predicting
these important residues.

Over the past fifteen years, a large number of compu-
tational approaches have been developed to analyze and
predict small ligand binding sites. Broadly, from the per-
spective of feature extraction, these methods can be
divided into three categories: structure-based methods,
sequence-based methods, and hybrid methods that com-
bine both structural and sequence information. Among
structure-based methods, geometric approaches are
widely proposed to detect protein binding pockets,
including POCKET [9], LIGSITE [10], SURENET [11],
CAST [12], and PocketPicker [13]. These algorithms
extract solvent accessible pockets on the protein surface
and rank them by some geometric measures such as
volume, for arranging top-ranked pockets as the putative
binding sites. Alternatively, energy-based methods are
also commonly used in identifying ligand binding sites
when structural information is available. Q-SiteFinder
[14] is an excellent example, which adds hydrophobic
(CH3) probes to the protein for calculating van der
Waals interaction energy and considers the clusters of
probes with the most favorable interaction energy as the
potential binding sites. On the other hand, sequence-
based approaches such as Rate4Site [15] and ConSurf
[16] have largely exploited evolutionary conservation of
binding site motifs, or the tendency of functionally
important residues to accept fewer mutations compared
with the rest of the protein. Recently, more and more
methods attempted to recognize ligand binding sites by
integrating both structural and sequence information.
For example, LIGSITE“SC [17], SURFNET-ConSurf [18],
and ConCavity [19] all incorporated residue evolutionary
conservation into pocket detection. Additionally, FIND-
SITE [20] used protein threading to evaluate binding
site conservation across groups of weakly homologous
template structures. Subsequently, NCBI IBIS sever [21]
was built to cluster binding sites found in homologous
proteins based on their sequence and structure conser-
vation to annotate different types of binding partners for
a query protein. In summary, these computational
approaches have achieved success at different levels in
ligand binding site prediction.

However, most of the aforementioned methods focused
on predicting general ligand binding sites without consid-
ering the differences in various ligands. In fact, protein
binding sites vary in their roles in different types of pro-
tein-ligand interactions [22]. Accordingly, separate con-
sideration should be given for specialized ligand types.
Several research groups have developed such ligand-spe-
cific binding site prediction algorithms. Sodhi et al. [23]
presented a neural network based algorithm to predict
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the binding residues of six common metal ions using
position specific scoring matrix (PSSM), secondary struc-
ture, solvent accessibility, and the inter-atomic distance
matrix. Guo et al. [24] applied support vector machine
(SVM) combined with a novel statistical descriptor (the
Oriented Shell Model) containing various physicochem-
ical properties to identify ATP-binding sites. Nebel et al.
[25] reported a method to automatically generate struc-
tural motifs of protein binding sites on the basis of con-
sensus atom positions and evaluated it on adenine-based
ligands. Bordner [26] developed a group of random forest
classifiers to predict the binding sites in protein struc-
tures for specific metal ions or small molecules using
diverse residue-based properties. In addition, Raghava’s
group constructed four web servers based on SVM and
PSSM to predict the binding residues of ATP, GTP, FAD
and NAD ligands respectively only using protein
sequence information [27-30]. Nevertheless, to our
knowledge, no computational method has been devel-
oped for specifically detecting the binding residues inter-
acting with heme ligands.

In this paper, a novel algorithm HemeBIND is pro-
posed for identification of heme binding residues by
combining structural and sequence information. First,
we provided a detailed analysis of various properties of
heme binding residues compared with other residues of
the protein, such as interface propensity, evolutionary
conservation, solvent accessibility, depth, protrusion and
spatial clustering of binding residues, based on a non-
redundant dataset of b- and c-type heme proteins. It
was found that these features have distinctly different
distributions between heme binding and non-binding
residues. We then constructed and evaluated a set of
structure-based classifiers by using sequence profile, sol-
vent accessibility, depth, protrusion or the combinations
of them as the input features of SVMs for heme binding
residue prediction. The results showed that these four
features provide largely complementary information and
their combination achieved the best prediction perfor-
mance. To further improve the performance, a post-pro-
cessing procedure was developed to reduce false
positives generated by the structure-based classifier with
the combined four features. Next, we constructed a
sequence-based classifier based on SVM and sequence
profile as an alternative method, which is useful when
only sequence information is available. Finally, a simple
ensemble algorithm was proposed by combining the
predictions of the structure-based and sequence-based
classifiers, yielding a substantial improvement in predic-
tion performance. Extensive experiments demonstrated
that the proposed method can be successfully applied to
the prediction of heme binding residues and could pro-
vide valuable insights into binding residue prediction for
other types of ligands.
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Methods

Dataset preparation

Main dataset

To construct the dataset of heme proteins, we extracted
2209 heme-protein complexes, mainly composed of b-
and c-type hemes, by using “HEM” as a HET group
code to search against the Het-PDB Navi. Database (ver-
sion at May 2010) [31]. Only the X-ray diffraction pro-
tein structures with a resolution better than 3A were
reserved in the current study. In order to reduce
sequence redundancy, 4127 heme proteins from the
selected complexes were compared using the BLAS-
TCLUST program [32]. Two chains were assigned to
the same cluster if the sequence identity was more than
30% and the alignment length covered at least 90% of
one member of a chain pair. As a result, these heme
proteins were classified into 147 clusters. For each clus-
ter, we chose the longest heme protein as a representa-
tive. Because five heme proteins (155C:A, 20LP:A,
3CAO:A, 4CAT:A, 4CAT:B) contain “X” amino acid and
the structural file of one heme protein (1C53:A) can not
be calculated by the DSSP program [33], these chains
were excluded. Therefore, the main dataset is composed
of 141 non-redundant heme proteins (Additional file 1,
Table S1).

Alternative dataset

In addition to the main dataset, we constructed an alter-
native dataset derived from the experimental data pre-
pared by Fufezan et al. [2]. The original dataset consists
of 89 heme proteins, where no two chains have more
than 25% sequence identity. We found that the HET
group codes of 14 records are not labeled as “HEM”. To
keep consistent with the main dataset, these chains have
been removed from the original dataset. Thus, the
remaining 75 heme proteins were used as our alternative
dataset (Additional file 1, Table S2).

Independent test set

Since the heme proteins in the study of Fufezan et al.
[2] were collected in March 2007, the chains collected
afterwards in our main dataset can be considered as an
independent test set to evaluate our method by using
the alternative dataset as a training set. Hence, from the
main dataset, the chains sharing more than 30%
sequence identity with any one of the 75 chains in the
alternative dataset were eliminated. As a result, we
obtained a non-redundant set of 72 heme proteins. In
this dataset, 62 protein chains bind a single heme mole-
cule and 10 protein chains interact with multiple heme
molecules, respectively (Additional file 1, Table S3).

Extraction of heme binding residues

In this study, following the step of Raghava et al.’s work
[27-30], we used the Ligand Protein Contact (LPC) ser-
ver [34] to arrange heme binding and non-binding
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residues for the protein chains in our three datasets.
The LPC server utilizes the surface complementarity
approach developed by Sobolev et al. [35] to define the
contacts in protein-ligand complexes. For the protein
chains binding multiple heme molecules, we considered
all the residues forming contacts with these ligands as
the binding residues in the given chain. According to
the analysis of LPC server, the main dataset contains
5079 binding residues and 32712 non-binding residues,
the alternative dataset includes 2512 binding residues
and 16045 non-binding residues, and the independent
test set has 2652 binding residues and 15904 non-bind-
ing residues, respectively. It should be emphasized that
since our prediction method attempts to take advantage
of structural information, the residues that have no
atomic coordinates were not used in the present work.

Feature generation

Position specific scoring matrix (PSSM)

PSSM is commonly used to measure residue evolution-
ary conservation in a particular protein of interest. The
elements in this matrix represent the probability of 20
residue types occurring at each position in the multiple
sequence alignment of the given protein and its homo-
logs. In our work, the PSSM of each heme protein was
generated by three iterations of PSI-BLAST [32]
searches against NCBI non-redundant database with the
BLOSUMBS62 substitution matrix and E-value threshold
of 0.001. The elements of PSSM were scaled between 0
and 1 by the standard logistic function [36]:

f(x) = —

1+e*

1)

where x is the raw matrix value.
Relative accessible surface area (RASA)
The solvent accessible surface area (SASA) is the atomic
surface area of a molecule that is in contact with sol-
vent. Herein the SASA of each residue in heme proteins
was calculated using the DSSP program [33]. It should
be noted that only the atomic coordinates of the
unbound chain were extracted for the calculation. To
obtain the RASA of each residue, the absolute values
were scaled between 0 and 1 by the following equation
[37]:

RASA, = —onoAr )
max(SASA;)

where SASA, is the SASA of residue r, max(SASA,) is
the maximum SASA of residue r defined by Rost and
Sander [38].
Depth index (DPX)
DPX is defined as the distance between a given atom
and its closest solvent accessible atom (SASA > 0).
Hence, the depth is zero for solvent accessible atoms
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and greater than zero for interior atoms, and deeply
buried atoms have higher DPX values [39]. In our study,
the PSAIA software [40] with default parameters was
utilized to generate the DPX-related features of each
residue in the unbound chain that include the average
of all atom DPXs, the standard deviation of all atom
DPXs, the average of all side-chain atom DPXs, the
standard deviation of all side-chain atom DPXs, the
minimal atom DPX and maximal atom DPX. These fea-
tures were scaled between 0 and 1 using the standard
logistic function.

Protrusion index (CX)

CX is another important measure used to describe the
geometric shape of a protein, reflecting the extent to
which an atom protrudes from the protein surface [41].
For each heavy atom in a protein structure, a sphere of
predetermined radius is centered around it, and the
ratio (CX) between the volume occupied by the protein
and the remaining volume within the sphere is calcu-
lated. The PSAIA software re-implemented the CX algo-
rithm developed by Pintar et al. [42]. Thus, the CX-
related features of each residue, including the average of
all atom CXs, the standard deviation of all atom CXs,
the average of all side-chain atom CXs, the standard
deviation of all side-chain atom CXs, the minimal atom
CX and maximal atom CX, were calculated using this
software and normalized just as DPX-related features
were done.

Classifiers construction

Support vector machine (SVM) is an effective supervised
learning model suitable for binary classification [43]. In
this study, we used SVM classifiers to distinguish heme
binding residues from non-binding residues. These clas-
sifiers can be divided into two classes, depending on
whether structural information or sequence information
was used to build the prediction model. Fifteen struc-
ture-based classifiers were constructed using PSSM,
RASA, DPX, CX or the combinations of these features.
The input of each structure-based classifier is a spatial
window of M residues containing the target residue and
its nearest neighbors obtained by calculating the dis-
tances between the a-carbons of residues. Alternatively,
two sequence-based classifiers were built using amino
acid binary pattern and PSSM [27-30]. The input of
each sequence-based classifier is a sliding window of N
consecutive residues centered on the target residue. The
optimal values of M and N were determined by using
different widow sizes as input. The LIBSVM package
[44] was utilized to implement these SVM classifiers
and the radial basis function was selected as kernel. The
optimal parameters of each SVM classifier were
obtained by combining a grid search with 5-fold cross-
validation. By comparing the performances of all the
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SVM classifiers, we chose the structure-based classifier
with the combination of PSSM, RASA, DPX and CX
features and the sequence-based classifier with PSSM as
the final classifiers.

Reduction of false positives

Previous studies showed that residues located in ligand
binding interfaces are more evolutionarily conserved,
and they tend to form spatial clusters [45]. Based on
this observation, we developed a post-processing proce-
dure to reduce the number of false positives to further
improve the prediction performance. Concretely, for the
residues predicted as positives by the structure-based
classifier with the combined four features, they were
reassigned as negatives if less than 7' (1 < T < W) posi-
tive predictions were included in their W nearest spatial
neighbors. In our experiments, we used different values
of Wand T to test the effectiveness of our post-proces-
sing procedure. To explain the rationale, we can con-
sider two different scenarios. In both cases, the target
residue has been predicted to be a heme binding residue
by our structure-based classifier. However, in the first
case most of its spatial neighbors are also predicted to
be binding residues, but in the second case few of them
are predicted to be in the interface. Obviously, the
chance that the target residue is indeed a binding resi-
due will be much higher in the first case. No post-pro-
cessing procedure was applied to the outputs produced
by the sequence-based classifier with PSSM, because no
remarkable improvement was observed.

Classifiers combination

We proposed a simple voting method to combine the
prediction results generated by our final structure-based
and sequence-based classifiers in this study. Briefly, a
residue was considered as a positive prediction if the fil-
tered output of the structure-based classifier with the
combined four features and the output of the sequence-
based classifier with PSSM were both labeled as positive;
otherwise, it was treated as a negative prediction. Figure
1 shows how to combine the outputs of individual pre-
diction classifiers.

Training and testing

5-fold cross-validation was conducted on the main data-
set and the alternative dataset respectively. In this pro-
cedure, the whole dataset were randomly divided into
five subsets with an approximately equal number of pro-
tein chains. For each run, one subset was left out for
testing, while the remaining four subsets were used for
training. This process was repeated until all subsets had
been tested. The final performance was obtained by
averaging the performances of the five subsets. To
further assess the robustness of our approach, we used



Liu and Hu BMC Bioinformatics 2011, 12:207
http://www.biomedcentral.com/1471-2105/12/207

Figure 1 Schematic diagram of combining outputs generated
by individual prediction paths. The left path contains the
structured-based classifier with the combined four features and the
post-processing procedure used to reduce false positives, and the
right path contains the sequence-based classifier with PSSM.

the alternative dataset as a training set to train SVM
classifiers which were then used to predict heme binding
residues in the independent test set. In our three data-
sets, the numbers of non-binding residues were much
larger than those of binding residues. If all non-binding
residues were used for training, the classifiers would be
biased to predict a residue as a non-binding residue.
Thus, in the process of cross-validation and independent
testing, the classifiers were trained using all binding
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residues and an equal number of non-binding residues
extracted randomly from the training set.

Evaluation measures
In this work, five widely used measures, including recall,
precision, accuracy, F1-score and Matthew’s correlation
coefficient (MCC) were calculated to evaluate the pre-
diction performance of our method. Their definitions
are given as follows:

TP
Recall = —— (3)
TP + FN
TP
Precision = —— (4)
TP + FP
TP + TN
Accuracy = (5)
TP + FN + TN + FP

2 x Recall x Precision
F1 — score = — (6)
Recall + Precision

TP x TN — FP x FN

Mee= /(TP + EN)(TP + FP) (TN + FP)(TN + FN) (7

)

where TP, FP, TN and FN represented true positive
(correctly predicted heme binding residue), false positive
(non-binding residue incorrectly predicted as binding),
true negative (correctly predicted non-binding residue)
and false negative (binding residue incorrectly predicted
as non-binding), respectively.

Results and discussion

Characteristics of heme binding residues

In this study, the proposed prediction algorithm was
developed on the basis of the complementary relationship
between structural and sequence information. Before
using HemeBIND for prediction, we examined the distri-
butions of the following properties of residues located in
heme binding interfaces compared with the remainder of
the protein, including interface propensity, evolutionary
conservation, solvent accessibility, depth, protrusion and
spatial clustering of binding residues. In addition, the Kol-
mogorov-Smirnov test was conducted to evaluate the sta-
tistically significant difference. Among the aforementioned
attributes, while the depth distributions of heme binding
and non-binding residues were most similar, we got a P-
value of 5.4 x 10?2, The P-values of the remaining attri-
butes were smaller than that of the depth, indicating that
the difference of the distributions was statistically signifi-
cant for each attribute. The results described herein were
derived from the main dataset and similar results were
observed when we used the alternative dataset to perform
the same analysis (Additional file 2, Figure S1).
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To measure the relative importance of different amino
acids in heme binding interfaces, we calculated the
interface propensity for each residue type, which is
defined as the log ratio between the amino acid fre-
quency in heme binding interface and that in the rest of
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the protein. From Figure 2(a), it is clear that ten residue
types were overrepresented in our dataset, most of
which were non-polar or aromatic amino acids. The top
four residue types with high propensities were Cys, His,
Met and Phe, which is consistent with the results
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obtained by Smith et al. [46]. Additionally, the other
overrepresented residue types (Ile, Val, Trp, Tyr and
Arg) reported by their research were also observed in
our study.

Previous studies have demonstrated that ligand bind-
ing sites are more conserved than non-binding sites dur-
ing evolution [45]. To check whether heme binding sites
have a similar conservation bias, we used the diagonal
element of PSSM at each residue position to evaluate
the evolutionary conservation of that residue as was
done in [47] and calculated the distribution of the con-
servation scores of the heme binding and non-binding
residues. As shown in Figure 2(b), non-binding residues
had relatively higher proportions in the -5-4 brackets.
However, binding residues dominated the remaining
brackets, especially remarkable for the 8-12 brackets.
These results suggested that residues involved in heme
binding interfaces are more evolutionarily conserved.

Figure 2(c) displays the relative solvent accessibilities
of heme binding residues compared with non-binding
residues in the main dataset. We found that 78% of
heme binding residues had RASAs of less than 40%,
while only 64% of non-binding residues were located in
the same brackets. When RASA increased over 40%, the
percentages of binding residues became smaller than
those of non-binding residues. One might expect that
binding residues should be more solvent accessible than
non-binding residues, but the results showed that this is
not the case. Similar observation was reported by Bar-
tlett et al. [48] when they analyzed the solvent accessi-
bilities of catalytic residues in enzyme active sites. The
main reason for this phenomenon might be due to the
need for correct positioning and restriction of mobility
of the residues in these functional sites.

The mean value of all atom DPXs for each residue
was calculated and the distribution is given in Figure 2
(d). It can be seen that about 26% of heme binding resi-
dues lied on the surface of the protein with depths less
than 0.25A, whereas 30% of non-binding residues were
observed in this bracket. However, in the 0.5-1.75A
brackets, binding residues appeared more frequently
than non-binding residues. Additionally, binding resi-
dues rarely had depths greater than 2.5A, which allows
these residues to have some solvent accessibility to
interact with the heme molecule whilst remaining
mostly buried.

Figure 2(e) shows the distribution of protrusion values.
We found that the percentages of binding and non-
binding residues with CXs no larger than 0.5A were
63% and 48%, respectively. But as the protrusion value
increased, the proportions of binding residues became
smaller than those of non-binding residues. The results
indicated that most of heme binding residues have
lower CXs compared to non-binding residues. This
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might be due to the fact that ligand binding residues are
usually located in the concavities of a protein.

It has been suggested that evolutionarily conserved
residues tend to be clustered in the three-dimensional
protein structures [45]. Thus, in a heme protein, it
would be expected that the residues involved in heme-
protein interactions are conserved and clustered in vici-
nity of the heme ligands. For each residue, we counted
the number of binding residues among its 18 spatially
neighboring residues. Figure 2(f) shows that almost 66%
of non-binding residues had no more than one binding
residue in their 18 neighbors, and the proportion
decreased steadily as the number of binding residues
increased. Instead, heme binding residues illustrated a
completely different distribution. For each binding resi-
due, there was at least one binding residue observed in
its neighbors. In the 6-7 brackets, the percentages of
binding residues were the highest, indicating that heme
binding residues indeed tend to form spatial clusters.

Determination of optimal window sizes for feature
calculation

In HemeBIND, the structural context of each residue is
reflected by a spatial window of M residues. Similarly,
the sequence context is reflected by a sliding window of
N residues. Choosing appropriate window sizes can lead
to better prediction performance. In our experiments,
the optimal value of M for the structure-based classifier
with the combined four features (PSSM, RASA, DPX
and CX) and that of N for the sequence-based classifier
with PSSM were determined by testing different window
sizes from 1 to 25 on the main dataset. Here MCC and
F1l-score were used as the main measures to evaluate
the performance. As shown in Figure 3, if only the tar-
get residue was used as input, the MCC and F1-scores
were lower for the two classifiers. However, as we
increased the window sizes, the performances of the two
classifiers were remarkably improved. This suggested
that the local environment around the target residue
should be considered when predicting heme binding
residues. In addition, we noticed that the best perfor-
mance was obtained when M = 15 for the structure-
based classifier. For sequence-based classifier, the pre-
diction performance was peaked when N = 17. There-
fore, unless otherwise stated, we used M = 15 and N =
17 as the default window sizes for the structure-based
and sequence-based classifiers respectively.

Performance of structure-based classifiers tested on main
dataset

In this study, fifteen structure-based classifiers were
constructed for identification of heme binding residues,
including four classifiers with a single feature, six classi-
fiers with the combination of two features, four
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classifiers with the combination of three features and
one classifier with the combination of all four features.
This allows the comparison of the predictive capabilities
of the different features. Moreover, we can discern
whether these features are complementary for heme
binding residue prediction. The prediction results of 5-
fold cross-validation on the main dataset are given in
Table 1. It can be seen that PSSM, the sequence feature
based on evolutionary conservation, achieved a much
better performance compared to structural features,
with the MCC of 0.342 and Fl-score of 42.64%. Among
the three structural features, the CX feature achieved
the best performance, the RASA feature was second and
the DPX feature gave a relatively inferior performance.
But the MCCs and Fl-scores of four single-feature
based classifiers were all greater than 0.2 and 30%
respectively, suggesting that these features can be used
to recognize heme binding residues.

More interestingly, we found that combining any two
features can improve the prediction performance to a
certain degree. Among the six classifiers with the com-
bination of two features, the classifier based on PSSM
and DPX and the classifier based on RASA and CX
achieved the best performance with the MCC of about
0.39 and F1-score of about 46%. Although the remaining
two-feature based classifiers did not perform as well as
the two classifiers aforementioned, they were still super-
ior to the classifiers with a single feature. The results
implied that these four features contain different and
complementary information for heme binding residue
prediction.

In addition, we observed that when RASA or CX was
incorporated as an additional feature into the classifier
based on PSSM and DPX, the MCC and F1-score were
slightly raised. However, not all the classifiers with three

Table 1 Performance of structure-based classifiers on main dataset

Feature Recall (%) Precision (%) Accuracy (%) F1-score (%) MCC
DPX 73.28 22.81 62.97 3477 0.239
RASA 70.52 28.64 72.36 40.70 0313
X 77.25 28.21 7047 41.29 0.330
PSSM 74.55 29.88 72.98 42.64 0.342
RASA+DPX 76.69 27.82 70.03 40.79 0.323
PSSM+CX 75.66 31 74.10 44.04 0.361
PSSM+RASA 7554 31.24 74.24 4415 0.362
DPX+CX 80.56 3040 7253 4411 0.370
PSSM+DPX 76.64 33.19 75.98 46.25 0.388
RASA+CX 7597 33.68 76.64 46.66 0.391
PSSM+RASA+CX 76.11 31.90 74.80 44.89 0371
RASA+DPX+CX 8061 3226 74.62 46.07 0.392
PSSM+RASA+DPX 76.90 33.87 76.54 46.94 0.396
PSSM+DPX+CX 78.81 33.64 76.15 47.10 0401
PSSM+RASA+DPX+CX 79.08 34.07 7649 47.56 0407
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features obtained a better prediction result. For example,
as we added PSSM into the classifier based on RASA
and CX, the predictive capability got a little worse.
Finally, the classifier with the combined four features
achieved the highest MCC of 0.407 and F1-score of
47.56% among all fifteen structure-based classifiers,
which confirmed that the complementarity of these four
features is beneficial for improving the prediction of
heme binding residues.

Performance of post-processing procedure

After we obtained the predictions generated by the struc-
ture-based classifier with the combined four features, a
post-processing procedure was used to reduce the false
positives in these predictions. Here five values of the
number of spatial neighbors (W = 6, 10, 14, 18 and 22)
were tested. For each value of W, we thoroughly tested
the value of T from 1 to W and the optimal value of T
was determined when the best performance was
achieved. From Table 2, it is obvious that compared with
the raw predictions, the performances were further opti-
mized by conducting the post-processing procedure with
different combinations of W and T values. Especially for
W =18 and T = 5, showing the largest increase, the pre-
cision, accuracy, F1-score and MCC were improved from
34.07% to 37.14%, 76.49% to 79.24%, 47.56% to 49.76%
and 0.407 to 0.427, respectively. Accordingly, in our post-
processing procedure, we chose W =18 and T = 5 as the
default parameters. On the other hand, it is worth men-
tioning that the post-processing method increased preci-
sion at the expense of recall, because some true positives
were inevitably reassigned as negatives. However, we
think this trade-off is worthwhile, since experimental
biologists could pay more attention to the precision mea-
sure when they use a classifier to identify heme binding
residues in reality.

Performance of sequence-based classifiers tested on main
dataset

Besides the fifteen structure-based classifiers, two
sequence-based classifiers were constructed using amino

Table 2 Performance of post-processing procedure on
main dataset

Recall  Precision Accuracy Fl-score MCC
(%) (%) (%) (%)

W=0,T=0° 79.08 34.07 7649 47.56 0407
W=6T=1 77.23 3532 77.77 4839 0413
W=10,T=2 77.84 3574 78.05 48.89 0420
W=14T=4 75.75 37.04 79.22 49.62 0425
W=18T=5 76.05 37.14 79.24 49.76 0427
W=22T=6 76.05 37.09 79.20 49.72 0426

W =0, T = 0 denotes the raw predictions without post-processing.
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Table 3 Performance of sequence-based classifiers on
main dataset

Feature  Recall Precision Accuracy F1-score  MCC
(%) (%) (%) (%)

AA® 66.37 24.72 68.30 36.01 0.249

PSSM 63.29 45.64 84.88 5297 0451

2 AA denotes amino acid binary pattern.

acid binary pattern and PSSM. As shown in Table 3, when
amino acid binary pattern was adopted to build the classi-
fier, it achieved a MCC of 0.249 and F1-score of 36.01%.
On the other hand, the PSSM feature based classifier
obtained a substantial increase in the prediction perfor-
mance with the MCC of 0.451 and F1-score of 52.97%.
Similar performance discrepancy has been observed in the
studies of Raghava et al. [27-30], where they utilized these
two types of features to identify the binding residues of
ATP, GTP, FAD and NAD molecules in protein sequence
respectively. The results clearly indicated that when only
sequence information is available, evolutionary conserva-
tion is very important for the prediction of heme binding
residues. Surprisingly, we observed that the sequence-
based classifier with PSSM achieved a better performance
than the structure-based classifier with the combination of
PSSM and three structural features. However, revisiting
Figure 3, we found that if the input window only con-
tained the target residue, the structure-based classifier
obviously outperformed the sequence-based classifier,
indicating that the incorporation of RASA, DPX and CX
features indeed provided other useful information for pre-
dicting heme binging residues. Thus, the better perfor-
mance achieved by the sequence-based classifier with
increasing window sizes could be attributed to the use of
the sliding window. Owing to the fact that heme proteins
usually contain some common linear motifs, such as Cys-
Xaa-Xaa-Cys-His (CXXCH) in c¢-type heme proteins [49],
the sliding window might more effectively reflect the local
environment around heme binding residues relative to the
spatial window.

Performance of the ensemble classifiers

To further improve the performance, the prediction
results of the structure-based classifier with the com-
bined four features and those of the sequence-based
classifier with PSSM were integrated by a voting
method. We compared the combined prediction models
with the individual classifiers and the performances are
listed in Table 4. It can be seen that a significant
increase in prediction performance was achieved by
combining the raw predictions of the structure-based
classifier and the predictions of the sequence-based clas-
sifier (P-value < 0.001, Wilcoxon signed-rank test).
Compared with the two individual classifiers, the MCC
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Table 4 Performance of different prediction models on main dataset

Model® Recall (%) Precision (%) Accuracy (%) F1-score (%) MCC FP TN FN TP

STR 79.08 34.07 7649 47.56 0407 7824 24888 1061 4018
STRrep 76.05 37.14 79.24 49.76 0427 6629 26083 1215 3864
SEQ 63.29 45.64 84.88 5297 0451 3852 28860 1865 3214
STR+SEQ 55.87 5748 88.44 56.55 0.500 2128 30584 2241 2838
STRrep+SEQ 54.08 60.74 89.03 57.07 0510 1814 30898 2332 2747

STR, RFP and SEQ denote structure-based classifier, reducing false positives and sequence-based classifier respectively.

of the combined model were increased by approximate
0.09 and 0.05, respectively. However, we also noted that
the combined model obtained a decrease in the recall
relative to the individual classifiers, but raised the preci-
sion. This was due to the fact that integrating structural
and sequence information contributed to the dramatic
reduction of false positives, although more true positives
converted into false negatives. Additionally, using the fil-
tered predictions of the structure-based classifier to
vote, we obtained a slightly better performance with the
MCC of 0.51 and F1-score of 57.07%. Therefore, it can
be concluded that our combined prediction model for
recognizing heme binding residues achieved a satisfac-
tory performance.

Performance of our classifiers tested on alternative
dataset

To test whether our classifiers can effectively identify
heme binding residues in another dataset, we conducted
5-fold cross-validation on the 75 heme proteins col-
lected by Fufezan et al. [2] and the results are given in
Table S1 (Additional file 2). As shown in this table, the
ranking of the predictive capabilities of the different
classifiers was almost consistent with that achieved on
the main dataset, with exception of the structure-based

classifiers with two features. Additionally, as expected,
the performance of each classifier was not as good as
that of the corresponding classifier tested on the main
dataset, which could be due to the relatively small num-
ber of samples in the training set. Even so, when the
combined prediction model was used to predict heme
binding residues in the alternative dataset, we obtained
a reasonable performance with the MCC of 0.465 and
F1-score of 52.94%. The results demonstrated that our
method performed well on different datasets.

Independent testing

We trained our classifiers using the alternative dataset
and used them to recognize heme binding residues of
the newly added non-homologous heme proteins during
the last three years. Furthermore, since the heme pro-
teins can interact with either a single heme ligand or
multiple heme ligands, we attempted to test whether
our approach can be used to predict the binding resi-
dues in these two types of heme proteins. Table 5 shows
the results of different classifiers tested on the indepen-
dent test set which is composed of 62 single-heme pro-
teins and 10 multi-heme proteins. It can be observed
that compared with the individual classifiers, the com-
bined prediction model still achieved a better

Table 5 Performance of different prediction models on independent test set

Subset Model® Recall (%) Precision (%) Accuracy (%) F1-score (%) McCC
Single-heme STR 76.05 2872 77.06 41.69 0.366
STRrep 7210 3144 80.03 43.78 0.382
SEQ 58.86 3935 85.78 4717 0404
STR+SEQ 5228 5275 89.80 5251 0468
STRgep+SEQ 50.54 55.78 90.34 53.03 0477
Multi-heme STR 87.07 5148 69.66 64.70 0454
STRgep 86.56 5260 70.80 6543 0466
SEQ 63.14 59.85 74.70 6145 0427
STR+SEQ 5855 69.53 7857 63.57 0489
STRrep+SEQ 5825 70.18 78.76 63.66 0493
All STR 80.13 34.93 75.83 48.65 0412
STRgep 7745 37.72 7850 50.73 0431
SEQ 60.44 45.36 83.94 51.83 0431
STR+SEQ 54.60 5834 87.94 56.41 0495
STRrep+SEQ 5339 60.82 8842 56.87 0504

STR, RFP and SEQ denote structure-based classifier, reducing false positives and sequence-based classifier respectively.
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Table 6 Performance comparison of different prediction
methods

CsC

Ligsite ConCavity HemeBIND

SEQ® STR+SEQ® SEQ STR+SEQ SEQ STR+SEQ
Recall (%) N/A 12.59 3166 6526 6164 5471
Precision (%)  N/A 34.88 30.63 61.55 46.12 6135
Accuracy (%)  N/A 83.31 7893 88.64 83.39 88.00
Fl-score (%)  N/A 1850 3114 6335 5276 5784
MCC N/A 0.133 0187 0567 0436 0510

?SEQ denotes that the prediction method uses sequence information alone.

PSTR+SEQ denotes that the prediction method uses both structural and
sequence information.

performance not only for the single-heme proteins, but
also for the multi-heme proteins. Interestingly, focusing
on the multi-heme proteins, we can find that the perfor-
mance of the structure-based classifier was no worse
than that of the sequence-based classifier, and was
much better than that of the corresponding classifier
tested on single-heme proteins. The possible reason is
that together with the spatial window, the structural
attributes, such as solvent accessibility, depth and pro-
trusion, can more adequately reflect the geometric
environment of binding residues in the multi-heme pro-
teins. In addition, for the whole independent test set,
the experimental results were in agreement with those
of 5-fold cross-validation on the main dataset and the
alternative dataset, and the final prediction model
achieved a MCC of 0.504 and F1-score of 56.87%. In
summary, our prediction model is robust and promising
for the prediction of heme binding residues.

Page 11 of 13

Comparison with other methods

In this section, we compared HemeBIND with Ligsite
[17] and ConCavity [19], which are both geometry-based
prediction methods and incorporate residue evolutionary
conservation to improve performance. We downloaded
the prediction results of 59 heme proteins used in our
independent testing from the web servers of these two
methods. The performance comparison of different
methods is summarized in Table 6. We can see that Lig-
site“>C performed quite poorly compared with Heme-
BIND and ConCavity, which is consistent with the
results reported by Capra et al. [19]. They illustrated that
the existing structure-based servers (including Ligsite“*°)
that focus on pocket detection do not outperform a sim-
ple sequence conservation approach in finding ligand
binding residues. In ConCavity algorithm, Jensen-Shan-
non divergence (JSD) is used to score the evolutionary
conservation of each residue and the residues with a
higher JSD score are considered as potential ligand bind-
ing residues. From Table 6, it is obvious that our
sequence-based method was superior to JSD method,
which is possibly due to the fact that we take into consid-
eration the sequence context of target residues used to
capture the motif information in heme proteins. As Con-
Cavity directly integrated conservation into the search for
pockets, the performance was better than that of Heme-
BIND. However, from a methodological perspective,
HemeBIND is constructed on the basis of machine learn-
ing algorithm, which is different from ConCavity. There-
fore, our method and ConCavity can complement each
other for heme binding residue prediction.
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Figure 4 Visualization of prediction results for chain A of protein complex 2V7I. (a) Structure-based model, (b) Sequence-based model, (c)
Combined model. The following color scheme is used: heme in yellow, true positives in red, false positives in blue, false negatives in green.
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(a)

Combined model. The color scheme is the same as that of Figure 4.
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Figure 5 Visualization of prediction results for chain A of protein complex 1FGJ. (a) Structure-based model, (b) Sequence-based model, (c)

Case studies

To further demonstrate the effectiveness of our
approach, we selected two heme proteins from the inde-
pendent test set to visualize the prediction results using
the PyMOL package [50]. The first example is the
enzyme PrnB (2V7I:A), which plays a crucial role in the
pyrrolnitrin biosynthesis pathway [51]. The structure of
PrnB established that it is a member of the b-type heme
dependent dioxygenase superfamily. The prediction
results of this enzyme generated by structure-based,
sequence-based and combined prediction models are
provided in Figure 4. It is clear that the structure-based
and sequence-based prediction models had correctly
identified most of the residues interacting with the
heme ligand, but meanwhile they got 26 and 37 false
positives respectively. However, by combining structural
and sequence information, we only obtained 3 false
positives, although the number of true positives was
slightly decreased. Overall, our combined prediction
model achieved an excellent performance with the recall
of 70.00%, precision of 87.50%, accuracy of 96.54%, F1-
score of 77.78% and MCC of 0.765. These results
further demonstrated that the individual models provide
largely complementary information, which can be com-
bined to improve prediction performance.

Besides the enzyme PrnB, the hydroxylamine oxidore-
ductase (1FGJ:A) that interacts with seven c-type heme
ligands was chosen as another example [52]. This
enzyme, which converts hydroxylamine molecule into a
nitrite, is a key component in respiratory chain. As
given in Figure 5, when the combined prediction model
was used, the number of false positive predictions was
drastically reduced and we obtained an acceptable result
for this heme protein with the recall of 65.91%, preci-
sion of 63.04%, accuracy of 80.76%, F1-score of 64.44%
and MCC of 0.513. Therefore, the proposed HemeBIND
algorithm can be used to identify the binding residues
of both single-heme and multi-heme proteins.

Conclusions

In this study, we proposed HemeBIND, the first specia-
lized algorithm for heme binding residue prediction, by
combining structural and sequence information. Through
systematic analysis of heme binding interfaces, we found
that several sequence and structural attributes, such as
evolutionary conservation, solvent accessibility, depth
and protrusion can distinctly reflect the differences
between heme binding regions and the rest of the pro-
tein. Based on this finding, the attributes mentioned
above were separately used or combined to construct
structure-based and sequence-based classifiers to identify
the residues located in binding regions. Experimental
results showed that evolutionary conservation is an indis-
pensable factor for predicting heme binding residues, but
not sufficient by itself, especially when structural infor-
mation is available. Integrating structural attributes with
evolutionary conservation yielded a remarkable improve-
ment in performance over conservation alone. In sum-
mary, our study not only presents a new method to
recognize heme binding residues, but also provides valu-
able insights into specific ligand binding site prediction.

Additional material

Additional file 1: Datasets used in this study. The heme proteins used
in the three datasets are listed in Table S1-S3, respectively.

Additional file 2: Analysis and performance of alternative dataset.
The characteristic analysis of alternative dataset is given in Figure S1. The
performances of different prediction models are given in Table S1.

Acknowledgements

This work was supported by the National Science Foundation Career Award
(Grant BIO-DBI-0845381). The authors are grateful to Richard Porter for
improving the language and Stephanie Hennrich for developing the web server.

Authors’ contributions

RL designed the study, implemented the algorithm, performed the analysis
and drafted the manuscript. JJH designed the study and drafted the
manuscript. Both authors read and approved the final manuscript.


http://www.biomedcentral.com/content/supplementary/1471-2105-12-207-S1.PDF
http://www.biomedcentral.com/content/supplementary/1471-2105-12-207-S2.PDF

Liu and Hu BMC Bioinformatics 2011, 12:207
http://www.biomedcentral.com/1471-2105/12/207

Competing interests
The authors declare that they have no competing interests.

Received: 6 November 2010 Accepted: 26 May 2011
Published: 26 May 2011

References

1.

22.

23.

Schneider S, Marles-Wright J, Sharp KH, Paoli M: Diversity and conservation
of interactions for binding heme in b-type heme proteins. Nat Prod Rep
2007, 24:621-630.

Fufezan C, Zhang J, Gunner MR: Ligand preference and orientation in b-
and c-type heme-binding proteins. Proteins 2008, 73:690-704.

Gray HB, Winkler JR: Electron transfer in proteins. Annu Rev Biochem 1996,
65:537-561.

Terwilliger NB: Functional adaptations of oxygen-transport proteins. J Exp
Biol 1998, 201:1085-1098.

Reedy CJ, Gibney BR: Heme protein assemblies. Chem Rev 2004,
104:617-649.

Guengerich FP, Macdonald TL: Chemical Mechanisms of Catalysis by
Cytochromes-P-450 - a Unified View. Accounts Chem Res 1984, 17:9-16.
Smith A, Alam J, Escriba PV, Morgan WT: Regulation of heme oxygenase
and metallothionein gene expression by the heme analogs, cobalt-, and
tin-protoporphyrin. J Biol Chem 1993, 268:7365-7371.

Mense SM, Zhang L: Heme: a versatile signaling molecule controlling the
activities of diverse regulators ranging from transcription factors to MAP
kinases. Cell Res 2006, 16:681-692.

Levitt DG, Banaszak LJ: POCKET: a computer graphics method for
identifying and displaying protein cavities and their surrounding amino
acids. J Mol Graph 1992, 10:229-234.

Hendlich M, Rippmann F, Barnickel G: LIGSITE: automatic and efficient
detection of potential small molecule-binding sites in proteins. J Mol
Graph Model 1997, 15:359-363, 389.

Laskowski RA: SURFNET: a program for visualizing molecular surfaces,
cavities, and intermolecular interactions. J Mol Graph 1995, 13:323-330,
307-328.

Liang J, Edelsbrunner H, Woodward C: Anatomy of protein pockets and
cavities: measurement of binding site geometry and implications for
ligand design. Protein Sci 1998, 7:1884-1897.

Weisel M, Proschak E, Schneider G: PocketPicker: analysis of ligand
binding-sites with shape descriptors. Chem Cent J 2007, 1:7.

Laurie AT, Jackson RM: Q-SiteFinder: an energy-based method for the
prediction of protein-ligand binding sites. Bioinformatics 2005,
21:1908-1916.

Pupko T, Bell RE, Mayrose |, Glaser F, Ben-Tal N: Rate4Site: an algorithmic
tool for the identification of functional regions in proteins by surface
mapping of evolutionary determinants within their homologues.
Bioinformatics 2002, 18(Suppl 1):571-77.

Armon A, Graur D, Ben-Tal N: ConSurf: an algorithmic tool for the
identification of functional regions in proteins by surface mapping of
phylogenetic information. J Mol Biol 2001, 307:447-463.

Huang B, Schroeder M: LIGSITEcsc: predicting ligand binding sites using
the Connolly surface and degree of conservation. BMC Struct Biol 2006,
6:19.

Glaser F, Morris RJ, Najmanovich RJ, Laskowski RA, Thornton JM: A method
for localizing ligand binding pockets in protein structures. Proteins 2006,
62:479-488.

Capra JA, Laskowski RA, Thornton JM, Singh M, Funkhouser TA: Predicting
protein ligand binding sites by combining evolutionary sequence
conservation and 3D structure. PLoS Comput Biol 2009, 5:21000585.
Brylinski M, Skolnick J: FINDSITE: a threading-based approach to ligand
homology modeling. PLoS Comput Biol 2009, 5:21000405.

Thangudu RR, Tyagi M, Shoemaker BA, Bryant SH, Panchenko AR, Madej T:
Knowledge-based annotation of small molecule binding sites in
proteins. BMC Bioinformatics 2010, 11:365.

Henrich S, Salo-Ahen OM, Huang B, Rippmann FF, Cruciani G, Wade RC:
Computational approaches to identifying and characterizing protein
binding sites for ligand design. J Mol Recognit 2010, 23:209-219.

Sodhi JS, Bryson K, McGuffin LJ, Ward JJ, Wernisch L, Jones DT: Predicting
metal-binding site residues in low-resolution structural models. J Mol Biol
2004, 342:307-320.

Page 13 of 13

24. Guo T, Shi Y, Sun Z: A novel statistical ligand-binding site predictor:
application to ATP-binding sites. Protein £ng Des Sel 2005, 18:65-70.

25. Nebel JC, Herzyk P, Gilbert DR: Automatic generation of 3D motifs for
classification of protein binding sites. BVC Bioinformatics 2007, 8:321.

26. Bordner AJ: Predicting small ligand binding sites in proteins using
backbone structure. Bioinformatics 2008, 24:2865-2871.

27. Ansari HR, Raghava GP: Identification of NAD interacting residues in
proteins. BMC Bioinformatics 2010, 11:160.

28, Chauhan JS, Mishra NK, Raghava GP: Identification of ATP binding
residues of a protein from its primary sequence. BMC Bioinformatics 2009,
10:434.

29. Chauhan JS, Mishra NK, Raghava GP: Prediction of GTP interacting
residues, dipeptides and tripeptides in a protein from its evolutionary
information. BMC Bioinformatics 2010, 11:301.

30. Mishra NK, Raghava GP: Prediction of FAD interacting residues in a
protein from its primary sequence using evolutionary information. BMC
Bioinformatics 2010, 11(Suppl 1):548.

31, Yamaguchi A, lida K, Matsui N, Tomoda S, Yura K, Go M: Het-PDB Navi.: a
database for protein-small molecule interactions. J Biochem 2004,
135:79-84.

32, Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W,

Lipman DJ: Gapped BLAST and PSI-BLAST: a new generation of protein
database search programs. Nucleic Acids Res 1997, 25:3389-3402.

33, Kabsch W, Sander C: Dictionary of protein secondary structure: pattern
recognition of hydrogen-bonded and geometrical features. Biopolymers
1983, 22:2577-2637.

34. Sobolev V, Sorokine A, Prilusky J, Abola EE, Edelman M: Automated analysis
of interatomic contacts in proteins. Bioinformatics 1999, 15:327-332.

35. Sobolev V, Wade RC, Vriend G, Edelman M: Molecular docking using
surface complementarity. Proteins 1996, 25:120-129.

36. Jones DT: Protein secondary structure prediction based on position-
specific scoring matrices. J Mol Biol 1999, 292:195-202.

37. Kuznetsov IB, Gou Z, Li R, Hwang S: Using evolutionary and structural
information to predict DNA-binding sites on DNA-binding proteins.
Proteins 2006, 64:19-27.

38. Rost B, Sander C: Conservation and prediction of solvent accessibility in
protein families. Proteins 1994, 20:216-226.

39. Pintar A, Carugo O, Pongor S: DPX: for the analysis of the protein core.
Bioinformatics 2003, 19:313-314.

40.  Mihel J, Sikic M, Tomic S, Jeren B, Vlahovicek K: PSAIA - protein structure
and interaction analyzer. BMC Struct Biol 2008, 8:21.

41, Jones S, Thornton JM: Analysis of protein-protein interaction sites using
surface patches. Journal of Molecular Biology 1997, 272:121-132.

42, Pintar A, Carugo O, Pongor S: CX, an algorithm that identifies protruding
atoms in proteins. Bioinformatics 2002, 18:980-984.

43, Vapnik VN: The nature of statistical learning. springer New York, NY; 2002.

44.  LIBSVM: a library for support vector machines. [http://www.csie.ntu.edu.
tw/~cjlin/libsvm].

45.  Schueler-Furman O, Baker D: Conserved residue clustering and protein
structure prediction. Proteins 2003, 52:225-235.

46.  Smith LJ, Kahraman A, Thornton JM: Heme proteins—diversity in structural
characteristics, function, and folding. Proteins 2010, 78:2349-2368.

47. Zhou HX, Shan Y: Prediction of protein interaction sites from sequence
profile and residue neighbor list. Proteins 2001, 44:336-343.

48. Bartlett GJ, Porter CT, Borkakoti N, Thornton JM: Analysis of catalytic
residues in enzyme active sites. J Mol Biol 2002, 324:105-121.

49.  Paoli M, Marles-Wright J, Smith A: Structure-function relationships in
heme-proteins. DNA Cell Biol 2002, 21:271-280.

50. The PyMOL Molecular Graphics System. [http://www.pymol.org].

51. De Laurentis W, Khim L, Anderson JLR, Adam A, Johnson KA, Phillips RS,
Chapman SK, van Pee KH, Naismith JH: The second enzyme in pyrrolnitrin
biosynthetic pathway is related to the heme-dependent dioxygenase
superfamily. Biochemistry 2007, 46:14733-14733.

52. lgarashi N, Moriyama H, Fujiwara T, Fukumori Y, Tanaka N: The 2.8
angstrom structure of hydroxylamine oxidoreductase from a nitrifying
chemoautotrophic bacterium, Nitrosomonas europaea. Nature Structural
Biology 1997, 4:276-284,

doi:10.1186/1471-2105-12-207

Cite this article as: Liu and Hu: HemeBIND: a novel method for heme
binding residue prediction by combining structural and sequence
information. BMC Bioinformatics 2011 12:207.



http://www.ncbi.nlm.nih.gov/pubmed/17534534?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17534534?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18491383?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18491383?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8811189?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9510522?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14871137?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8463269?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8463269?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8463269?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16894358?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16894358?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16894358?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1476996?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1476996?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1476996?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9704298?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9704298?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8603061?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8603061?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9761470?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9761470?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9761470?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17880740?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17880740?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15701681?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15701681?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12169533?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12169533?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12169533?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11243830?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11243830?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11243830?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16995956?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16995956?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16304646?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16304646?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19997483?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19997483?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19997483?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19503616?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19503616?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20594344?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20594344?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19746440?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19746440?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15313626?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15313626?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15799998?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15799998?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17760982?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17760982?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18940825?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18940825?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20353553?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20353553?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20021687?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20021687?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20525281?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20525281?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20525281?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20122222?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20122222?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14999012?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14999012?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9254694?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9254694?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/6667333?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/6667333?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10320401?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10320401?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8727324?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8727324?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10493868?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10493868?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16568445?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16568445?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7892171?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7892171?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12538266?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18400099?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18400099?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9299342?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9299342?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12117796?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12117796?dopt=Abstract
http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.ncbi.nlm.nih.gov/pubmed/12833546?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12833546?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20544970?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20544970?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11455607?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11455607?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12421562?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12421562?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12042067?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12042067?dopt=Abstract
http://www.pymol.org
http://www.ncbi.nlm.nih.gov/pubmed/9095195?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9095195?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9095195?dopt=Abstract

	Abstract
	Background
	Results
	Conclusions

	Background
	Methods
	Dataset preparation
	Main dataset
	Alternative dataset
	Independent test set

	Extraction of heme binding residues
	Feature generation
	Position specific scoring matrix (PSSM)
	Relative accessible surface area (RASA)
	Depth index (DPX)
	Protrusion index (CX)

	Classifiers construction
	Reduction of false positives
	Classifiers combination
	Training and testing
	Evaluation measures

	Results and discussion
	Characteristics of heme binding residues
	Determination of optimal window sizes for feature calculation
	Performance of structure-based classifiers tested on main dataset
	Performance of post-processing procedure
	Performance of sequence-based classifiers tested on main dataset
	Performance of the ensemble classifiers
	Performance of our classifiers tested on alternative dataset
	Independent testing
	Comparison with other methods
	Case studies

	Conclusions
	Acknowledgements
	Authors' contributions
	Competing interests
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /ETI <>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


