
Dense and Switched Modular Primitives for Bond
Graph Model Design

Kisung Seo1, Zhun Fan1, Jianjun Hu1, Erik D. Goodman1, Ronald C. Rosenberg2

1Genetic Algorithms Research and Applications Group (GARAGe), Michigan State
University

 2Department of Mechanical Engineering, Michigan State University
East Lansing, MI 48824, USA

{ksseo, fanzhun, hujianju, goodman, rosenber}@egr.msu.edu

Abstract. This paper suggests dense and switched modular primitives for a
bond-graph-based GP design framework that automatically synthesizes designs
for multi-domain, lumped parameter dynamic systems. A set of primitives is
sought that will avoid redundant junctions and elements, based on pre-
assembling useful functional blocks of bond graph elements and (optionally)
using a switched choice mechanism for inclusion of some elements. Motiva-
tion for using these primitives is to improve performance through greater
search efficiency and thereby to reduce computational effort. As a proof of
concept for this approach, an eigenvalue assignment problem, which is to find
bond graph models exhibiting minimal distance errors from target sets of ei-
genvalues, was tested and showed improved performance for various sets of
eigenvalues.

1 Introduction

Design of interdisciplinary (multi-domain) dynamic engineering systems, such as
mechatronic systems, differs from design of single-domain systems, such as elec-
tronic circuits, mechanisms, and fluid power systems, in part because of the need to
integrate the several distinct domain characteristics in predicting system behavior
(Youcef-Toumi [1]). However, most current research for evolutionary design has
been optimized for a single domain (see, for example, Koza et. al., [2,3]).

In order to overcome this limitation and enable open-ended search, the Bond Graph /
Genetic Programming (BG/GP) design methodology has been developed, based on
the combination of these two powerful tools (Seo et al. [4,5] and tested for a few
applications – an analog filter (Fan et al. [6]), printer drive mechanism (Fan et. al.,
[7]), and air pump design (Goodman et al. [8]). BG/GP worked efficiently for these
applications. The search capability of this system has been improved dramatically by
introduction of a new form of parallel evolutionary computation, called Hierarchical
Fair Competition GP (HFC-GP, Hu, et al., [9]), which can strongly reduce premature
convergence and enable scalability with smaller populations.

However, two issues still arise: one is the need for much stronger synthesis capability
arising from the complex nature of multi-domain engineering design, and the other
is the desire to minimize computational demands. While we have made inroads in
improving of GP search by introducing HFC-GP, we want to exploit the notion of
modularity of GP function primitives to make additional gains. Much useful
modularity can be discovered during an evolutionary process, as is done, for example,
by the ADF (Koza [10]). However, in many cases, we believe that explicit
introduction of higher-level modules as function primitives, based on domain
knowledge, will yield faster progress than requiring their recognition during the
evolutionary process. Some research has been devoted to choice or refinement of the
function set in GP. Soule and Heckendorn [11] examined how the function set
influences performance in GP and showed some relationship between performance
and GP functions sets, but their work was limited to generating simple sine functions
varying only arithmetic and trigonometric operators (e.g,, +, -, *, /, tan, ….). We will
try to exploit higher-level function sets, rather than simply choosing different sets at
the same level.

In this paper, a generic type of primitive is introduced, and specialized here to
capture specific domain knowledge about bond graphs – the dense switched modular
primitive.

First, we introduce the dense module concept to generate compact bond graph mod-
els with fewer operations. It replaces several operations in the basic (original) set
with one operation, yielding a smaller tree attainable with less computational effort.

Second, the switched module concept creates a small function set of elements with
changeable forms, which can assist in evolving complex functionality, while
eliminating many redundant bond graph structures evolved if it is not used. Elements
eliminated include “dangling” junctions that connect to nothing and many one-port
components (such as resistors, capacitors, inductors, etc.). Their elimination makes
the resulting bond graph simpler and the speed of evolution faster.

A careful design of a dense and switched modular primitive should considerably
increase the efficiency of search and also, for the bond graph case, the efficiency of
fitness assessment, as is illustrated in this paper.

As a test class of design problems, we have chosen one in which the objective is to
realize a design having a specified set of eigenvalues. The eigenvalue assignment
problem is well defined and has been studied effectively using linear components
with constant parameters. Section 2 discusses the inter-domain nature, efficient
evaluation, and graphical generation of bond graphs, including the design methodol-
ogy used in approaching such problems. Section 3 explains the basic set and redun-
dancy problem and Section 4 describes the dense switched modular primitive set.
Section 5 presents results for 6-, 10- and 16-eigenvalue design problems, and Section
6 concludes the paper.

2 Evolutionary Bond Graph Synthesis for Engineering Design

2.1 The BG/GP Design Methodology

There is a strong need for a unified design tool, able to be applied across energy
domains – electrical, mechanical, hydraulic, etc. Most design tools or methodologies
require user interaction, so users must make many decisions during the design proc-
ess. This makes the design procedure more complex and often introduces the need
for trial-and-error iterations. Automation of this process – so the user sets up the
specifications and “pushes a button,” then receives candidate design(s) – is also im-
portant.
A design methodology that combines bond graphs and genetic programming can
serve as an automated and unified approach (Fig.1). The proposed BG/GP (Bond
Graph with Genetic Programming) design methodology requires only an embryo
model and fitness (performance) definition in its initial stage; the remaining proce-
dures are automatically executed by genetic programming search. However, due to
the complexity of the engineering design problem, the need for efficiency in the
design search is very high. It is this problem that is addressed here.

Fig. 1. Key features of the BG/GP design methodology

2.2 Bond Graphs

Topologically, bond graphs consist of elements and bonds. Relatively simple
systems include passive one-port elements C, I, and R, active one-port elements Se
and Sf, and two-port elements TF and GY (transformers and gyrators). These
elements can be attached to 0- (or 1-) junctions, which are multi-port elements, using
bonds. The middle of Figure 2 consists of Se, 1-junction, C, I, and R elements, and
that same bond graph represents, for example, either a mechanical mass, spring and
damper system(left), or an RLC electrical circuit. Se corresponds with force in me-
chanical systems, or voltage in electrical (right). The 1-junction implies a common
velocity for 1) the force source, 2) the end of the spring, 3) the end of the damper,
and 4) the mass in the mechanical system, or implies that the current in the RLC
loop is common. The R, I, and C represent the damper, inertia (of a mass), and

Automated
Design

Unified
Design

• Electric
• Mechanical
• Hydraulic
• Thermal

• Embryo
• Fitness Definition

BG/GP design

spring in the mechanical system, or the resistor, inductor, and capacitor in the elec-
trical circuit.

Fig. 2. The same bond graph model for two different domains

3. Basic Set and Redundancy
The initial BG/GP system used GP functions and terminals for bond graph
construction as follows. There are four types of functions: add functions that can be
applied only to a junction and which add a C, I, or R element; insert functions that
can be applied to a bond and which insert a 0-junction or 1-junction into the bond;
replace functions that can be applied to a node and which can change the type of
element and corresponding parameter values for C, I, or R elements; and arithmetic
functions that perform arithmetic operations and can be used to determine the
numerical values associated with components (Table 1). Details of function defini-
tions are illustrated in Seo et al. [5].

Table 1. Functions and terminals in Basic set

Name Description
 add_C
 add_I
 add_R
 insert_J0
 insert_J1
 replace_C
 replace_ I
 replace_ R
 +
 -
 endn
 endb
 endr
 erc

 Add a C element to a junction
 Add an I element to a junction
 Add an R element to a junction
 Insert a 0-junction in a bond
 Insert a 1-junction in a bond
 Replace current element with C element
 Replace current element with I element
 Replace current element with R element
 Sum two ERCs
 Subtract two ERCs
 End terminal for add element operation
 End terminal for insert junction operation
 End terminal for replace element operation
 Ephemeral random constant (ERC)

k

F(t)
m

b

x

Li

R

C

Se

C

I1

R

k

F(t)
m

b

xk

F(t)
m

b

x

Li

R

C

Se

C

I1

R

Many redundant or unnecessary junctions and elements were observed in experi-
ments with this basic set. Such unnecessary elements can be generated by the free
combinatorial connection of elements, and, while they can be removed without any
change in the physical meaning of the bond graph, their processing reduces the effi-
ciency of processing and of search. At the same time, such a “universal” set guaran-
tees that all possible topologies can be generated. However, many junctions “dangle”
without further extension and many arrangements of one-port components (C, I, R)
that can be condensed are generated. Figure 3 illustrates redundancies that are
marked with dotted circles in the example. First, the dangling 0- and 1-junctions in
the left-hand figure can be eliminated, and then three C, I, and R elements can be
joined together at one 1-junction. Furthermore, two R elements attached to neighbor-
ing 0-junctions can be merged to a single equivalent R. Avoiding these redundant
junctions and elements improves search efficiency significantly.

Fig. 3. Example of redundant 0- and 1-junctions and R elements (left) in gener-

ated bond graph model, and equivalent model after simplification (right). The dotted
lines represent the boundary of the embryo.

4. Construction of Dense Switched Modular Primitives

The redundancy problem is closely related with the performance and computational
effort in the evolutionary process. The search process will be hastened by eliminating
the redundancy, and it is hypothesized that this will happen without loss of
performance of the systems evolved. It is obvious that computational resources can
be saved by removal of the redundancy. To reduce the redundancy noted above and
to utilize the concept of modularity, a new type of GP function primitives has been
devised – the dense switched modular primitives (“DSMP”). Roughly speaking, a
dense representation (eliminating redundant components at junctions, guaranteeing
causally well-posed bond graphs, and avoiding adjacent junctions of the same type)
will be combined with a switched structure (allowing components that do not impact
causal assignment at a junction to be present or absent depending on a binary switch).

ins

add

ins add

add add

add add

R10

R

01101

C RI R

Se R0

RC

1

R
I

Se

Fig. 4. The dense modular primitive

The major features of the modular primitives are as follows. First, a single dense
function replaces all add, insert, and replace functions of the basic set. This concept
is explained in Figure 4, in which mixed ins and add operations can be merged into
one operation. Therefore, a GP tree that represents a certain bond graph topology can
be much smaller than attainable with the basic set. This dense function not only
incorporates multiple operations, but also reflects design knowledge of the bond
graph domain, such as causality (discussed later).

Second, any combination of C, I, and R components can be instantiated according to
the values of a set of on/off switch settings that are evolved by mutation. This modu-
larity also helps to relieve the redundancy of C, I, and R components, giving them
fewer places to proliferate that appear to be different, but are functionally equivalent.
This new set introduces further modularity through a controllable switching function
for selection of C, I, R combinations (Figure 5). The function set of the dense
switched modular primitives is shown in Table 2. It consists of two functions that
replace all ins, add, and replace functions in the basic set (Table 1).

Table 2. New functions in the switched modular primitive set

Name Description
insert_JPair_SWElements

add_J_ SWElements

Insert a 0-1 (or 1-0) junction pair in a bond and
 attach switched C, I, R elements to each junction

Add a counter-junction to a junction and
 attach switched C, I, R elements

Fig. 5.. Switched modular primitive

C

I

R

on/off
switches 0, 1

Third, the proper typing of 0-junctions and 1-junctions is determined by an implicit
genotype-phenotype mapping, considering the neighbor junction to which the primi-
tive is attached. This allows insertion of only “proper pairs” of junctions on bonds,
preventing generation of consecutive junctions of the same type that are replaceable
by a single one.

Fourth, we insure that we generate only feasible individuals, satisfying the causally
well-posed property, so automatic state equation formulation is simplified considera-
bly. One of the key advantages of BG/GP design is the efficiency of the evaluation.
The evaluation stage is composed of two steps: 1) causality analysis, and, when mer-
ited, 2) dynamic simulation. The first, causal analysis, allows rapid determination of
feasibility of candidate designs, thereby sharply reducing the time needed for analy-
sis of designs that are infeasible. In most cases, all bonds in the graph will have been
assigned a causal stroke (determining which variables are assigned values at that
point, rather than bringing to it pre-assigned values) using only integral causality of
C or I and extension of causal implication. Some models can have all causality as-
signed without violation – the causally satisfied case. Other models are assigned
causality, but with violations – the causally violated case. If one has to continue to
use an arbitrary causality of an R, it means that some algebraic relationships must be
solved if the equations are to be put into standard form. This case can be classified as
causally undetermined. Detail causality analysis is described in Karnopp et al. [12].

The dense switched modular primitives with implicit genotype-phenotype mapping
and the guaranteed feasibility of the resulting causally well-posed bond graphs can
speed up the evolution process significantly.

5. Experiments and Analysis

To evaluate and compare the proposed approach with the previous one, the eigen-
value assignment problem, for which the design objective is to find bond graph mod-
els with minimal distance errors from a target set of eigenvalues, is used. The prob-
lem of eigenvalue assignment has received a great deal of attention in control system
design. Design of systems to avoid instability and to provide specified response
characteristics as determined by their eigenvalues is often an important and practical
problem.

5.1 Problem Definition

In the example that follows, a set of target eigenvalues is given and a bond graph
model with those eigenvalues must be generated, in a classic “inverse” problem. The
following sets (consisting of various 6-, 10- and 16-eigenvalue target sets, respec-
tively) were used for the genetic programming runs:

• Eigenvalue sets used in experiments:

1) {-1±2j, -2±j, -3±0.5j}
2) {-10±j, -1±10j, -3±3j }
3) {-20±j, -1±20j, -7±7j}
4) {-1, -2, -3, -4, -5, -6}
5) {-20±j, -1±20j, -7±7j, -12±4j, -4±12j }
6) {-1, -2, -3, -4, -5, -6, -7, -8, -9, -10}
7) {-20±1j, -1±20j, -7±7j, -12±4j, -4±12j, -15±2j, -9±5j, -5±9j}

The fitness function is defined as follows: pair each target eigenvalue one:one with
the closest one in the solution; calculate the sum of distance errors between each
target eigenvalue and the solution’s corresponding eigenvalue, divide by the order,
and perform hyperbolic scaling as follows. Relative distance error (normed by the
distance of the target from the origin) is used.

)/2(
15.0)(

OrderError
EigenvalueFitness �

++=

We used a strongly-typed version (Luke, [13]) of lilgp (Zongker and Punch [14])
with HFC (Hierarchical Fair Competition, Hu, et al., [9]) GP to generate bond graph
models. These examples were run on a single Pentium IV 2.8GHz PC with 512MB
RAM. The GP parameters were as shown below.

Number of generations : 500
Population sizes : 100 in each of ten subpopulations for multiple population runs
Initial population: half_and_half

 Initial depth : 3-6
Max depth : 12 (with 800 max_nodes)
Selection : Tournament (size=7)
Crossover : 0.9
Mutation : 0.1

The tabular results of 6- and 10-eigenvalue runs are provided in Tables 3-4, with
statistics including mean relative distance error (averaged across each target eigen-
value) and mean tree size, for each set of 10 experiments.

Table 3 illustrates the comparison between the basic set and the DSMP (dense
switched modular primitive) set on typical complex conjugate and real six-
eigenvalue target sets. In the first set, {-1±2j, -2±j, -3±0.5j}, the average error of the
basic set (0.151) is larger than that of the DSMP set (0.043). The second and third
sets, for two different target eigenvalue sets that have larger norms from the origin,
show average distance errors of the basic set that are also larger. The numbers in
parentheses regarding distance error of the DSMP set represent their ratio to the
basic set distance errors.

In a fourth example, an all-real set of target eigenvalues {-1, -2, -3, -4, -5, -6} is
tested and shows that the ratio of errors between the approaches is more than ten
(0.144 for the basic set vs. 0.009 for the DSMP set, only 6% of the basic set error).
Also, mean tree sizes of all basic set runs are much larger than those of DSMP set.

Table 3. Results for 6 eigenvalues

6-Eigenvalue Placement Problem (10 runs)

 Basic set DSMP set

Eigenvalue set Dist error Tree Size Dist error Tree Size
{-1±2j, -2±j, -3±0.5j} 0.151 513.6 0.043(28%) 237.0

{-10±1j, -1±10j, -3±3j} 0.068 451.8 0.026(38%) 296.8
{-20±1j, -1±20j, -7±7j} 0.056 399.4 0.021(37%) 285.6
 {-1, -2, -3, -4, -5, -6} 0.144 445.7 0.009(6%) 307.1

Results for a 10-eigenvalue assignment problem are shown in Table 4. The results
for a complex conjugate 10-eigenvalue set {-20±1j, -1±20j, -7±7j, -12±4j, -4±12j} show
that the average error of the basic set (0.210) is three times larger than that of the
DSMP set (0.064). The results for a real 10-eigenvalue set also show the average
error of the basic set (0.267) is more than ten times larger than that of the DSMP set
(0.023). As with 6 eigenvalues, the mean tree sizes of the basic set are larger than
those of the DSMP set.

Table 4. Results for 10 eigenvalues

10-Eigenvalue Placement Problem (10 runs)

 Basic set DSMP set

Eigenvalue set Dist error Tree size Dist error Tree size
{ -20±1j, -1±20j, -7±7j, -12±4j, -4±12j} 0.210 564.9 0.064 (30%) 385.6

{-1, -2, -3, -4, -5, -6, -7, -8, -9, -10} 0.267 564.5 0.023 (9%) 425.8

Results for a 16-eigenvalue assignment problem – a much more difficult problem –
are shown in Table 5. The results for a complex conjugate 16-eigenvalue set {-20±1j,
-1±20j, -7±7j, -12±4j, -4±12j, -15±2j, -9±5j, -5±9j} show that the average error of the
basic set (0.279) is twice as large as that of the DSMP set (0.132). Mean size of the
GP tree, BG size, and computation time are also given in Table 5. BG size represents
the mean number of junctions and C, I, R elements in each individual. All mean tree
sizes, BG sizes, and computation times of the DSMP set are less, respectively, than
their basic set counterparts. These three indices are similar to those of the 6- and 10-
eigenvalue experiments.

Although the experiments run to date are not sufficient to allow making strong
statistical assertions, it appears that the search capability of the DSMP set is superior
to that of the basic set for bond graph design. The superiority of the DSMP set seems
very clear. Although the difference may be not seem large, it is very significant con-
sidering that the results of the basic set runs are already taking advantage of HFC
(Hierarchical Fair Competition, Hu, et al., [9]).

Table 5. Results for 16 eigenvalues

16-Eigenvalue Placement Problem (10 runs)
{-20±1j, -1±20j, -7±7j, -12±4j, -4±12j, -15±2j, -9±5j, -5±9j}

Basic set DSMP set

 Dist
error

 Mean
 Tree
Size

 BG Size
Compu.
Time

 (min)
Dist error

 Mean
 Tree
Size

 BG Size
Compu.
Time
(min)

0.279 663.1 62.2 72.4 0.132 (47%) 592.6 37 56.1

Fig. 6. Distance error for 16 eigenvalues

The distance errors (vs. generation) in 10 runs of the 16-eigenvalue problem are
shown in Figure 6. The distance errors of the DSMP set in Figure 6 have already
decreased rapidly within 50 generations, because only causally feasible (well-posed)
individuals appear in the population. Figure 7 gives the mean tree sizes for each
approach on the 16-eigenvalue problem. The DSMP set clearly obtains better per-
formance using smaller trees. This bodes well for the scalability of the approach.

Basic DSMP

Fig. 7. Mean tree size for 16 eigenvalues

7. Conclusion

This paper has introduced the dense switched modular primitive for bond graph/GP-
based automated design of multi-domain, lumped parameter dynamic systems. A
careful combination is made of a dense representation (eliminating redundant com-
ponents at junctions, guaranteeing causally well-posed bond graphs, and avoiding
adjacent junctions of the same type) and a switched structure (allowing components
that do not impact causal assignment at a junction to be present or absent depending
on a binary switch). The use of these primitives considerably increases the efficiency
of fitness assessment and the search performance in generation of bond graph models,
to solve engineering problems with less computational effort.

As a proof of concept for this approach, the eigenvalue assignment problem, which is
to synthesize bond graph models with minimum distance errors from pre-specified
target sets of eigenvalues, was used. Results showed better performance for various
eigenvalue sets when the new primitives were used. This tends to support the con-
jecture that a carefully tailored, problem-specific representation and operators that
generate only feasible solutions with smaller amounts of redundancy and fewer geno-
types that map to the same effective phenotype will improve the efficiency of GP
search. This, in turn, offers promise that much more complex multi-domain systems
with more detailed performance specifications can be designed efficiently. Further
study will aim at extension and refinement of the GP representations for the bond-
graph/genetic programming design methodology, and at demonstration of its appli-
cability to design of more complex systems.

Basic DSMP

Acknowledgment

The authors gratefully acknowledge the support of the National Science Foundation
through grant DMII 0084934.

References:

1. Youcef-Toumi, K.,: Modeling, Design, and Control Integration: A necessary Step
in Mechatronics. IEEE/ASME Trans. Mechatronics, vol. 1, no.1, (1996) pp. 29-38

2. Koza, J. R., Bennett, F. H., D. Andre, M. A. Keane, F. Dunlap, ”Automated Syn-
thesis of Analog Electrical Circuits by Means of Genetic Programming,” IEEE
Trans. Evolutionary Computation., 1(2), (1997) pp.109-128.

3. Koza, J. R., Bennett F. H., Andre D., Keane M. A., Genetic Programming III,
Darwinian Invention and Problem Solving, Morgan Kaufmann Publishers (1999)

4. Seo K., E. Goodman, and R. Rosenberg, "First Steps toward Automated Design of
Mechatronic Systems Using Bond Graphs and Genetic Programming," Proc. Ge-
netic and Evolutionary Computation Conf. - 2001, July 7-11, Morgan Kaufmann
Publ., San Francisco, p. 189, 2001.

5. Seo K., J. Hu, Z. Fan, E. D. Goodman, and R. C. Rosenberg, "Automated Design
Approaches for Multi-Domain Dynamic Systems Using Bond Graphs and Genetic
Programming," Int. Jour. of Computers, Systems and Signals, vol.3, no.1, pp.55-
70, 2002.

6. Fan Z., J. Hu, K. Seo, E. Goodman, R. Rosenberg, and B. Zhang, “Bond Graph
Representation and GP for Automated Analog Filter Design,” Genetic and Evolu-
tionary Computation Conference 2001 Late Breaking Papers, ISGEC Press, San
Francisco, pp. 81-86, 2001.

7. Fan Z., K. Seo, R. C. Rosenberg, J. Hu, E. D. Goodman, "Exploring Multiple
Design Topologies using Genetic Programming and Bond Graphs", Proc. Genetic
and Evolutionary Computation Conf., GECCO-2002, New York, 2002, pp. 1073-
1080.

8. Goodman E. D., K. Seo, R. C. Rosenberg, Z. Fan, J. Hu, "Automated Design of
Mechatronic Systems: Novel Search Methods and Modular Primitives to Enable
Real-World Applications," Proc. 2003 NSF Design, Service and Manufacturing
Grantees and Research Conference, January, 2003, Birmingham, Alabama.

9. Hu J., E. D. Goodman, K. Seo, M. Pei, "Adaptive Hierarchical Fair Competition
(AHFC) Model for Parallel Evolutionary Algorithms," Proc. Genetic and Evolu-
tionary Computation Conference, GECCO-2002, New York, July, 2002, pp. 772-
779.

10. Koza, J. R., Genetic Programming II: Automatic Discovery of Reusable Pro-
grams, The MIT Press, 1994

11. Soule, T., Heckendorn, R. B.: Function Sets in Genetic Programming. Proc.
Genetic and Evolutionary Computation Conf. - 2001, July 7-11, Morgan Kauf-
mann Publ., San Francisco, p. 190, 2001.

12. Karnopp, D. C., R. C. Rosenberg,, D. L. Margolis [2000] System Dynamics, A
Unified Approach, 3nd ed., John Wiley & Sons.

13. Luke S., 1997, Strongly-Typed, Multithreaded C Genetic Programming Kernel,

http://www.cs.umd.edu/users/ -seanl/gp/patched-gp/.
14. Zongker, D. and W. Punch, lil-gp 1.1 User’s Manual, Michigan State University,

1996

