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Abstract

Background: Protein sorting is the process that newly synthesized proteins are transported to
their target locations within or outside of the cell. This process is precisely regulated by protein
sorting signals in different forms. A major category of sorting signals are amino acid sub-sequences
usually located at the N-terminals or C-terminals of protein sequences. Genome-wide
experimental identification of protein sorting signals is extremely time-consuming and costly.
Effective computational algorithms for de novo discovery of protein sorting signals is needed to
improve the understanding of protein sorting mechanisms.

Methods: We formulated the protein sorting motif discovery problem as a classification problem
and proposed a Bayesian classifier based algorithm (BayesMotif) for de novo identification of a
common type of protein sorting motifs in which a highly conserved anchor is present along with a
less conserved motif regions. A false positive removal procedure is developed to iteratively remove
sequences that are unlikely to contain true motifs so that the algorithm can identify motifs from
impure input sequences.

Results: Experiments on both implanted motif datasets and real-world datasets showed that the
enhanced BayesMotif algorithm can identify anchored sorting motifs from pure or impure protein
sequence dataset. It also shows that the false positive removal procedure can help to identify true
motifs even when there is only 20% of the input sequences containing true motif instances.

Conclusion: We proposed BayesMotif, a novel Bayesian classification based algorithm for de
novo discovery of a special category of anchored protein sorting motifs from impure datasets.
Compared to conventional motif discovery algorithms such as MEME, our algorithm can find less-
conserved motifs with short highly conserved anchors. Our algorithm also has the advantage of
easy incorporation of additional meta-sequence features such as hydrophobicity or charge of the
motifs which may help to overcome the limitations of PWM (position weight matrix) motif model.
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Background
A typical cell has a size of only 10 μm while it contains
about a billion proteins. How these proteins are
transported from their synthesis sites to their target
locations within or outside of the cell is still not well
understood. Experiments showed that translocation of
nascent proteins are usually guided by “postal code” like
targeting signals encoded within the amino acid
sequences of proteins. Genome-wide identification and
decoding of these molecular “zip codes” are fundamen-
tal to the understanding of the cell. Experimentally
identifying protein targeting signals is labor and cost
intensive, usually using a tedious cut-and-test approach
[1,2]. Recently, genome scale protein localization data
has become available [3] for a couple of species and gene
ontology also provides a large amount of localization
information of proteins [4]. These datasets provide a
great opportunity for developing bioinformatic algo-
rithms to identify protein sorting signals to guide
biological experiments.

However, computational prediction of targeting signals
is still a big challenge due to their low conservation at
the amino acid level. Many motif discovery algorithms
[5] have been proposed in the past decades but mostly
have been only tested or applicable to DNA motif
discovery with alphabet of four nucleotides rather than
20 amino acids. These de novo motif discovery
algorithms such as MEME [6] and TEIRESAS [7] are not
very effective to mine protein sorting signals due to their
low conservation at the amino acid level in terms of
variation of their composition and motif widths. Many
algorithms such as targetP [8] and Bacello [9] have been
developed recently for predicting subcellular localization
from protein sequences. However these algorithms
cannot identify sorting signals. The most well-known
protein sorting motif prediction algorithm SignalP [10]
is widely used to predict the presence and location of
signal peptide cleavage sites in amino acid sequences.
But it is built on the well-known secretory sorting motif
model and lacks the capability of de novo motif
discovery algorithms to identify novel sorting motif
models. There are several web servers for funcational site
annotation for protein sequences such as the Eukaryotic
Linear Motif (ELM) server [11]. However most of these
servers are limited to regular expression based pattern
scanning with known motif models. There is no good
tool for de novo identification of sorting motifs from a
given set of protein sequences which are sorted to the
same subcellular location.

In this paper, we are interested in algorithms for de novo
discovery of a common type of protein sorting motifs
that are composed of a highly conserved anchor (2 to 5
amino acids long) and a less conserved amino acid

region with specific physichemical properties. Most of
these sorting signals are located within the 200 amino
acids of the N-terminal or C-terminal of the protein
sequence. For example, Chaddock et al. [1] examined
thylakoid transfer signals from all of the known lumenal
proteins and found that all of the substrates for the ApH-
dependent translocase possess a twin-arginine motif
(RR) immediately before the hydrophobic (H) amino
acid region. Brink [12] showed that the RR motif alone is
not sufficient for the delta pH transportation and
another signal inside the hydrophobic region is required.
Sheikh and Isacke reported a di-hydrophobic motif
Leu330-Val334 motif which is located within a cyto-
ploasmic domain [13].

Recently, we proposed a Bayesian classifier based
algorithm [14] for de novo discovery of protein sorting
motifs with anchors. The key idea is to scan the
neighbourhood of over-represented anchors on the
protein sequences to identify those motifs that can
differentiate positive sequences which are expected to
contain sorting motifs to negative background sequences
which are supposed to contain no motifs. This algorithm
was shown to be able to retrieve both implanted motifs
from benchmark data and real sorting motifs from real-
world datasets. However, it is observed that this
algorithm failed to find sorting motifs if the percentage
of sequences with true motif instances in the positive
training dataset drops to a certain low-level (e.g. <50%),
when the classification accuracy of the underlying
Bayesian classifier cannot differentiate the positive
dataset from the negative dataset and thus cannot
identify correct motifs. As shown in Figure 1, when the
true positive datasets are mixed with false positive
dataset, the conservation level of the sorting signals
become weak. It is thus necessary to detect false positive
sequences since it is difficult to prepare pure positive
sequence sets as there are usually multiple pathways
targeting to a specific subcellular location.

In this paper, we introduced a false positive removal
mechanism to handle the false positive sequence issue.
Our enhanced BayesMotif algorithm is shown to be able
to find true sorting motifs even when the percentage of
the true positive sequences is less than 10% on our
benchmark datasets or less than 20 on real-world
datasets. This function is similar to traditional motif
discovery algorithm such as MEME which can allow
sequences without motifs in the input dataset.

Methods
Overview of the BayesMotif algorithm
We formulate the protein sorting motif discovery
problem as a classification problem: Given a set of
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protein sequences P = {s1, s2, ... sN} that are localized to
the same location L, a background set of N sequences
composed of proteins that are not localized to location L
are selected. Identification of sorting motifs can thus be
mapped to finding a motif model which can differentiate
the motif instances from the positive sequence set from
background sequences. The higher the classification
accuracy of a motif model to differentiate the positive
set from the negative set, the better the motif model.

We are interested in a special category of protein sorting
motifs that are composed of a highly conserved, but
short anchor and a comparably low-conserved motif
region around the anchor. Usually these anchors have
fewer than 4 amino acids, e.g.: in RR translocation
pathway, the signal peptides all have a twin-arginine pair
located between N and H region. And for LDL receptors,
an NPXY motif frequently shows up at COOH terminal
of the sequence. Because most of the sorting motifs are
not well conserved at the amino acid level, it is thus
difficult to find out these motifs by sequence alignment.
Our approach is to firstly search the most frequent
anchors in the positive dataset, and then use Naïve
Bayesian classifier or other classifiers such as Support
Vector Machines (SVM) to test if an anchor has a motif
region around it that can differentiate them from
background sequences (negative dataset). Our method
is able to determine motif boundary using a sliding-
window test to check classification accuracy of the
subsequences in the windows.

The BayesMotif discovery algorithm is composed of
three major steps (Figure 2):

1) Preprocessing protein sequences by extracting K
N-terminals and C-terminals amino acids and then
applying sequence redundancy reduction using CD-HIT

2) Finding frequent anchors using regular expression
enumeration;

3) Apply false positive removal to purify the positive
training sequences

4) Constructing Bayesian classifiers to detect conserved
motif regions around the anchors;

5) Based on the motif boundary given by step 3,
calculate discrimination score for each motif using
cross-validation test on Bayesian classifiers.

Preprocessing of datasets
In the sorting motif discovery problem, a given set of
proteins assumed to be transported to a specific location
are given. These proteins can be either obtained from
gene ontology annotation, genome scale localization
experiments, or localization databases [3]. We also need
to extract a set of background sequences from proteins
which are not targeting that specific location. For each
such sequence, we extract 200 amino acids from the

Figure 1
Mixture of true signal motifs with false motifs severely reduced the conservation level of the motif regions.
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N-terminal and C-terminal and apply the motif dis-
covery algorithm on them.

An important preprocessing step is to remove redun-
dancy in the training sequences. The rationale is that
redundant training samples will cause classifiers to be
biased to over-represented classes composed of redun-
dant samples. Redundant training data will also fail the
cross-validation testing lead to misleading prediction
accuracy. To reduce the redundancy in the dataset, we
use CD-HIT [15], a sequence clustering algorithm. It
works by clustering the sequences by predefined or user
defined weight matrices and a similarity threshold, and
then removing all identical sequences in the same cluster
but the pivot. It thus guarantees each pair of sequences
in those left pivots will not be similar to each other. To
make sure all sequences are not identical, the threshold

for redundancy reduction is set to 80% in our experi-
ments, which means the percentage of identical posi-
tions for two aligned sequences is less than 80%.

Frequent anchor discovery
Frequent anchors are identified using exhaustive regular
expression searching on the positive dataset. The search
space is defined on a gap-tolerant regular expression
anchor model since many protein sorting motifs
(e.g. NPXY and YXXф motif in LDL receptors) are not
completely conserved amino acid sequences, but a
combination of two motifs with a variable-length gap. To
find out these more flexible anchors, we use a regular
expression model with the form: <Amino Acid>{n}<X>
{min, max}<Amino Acid>{m} to represent the “language”
of possible anchors. The anchor model is composed of two
informative regions <Amino Acid>{n} and <Amino Acid>
{m} with length n and m and a gap between these two
regions <X>{min, max}. Here, min and max define the
minimum and maximum gap length. We also allow the
two motif regions to have defined length ranges and allow
them to have different amino acid alphabets. Using this
regular expression model, we can then enumerate all
possible anchors and count their occurrence frequency in
the positive dataset in both N and C terminal regions. We
then check if there are conserved regions around these
anchors and how these regions can differentiates the
positive dataset from negative one.

False positive removal
For each frequent anchor, we use the following iterative
procedure to remove the sequences with false (non-
motif) anchors from positive training samples (Figure 3)

1. Let a sliding window sit at anchor position for each
sequence, extract the amino acids in the window as
positive training samples for the Bayes classifier. For
sequences without anchor, randomly place the
window and extract subsequence within the window
as negative training samples.
2. Train a naïve Bayes classifier for the current sliding
window
3. Score each sequence by calculating the probability-
the window score, of a subsequence in ccurrent sliding
window drawn from the trained Bayesian model
4. Move the sliding window one amino acid to the
left/right and go to step (2) until for all sequences,
consecutive 3 window scores are all less than 0.85
5. For each sequence, calculate the average score for
all windows, if it’s less than 0.85, remove the
sequence from the positive dataset
6. If no sequence is deleted in step (5) or the loop has
reached a specified number, quit, otherwise go to
step (1)

Figure 2
Structure of BayesMotif algorithm for anchored
sorting motif discovery.
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Motif boundary determination
After generating the ranked anchor list and purifying
training sequences, naïve Bayesian classifiers are trained
to identify the most likely boundaries of the conserved
regions around the anchors. For each anchor occurrence
at N or C terminal in the positive dataset, BayesMotif
uses a window of length W to slide from the anchor to
the left, each time using the amino acids in the window
as positive sequences for classifier training. For negative
datasets, a randomly picked window within N or C
terminal is used for extracting background training
samples. After training a naïve Bayesian classifier, five-
cross-validation is used to obtain the prediction accuracy
of the classifier for a given sliding window. If the smaller
value of precision and recall rates is lower than a given
threshold (e.g. 0.5), it indicates that the sliding window
has moved out of the true motif region and the left and
right boundaries can thus be determined. It is obvious
that the farther the sliding window leaves the motif, the
more irrelevant regions will be included in the window,
so the the score becomes lower. Similarly, the right
boundary can be determined.

Motif Score: measuring motif discrimination capability
After the left and right boundaries for an anchor are
determined, we extracted the sub-sequences between the
boundaries for all positive sequences and trained a naïve

Bayesian classifier to obtain the overall classification
score, which reflects the capability of the motif to
differentiate the positive dataset from the negative
dataset. This motif score is defined as min (precision,
recall) to avoid the pitfall of unbalanced datasets.

Motif information content: measuring motif conservation
We use the information content measurement [16] to
measure the conservation level of discovered sorting
motifs,: for a motif model of fixed length, each position
in the model can be regarded as a random variable, the
entropy of this random variable can be calculated
according to Shannon theorem. Let S be the sequence
set of a motif, the information content of an amino
acid sorting motif can be calculated as:

I S L p i p ij j
i Aj

L
( ) log ( ) log ( )= +

∈=
∑∑2 2

1
20i , where pj(i) is the

frequency of amino acid iappearing in jth position of the
sequence set; A is the amino acid alphabet; L is the motif
length.

Results and discussion
Experimental setup
To evaluate our algorithm, we use both synthetic
datasets and real datasets from Swiss-Prot release 48.
Synthetic datasets are generated by inserting artificial
motifs randomly in a set of protein sequences. Firstly, we
chose the set of animal cytoplasmic proteins from
Bacello dataset [9,17]) and applied the 80% redundancy
reduction to get reduced Bacello dataset with 439
sequences. Next, we divided this sequence set into 219
positive and 220 negative sequences, used for implant-
ing artificial motifs and as background sequences
respectively. An artificial motif (in our experiments
is——AA——) is inserted into a random position in
the first 100 amino acids at the N-terminal of each
sequence in the positive set. The random motifs are
composed of a 2-amino acid anchor and a neighboring
segment composed of amino acids drawn from an
amino acid subset such as hydrophobic proteins {V, I,
L, M, F, W, C}. The frequency of amino acids in the set is
defined by a probabilistic distribution sampled from
background dataset. This procedure allows us to simu-
late hydrophobic, charged or other physichemical
regions typically occurring with the anchors. We use
cytoplasmic proteins for both positive and negative
datasets in order to guarantee they share identical
background distribution of amino acids. Three sets of
motifs are implanted into three positive datasets
(Figure 4).

We used two real protein datasets containing experi-
mentially verified motifs: the RR translocation signal
peptide and the LDL receptors. We used the 439 animal

Figure 3
False positive removal procedure. This example shows
BayesMotif uses sliding windows to remove false motifs from
the dataset. It works by averaging the score before
consecutive 3 window score which has at least one less than
0.85 (marked as red) calculate the score for each sequence
the sequences have score less than 0.85 will be removed
from the training set.
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cytoplasmic proteins of reduced Bacello dataset as
negative protein sets. For real datasets, Tat-pathway
translocation proteins and LDL receptors are extracted
from Swiss Prot as shown in Table 1.

Results on synthetic datasets
We tested BayesMotif algorithm with three artificial
motifs, each composed of the AA anchor and a less-
conserved motif region of hydrophobic, hydrophobic
+charged, and random amino acids. For each implanted
motif, we randomly generate 10 sets of datasets. Each
dataset has 219 positive and 220 negative samples. We
compared the identified motifs with implanted ones in
terms of their lengths, motif information content, and
motif classification performance scores.

Table 2 shows that the basic BayesMotif without false
positive removal has the capability to identify bound-
aries of the implanted anchored low-conserved artificial

Figure 4
Implanted motifs. a) Simulated hydrophobic motifs anchored by AA; b) Simulated hydrophobic/positively charged motifs
anchored by AA; c) No conserved motifs around anchors.

Table 1: Synthetic motif datasets and real datasets

Dataset Number
of positive
samples

Number of
negative
samples

Anchors

Synthetic 219 220 ——AA—— (Artificial)
Translocation 86 439 ——RR——
LDL receptor 464 439 ——NPXY——
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motifs. For the two artificial motifs with hydrophobic
and hydrophobic+charged regions, the algorithm identi-
fied the implanted regions with motif scores of 1.0 and
0.98, which means that these two regions can differ-
entiate positive sequences from negative almost perfectly
with a minimum precision or recall rate of 1.0 and 0.98.
We found that the information contents of the these two
predicted motifs are higher than that of the random
implanted motifs. It was also observed that the detected
motif lengths are larger than that of the implanted motifs
by 7 amino acids or 3-4 amino acids on both sides. This
boundary errors can be reduced by tuning the classifica-
tion accuracy threshold for boundary determination.

To test the effectiveness of the proposed false positive
removal procedure, we generated a series of datasets with
implanted motifs enriched with hyrophobic and charged
regions around a 2-amino acid anchor. The positive set
are implanted with a given percentage (from 10% to
100%) of artificial motifs. For each percentage, 10
datasets are generated and tested. The results are shown
in Table 3 for basic BayesMotif algorithm and Table 4 for
BayesMotif algorithm with false positive removal. From
Table 3, it is observed that the basic algorithm can find
implanted motifs with a motif score of 0.98 when all
positive sequences contain the implanted motifs. When
the percentage of true positive sequences decreases, the
quality of the best predicted motif keeps decreasing with
a motif score of only 0.55 for 10% positive rate, which
has no overlap with the implanted motifs. The average

motif information content decreases from 28 to 15. 9.
Table 4 shows that BayesMotif with false positive
removal can effectively address the impure dataset
issue. The average motif information for the predicted
motifs is pretty stable ranging from 27.9 to 23.9 when
the percentage of true positive rate decreases from 100%
to 20%. The motif classification scores are also much
higher than that discovered by the basic BayesMotif. The
enhanced BayesMotif identified motifs with scores
greater than 0.90 when the true positive rate is larger
than 40% compared to 0.59 to 0.80 of BayesMotif
without false positive removal for positive rate from
40% to 80%. This means that the false positive removal
procedure can help BayesMotif to identiy more con-
served motifs with higher classification accuracy.

Results on real datasets by BayesMotif
De-novo discovery of RR translocation signal peptide RR-x-FLK
TAT system is known as Sec-independent protein export
pathway in bacteria. The most remarkable feature in TAT
translocation proteins is the presence of the double
arginines located between N and H region of the signal
peptide. We downloaded 86 Tat-translocation proteins
from SwissProt database and applied our BayesMotif
algorithm with a two-amino acid XX anchor model. A set
of 439 cytoplasmic proteins are used as the negative
dataset. After homogeneity reduction with CD-Hit, our
BayesMotif algorithm found the following motif with 17
amino acids (Figure 5a). The motif score is 87. 9, which

Table 3: Benchmark results of BayesMotif without false positive removal. Data are artificially generated by simulating hydrophobic and
charged regions around a fixed 2 amino acids long anchor

True motif Ratio 10% 20% 40% 60% 80% 100%

Motif Length 26 ± 3.24 26 ± 3.20 26 ± 4.1 29 ± 1.13 29 ± 1.8 27 ± 3.0
Motif Score 0.55 ± 0.04 0.55 ± 0.02 0.59 ± 0.01 0.67 ± 0.02 0.80 ± 0.01 0.98 ± 0.006
Motif Information 15.9 ± 0.87 15.3 ± 0.94 15.5 ± 1.3 17.7 ± 0.43 21.5 ± 0.62 28.0 ± 0.93

Table 4: Benchmark results of BayesMotif with false positive removal. Data are artificially generated by simulating hydrophobic and
charged regions around a fixed 2 amino acids long anchor

True motif Ratio 10% 20% 40% 60% 80% 100%

Motif Length 6 ± 0.83 17 ± 3.6 23 ± 1.2 23 ± 0.8 24 ± 0.7 27 ± 3.0
Motif Score 0.56 ± 0.11 0.79 ± 0.04 0.90 ± 0.01 0.95 ± 0.01 0.97 ± 0.007 0.98 ± 0.005
Motif Information 16.0 ± 1.1 23.9 ± 3.5 26.2 ± 1.2 26.3 ± 0.78 26.8 ± 0.39 27.9 ± 0.95

Table 2: Performance of BayesMotif for identifying implanted motifs

Motif Implanted Motif length Detected motif length Information content Motif Score

Hydrophobic 20 27.6 ± 2.4 33.1 ± 0.72 1.00 ± 0.0
Hydrophobic+Charged 20 27. 5 ± 3.0 27.9 ± 0 93 0. 98 ± 0.006
Random 20 25.4 ± 3.6 25.4 ± 0.85 0.79 ± 0.03
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Figure 5
Protein sorting motifs identified by the BayesMotif algorithm. a) Motif logo of TAT-Translocation signal peptide
RRxFLK; b) motif logo of DGxD motif; c) motif log of GGPL and GDSG motif; d) motif log of putative Motif PGVY.
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means that the classifier can achieve classification
accuracy of at least 0.879 in precision or recall rates.
Although a functional RR-consensus motif RR-X-FLK is
indispensable for targeting the Tat translocase, addi-
tional sequence features of RR-signal sequences seem to
be required to prevent mistargeting to the Sec export
pathway [18].

De-novo discovery of RR signal peptide RR-x-FLK with
impure dataset
We also tested if BayesMotif with false positive removal
algorithm can help to identify motifs from impure
datasets. We picked 100 animal cytoplasmic proteins as
negative dataset, and then selected 10, 20, ...80 Tat-
translocation proteins matched with 90, 80, ...20 animal
cytoplastic proteins as false positive proteins. Together
we generated six datasets each comprising different
percentages of true positive sequences. Then we run
BayesMotif with or without false positive removal
procedure on the datasets. We repeated 10 times of
above procedure and the results are summarized in
Table 5.

It is shown that BayesMotif without false positive
removal cannot identify the known motifs when the
positive rate is smaller than 40% while with false
positive removal, BayesMotif can identify motifs if only
the positive rate is equal to or larger than 20%. For the
same positive rate equal or larger than 50%, the
predicted motifs by BayesMotif with false positive
removal have much higher information contents and
also much higher motif scores–the classification perfor-
mance to differentiate positive sequences from negative
ones. For example, with positive rate of 50%, the new
BayesMotif identified motifs with an average motif score
of 0.83 compared to 0.55 for basic BayesMotif algo-
rithm. The average information content is 38 compared
to 19.

De-novo discovery of NPxY motif at C terminal of Megalin LDL
receptor
Megalin is the main endocytic receptor of the proximal
tubule and is responsible for reabsorption of many
filtered proteins. It is found that information that directs

apical sorting is present in the cytoplasmic tail (CT) of
megalin, which contains three NPXY motifs, YXXØ, SH3,
and dileucine motifs, and a PDZ-binding motif at its
COOH terminus. Using 464 megalin sequences down-
loaded from Swiss-prot database as positive dataset and
439 animal cytoplasmic proteins as negative dataset,
BayesMotif algorithm found the NPxY motif at the
C-terminal along with a conserved amino acid region
with undiscovered biological functionality (Figure 5b).

Besides the NPxY motif, we also found two other
biologically verified motifs: DGxD motif and GGPL
motif (Figure 5c, Figure 5d). DGxG motif is found in the
alignment of five ligand-binding repeats in rat LRP3
protein. GGPL motif not only appears in LDL receptors
but also in other protein families as GRF1-4 and
OsGRF1, which presents as a C-terminal motif essen-
tially related to transactivition activity [7].

BayesMotif also identified two additional motifs with
significant high scores: GDSG and PGVY motifs. GDSG
motif (Figure 5a) has a long motif region overlapped
with GGPL motif, implying that it could work as a
functional part of GGPL motif. PGVY(Figure 5d) is a new
independent motif which has a well conserved motif
region. The biological interpretation of this motif is still
unknown, but significance from both frequency count-
ing, information content, and discrimination scoring
suggests that this motif is unlikely to be coming from
random permutation of amino acids but instead has
unknown biological significance.

Comparison with other motif algorithms
We compared BayesMotif with two other popular
protein motif discovery algorithms: MEME [6] and
Teiresias [19]. MEME uses Position Weighted Matrix as
motif models and searches overrepresented patterns on a
given dataset by maximizing the motif likelihood using
an EM algorithm. Teiresias uses a regular expression
based frequent pattern mining algorithm for motif
discovery.

We tested these two algorithms on the simulated
datasets. It was found that Teiresias cannot retrieve any
of the implanted motifs due to its inability to identify

Table 5: Results of BayesMotif with or without false positive removal on real datasets

True motif Ratio 10% 20% 40% 50% 80% 100%

Without False Positive Removal Found by Algorithm No No No Yes Yes Yes
Motif Score 0.55 ± 0.03 0.77 ± 0.01 0.91 ± 0.02
Motif Information 19.0 ± 3.24 31.6 ± 0.5 39.5 ± 0.20

With False Positive Removal Found by Algorithm No Yes Yes Yes Yes Yes
Motif Score 0.63 ± 0.11 0.82 ± 0.04 0.83 ± 0.04 0.90 ± 0.02 0.92 ± 0.01
Motif Information 21.5 ± 1.3 36.4 ± 2.4 38.0 ± 2.4 41.2 ± 1.1 42.0 ± 0.49
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long motifs. MEME can find the implanted motifs but
reported them as two separate motifs. We then tested the
two algorithms on the real datasets and found that
MEME and Teiresias can identify the following motifs
RR-FLK, GGPL, and PGVY. But MEME failed to find the
NPxY, GDSG, and DGxD motifs while Teiresias failed to
find NPxP and DGxD motifs. However, both MEME and
Teiresia tend to find short motifs while most protein
sorting signals are composed of a short anchor and a
region with less-conservation, which poses difficulty for
such conventional algorithms. Another advantage of
BayesMotif is that can work on very large datasets while
current algorithms may not handle. Compared to
conventional motif discovery algorithms, the classifica-
tion based formulation of BayesMotif for motif discovery
makes it easy to incorporate additional meta-sequence
features for motif discovery such as hydrophobic or
secondary structures and etc.

Conclusion
We proposed BayesMotif, a Bayesian classifier based de
novo protein motif discovery algorithm for identifica-
tion of anchored protein sorting motifs. Experiments on
both simulated datasets and real datasets demonstrated
that the proposed algorithm is able to retrieve implanted
anchored sorting motifs and identify experimentally
verified sorting motifs. The proposed false positive
removal procedure makes it possible to identify
anchored sorting motifs even when the input data is
not pure. It can help identiy more conserved motifs with
higher classification performance. The web server for this
program will be made available on the website of
Machine Learning and Evolution Laboratory at Univer-
sity of South Carolina.
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