
International Journal of Computer Information Systems and Industrial Management Applications

ISSN 2150-7988 Volume 3 (2011) pp. 248-255

© MIR Labs, www.mirlabs.net/ijcisim/index.html

Dynamic Publishers, Inc., USA

Improving Protein Docking Using Sustainable

Genetic Algorithms

Emrah Atilgan
1
, Jianjun Hu

2

1 Department of Computer Science and Engineering, University of South Carolina,

Columbia, SC, 29169, USA

atilgan@email.sc.edu

2 Department of Computer Science and Engineering, University of South Carolina,

Columbia, SC, 29169, USA

Jianjunh@cse.sc.edu

Keywords: autodock, protein docking, genetic algorithm, HFC,

sustainable evolutionary algorithms

I. Introduction

Computational docking of ligands to protein structures is a

key step in identifying potential drug candidates. The docking

problem has been formulated into a ligand-protein binding

energy optimization problem. Dozens of programs have been

developed for molecular docking [1-9]. In any docking

scheme, two requirements must be balanced: to get better

precision with lower binding energy and to minimize the

computational time. Recently, there is significant progress in

computational protein docking [10]. The first type of new

docking programs utilizes Fast Fourier Transformation (FFT)

for efficient sampling of the conformation spaces [1;11-14].

The second type of programs exploits biochemical knowledge

of the docking process to improve the docking performance.

These include docking algorithms that use shape or

physicochemical complementarily information [4;15;16] and

predicted binding site information [17]. Another category of

new docking algorithms are focused on improving the

energy/potential function used for docking [18-22]. Finally,

since the first successful application of genetic algorithms for

protein docking, there has been significant progress in the

global optimization field. New optimization algorithms such

as spider-search [23], hybrid GA [24;25], differential

evolution [26] have all been successfully applied to a variety

of engineering problems. This paper followed this trend to

apply new sustainable genetic algorithms to the protein

docking problem.

One of the most widely used automated docking programs

is AutoDock, which predicts how small molecules bind to a

receptor of known 3D structure [27]. AutoDock uses three

different conformation search algorithms: simulated

annealing (SA), traditional genetic algorithm (GA), and

Lamarckian genetic algorithm (LGA). However, all three

search algorithms are subject to the local optima issue. And

due to the stochastic nature of the search algorithm, users

usually need to run multiple (such as 10-15) independent runs

to get reasonable results. This practice thus significantly

increases the computational time needed (10 times or more)

for protein docking, which becomes a major issue for

large-scale virtual screening experiments with millions of

ligands to be docked to a given protein. To overcome these

limitations of AutoDock and get better docking performance,

we proposed to apply sustainable evolutionary algorithms

[28;29], a new type of genetic algorithms, to protein docking.

We integrated the ALPS sustainable evolutionary algorithm

[28;30;31] into AutoDock and compared its performance with

those of current algorithms using the lowest binding energy

and computational time criteria. Our results showed that the

main advantage of sustainable evolutionary algorithms is their

capability to address the premature convergence problem

typical in traditional genetic algorithms [32;33]: an

evolutionary algorithm cannot improve the quality of the best

identified solution after some number of evaluations or

generations. Our experiments showed that sustainable

evolutionary algorithms can help to address the premature

convergence problem of traditional GAs and have achieved

significantly better binding conformation using less running

time. As the number of generations increases, sustainable

Abstract: AutoDock is a widely used automated protein

docking program in virtual screening of structure-based drug
design. Several search algorithms such as simulated annealing,
traditional genetic algorithm (GA), and Lamarckian genetic
algorithm (LGA) are implemented in AutoDock to find optimal
conformation with the lowest binding energy. However, the
docking performance of these algorithms is still limited by the
local optima issue of simulated annealing and traditional
evolutionary algorithms (EA). Due to the stochastic nature of
these search algorithms, users usually need to run multiple times
to get reasonable docking results, which is time-consuming. We
have developed a new docking program AutoDockX by applying
a sustainable GA named ALPS to the protein docking problem.
We tested the docking performance over three different proteins
(pr, cox and hsp90) with more than 20 candidate ligands for each
protein. Our experiments showed that the sustainable GA based
AutodockX achieved significantly better docking performance
in terms of running time and robustness than all the existing
search algorithms implemented in the latest version of
AutoDock. AutodockX thus has unique advantages in large-scale
virtual screening.

evolutionary algorithms are able to find better results while

traditional genetic algorithms get stuck in local optima.

According to a recent survey of protein docking algorithms

[1], there are more than 50 protein-ligand docking softwares,

most of which still used traditional GAs for conformation

search optimization. Our experiments implied that other

modern protein-ligand docking programs can also be

potentially improved by the sustainable genetic algorithms.

II. Background

A. Protein-Ligand Docking

Protein docking is a method that predicts the bound

conformation of one protein to another protein or a ligand. A

docking algorithm aims to find the best orientation of these

two molecules such that they have the minimum binding

energy as scored by a predefined scoring function. There are

two key components in a docking algorithm: a good scoring

function with high selectivity and efficiency that distinguishes

between correctly or incorrectly docked structures and a

search algorithm that can efficiently do global minimization

of the scoring function [34-36].

Protein-ligand docking algorithms can be classified into

two methods. In early docking algorithms, both protein and

ligand are considered as rigid bodies and they have only six

degrees of translational and rotational freedom to search for

best orientations. Since the number of degrees of freedom is

large if the proteins are modeled as flexible, it is impractical to

perform exhaustive conformational search. Most of current

docking algorithms consider the flexibility of ligands to find

the best binding position between small molecules (ligands)

such as substrates or drug candidates and structurally known

target proteins (see Figure 1). Interaction between proteins

produces no change in conformation. Flexibility of ligands

comes from the rotatable bonds (also called torsions) of a

ligand (see Figure 2). The number of optimization variables is

composed of six degrees of freedom for rotation and

translation plus the number of torsion angels. The ligand finds

its position into the protein’s active site after a certain number

of moves (searches) in its conformational space. Flexibility

modeling allows the ligand to change its structure with the

torsions angles. Each move costs energy, and after moves are

completed, total energy is computed by the system. Our goal

is to minimize this binding energy to find the best

conformation.

Figure 1. An example of protein-ligand docking

B. Search Algorithms in AutoDock

AutoDock (Automated Docking Software for Predicting

Optimal Protein-Ligand Interaction) is a suite of automated

docking tools. AutoDock is widely used as a docking engine

Figure 2. A ligand with rotatable bonds (torsions).

in virtual screening [37-39] for predicting how small

molecules bind to a receptor of known 3D structure. In

AutoDock [40], a ligand and a protein are defined by a set of

values describing the translation, orientation and

conformation of the ligand with respect to the protein. The

target protein is represented as a grid. This three dimensional

grid surrounds all atoms of the protein. Each atom in a protein

has its own points in the space. The representation of a ligand

consists of 3 coordinates of the location of the ligand ,

followed by the 4 quaternion parameters , which

define the orientation of the small molecule, and followed by

the number of torsions , depending on how many

rotatable bonds the ligand has [8] (see Figure 3). These are the

state variables of the ligand, and each state variable

corresponds to a gene. The ligand’s state corresponds to the

genotype, and the atomic coordinates of the state corresponds

to the phenotype [27].

Figure 3. Representation of a ligand as a vector

Autodock implements three conformation search algorithms

for docking including simulated annealing (SA), traditional

genetic algorithm (GA), and Lamarckian genetic algorithm

(LGA).

1) Simulated Annealing

In early versions of AutoDock, Simulated Annealing (SA)

was used as the major optimization method [41-43].

Simulated annealing is a generic probabilistic method for

global optimization. The algorithm starts from a random or

specific state with an initial temperature parameter (T0) and a

specific cooling scheme [41]. At each step of the simulation,

the ligand explores the conformation space by adding a small

random displacement in each degree of freedom and

evaluating the binding energy for the new conformation,

which is composed of the intermolecular energy between the

protein and the ligand and the intra-molecular energy of the

ligand. It repeatedly searches the neighborhood and selects a

neighbor as a new state. New energy is compared to the

energy of the previous step. If the new energy is lower, the

step is accepted. Otherwise, if the new energy is higher, the

decision is made probabilistically based on a temperature (T)

parameter. Because simulated annealing is a kind of a Monte

Carlo method, different runs may produce different solutions

 249 Atilgan and Hu

[40]. However, it does not guarantee to find the global

minimum conformation [41].

2) Genetic Algorithm

A genetic algorithm is a population-based search technique

used to find appropriate solutions to optimization and search

problems. In Autodock, a random population of individuals is

generated by initializing each individual as a vector composed

of a set of uniformly distributed random values between the

minimum and maximum x, y, and z values [27]. Also, the

genes representing torsion angles are given random values

between -180 and +180. The fitness value of an individual is

the binding energy between ligand and the target protein [27].

Two-point crossover is used. Mutation operator is performed

by adding a random real number that has a Cauchy

distribution to the variable, where α and β are parameters that

affect the mean and spread of the distribution. Elitism operator

is used to keep top individuals in the population.

3) Hybrid Global-Local Search Algorithm: Lamarckian

Genetic Algorithm (LGA)

Lamarckian genetic algorithm is the best search algorithm

used in AutoDock so far. LGA in Autodock uses Solis-Wets

local search after each generation of genetic algorithm search

for energy minimization. The result of the local search is used

to update the fitness value and its representation associated

with an individual. Even though Solis and Wets local search

operator searches through the genotypic space, it can still be

qualified as Lamarckian, because any environmental

adaptations of the ligand acquired during the local search will

be inherited by its offspring [27].

C. Limitations of Current Search Algorithms in AutoDock

The major limitation of the search algorithms in current

version of Autodock is that they can get trapped in local

optima when the number of torsion angles increases. For

example, SA performs well with the ligands that have roughly

8 rotatable bonds or less. But the algorithm becomes

ineffective with ligands that have more than 8 rotatable bonds

[27].

A common issue of genetic algorithms (for both traditional

GAs and LGA used in AutoDock) is that after some

generations, the algorithm is no longer able to improve the

best fitness of the population. This problem is called

premature convergence problem [28;33]. If a sub-optimal

individual dominates the population, selection tends to keep it

around and prevents further adaptation. This is because the

average fitness of the population increases as the evolutionary

process continues, and then only new individuals with similar

genotype and similarly high fitness tend to survive. Very

different new individuals usually have low fitness since their

beneficial characteristics have not been expressed into fitness

values until some exploration and exploitation. Thus, a

traditional genetic algorithm tends to concentrate its search

effort near one peak, thus getting stuck in local optimum [33].

One possible approach to avoid from premature convergence

may be to increase mutation rate or population size.

Increasing mutation rate will keep diversity high and not

allow loosing good individuals; however, it is just as likely as

to replace good alleles and building blocks as bad ones. If the

mutation rate is too large, mutation operator cannot create

offspring near its parent. Increasing population size takes

much longer time than necessary even for a single run [28].

A common practice to address local optima issue is to run the

above stochastic search algorithm multiple times (e.g. 10) and

then select the best solution. This approach, however,

significantly increases the running time. A recent sustainable

evolutionary algorithm called HFC (Hierarchical Fair

Competition) has been shown to be much more efficient than

the multi-run method and can achieve significantly better

solutions.

III. Methods

A. Sustainable Evolutionary Algorithms

Evolutionary algorithms usually fall prey to the local optima

problem. Recently, a new type of evolutionary algorithms has

emerged focused on sustainability, which refers that the

capability to make constant progress given more computation

resource unless the optimum is reached.

The first such algorithm is the HFC algorithm framework

[29]. The main idea of HFC is to keep the diversity of the

population and maintain a pipeline for generating individuals

at all fitness or age levels. The pipeline structure of HFC

refers to the hierarchical organization of the subpopulations

by different fitness levels. HFC reduces the selection pressure

within each subpopulation to encourage exploration while

maintaining the global selection pressure to exploit good

individuals. Because of its structure, HFC does not allow the

convergence of the population to the vicinity of any set of

sub-optimal solutions. HFC achieves sustainable searching by

ensuring continuous supply and the incorporation of

individuals in the hierarchical levels. HFC continually

changes the populations of individuals of intermediate fitness

levels. Another form of sustainable evolutionary algorithms

similar to HFC uses a parameter ‘age’ instead of fitness value,

to set up the hierarchy levels.

B. ALPS – Age Layered Population Structure

Another sustainable GA called Age-Layered Population

Structure (ALPS) was recently proposed [28], which was

shown to have better performance than HFC for some genetic

algorithm test problems. ALPS follows HFC algoriths’

hierarchical organization of individuals but defines a new

attribute of an individual, age, which is used to restrict

competition and breeding among individuals of the

population. The ‘age’ refers to a measure of how long the

individual has been in the population. ALPS segregates

individuals into different layers according to their ages, and

regularly replaces all individuals in the bottom layer with

randomly generated ones. Thus, the genetic algorithm will

never completely converge and is always examining new

areas of the fitness landscape. This allows genetic algorithms

to develop promising young individuals without being

dominated them by older ones [28].

In ALPS, the population consists of a sequence of layers

with increasing upper-limits on the maximum age of

individuals that a layer can contain (Figure 4). ALPS uses two

restrictions for evolution of individuals. First, individuals can

only breed with individuals in their own layer or one layer

below. Second, the last layer is replaced with randomly

250Improving Protein Docking Using Sustainable Genetic Algorithms

generated individuals at regular intervals. New individuals

start with the age of 0, since their genetic material has just

been through the evolution process. Other individuals that are

created by mutation or recombination get the age of their

parents plus 1 since their genetic material comes from their

parents. An individual’s age is incremented by 1 if it is used as

a parent to create an offspring. If an individual is not used as a

parent, its age will not be changed. Even if an individual

produces offspring multiple times in one generation, its age

still incremented by 1.

Figure 4. ALPS algorithm in AutoDockX

The population keeps individuals within age-layers to control

competition and breeding. Each layer has a maximum age

limit for individuals, only last level can have individuals of

any age. Different schemes can be used for setting the

age-limits for each age layer such as allocating equal number

of individuals to each layer, or allocating more individuals to

higher levels using polynomial or exponential distributed

layer sizes. Then, these age-limits are multiplied by an

age-gap parameter (Table 1). This allows younger individuals

to be able to find and move into a good basin of attraction

before they are pushed into next layer [28].

Table 1. Different age schemes with the age-gap 10

C. Integrating ALPS into AutoDock

To integrate a new search algorithm into Autodock, we have

modified the global search algorithm of Autodock package

and replaced the default traditional GA with ALPS to create a

new docking program called AutodockX. Parameters of

ALPS are defined in a parameter file. Some of ALPS’s default

parameters are defined in Table 2.

Table 2. Default ALPS parameters
 Age-Range of Layers

Aging Scheme

Linear 0-10 11-20 21-30 31-40 41-50

Fibonacci 0-10 11-20 21-30 31-50 51-80

Polynomial () 0-10 11-40 41-90 91-160 161-250

Exponential (0-10 11-40 41-80 81-160 161-320

IV. Experimental Results

A. Test Data Preparation

We tested the search algorithms in Autodock with ALPS on

three different proteins, pr, hsp90 and cox, from ZINC

database. We tested 22 ligands for protein cox, 24 ligands for

protein hsp90, and 27 ligands for protein pr. The ligands have

different degrees of freedom and different types of atoms

leading to different dimensions for global optimization by the

search algorithms.

All the algorithms were tested on Optimus which is one of

the high performance computing systems of the University of

South Carolina. The specifications of Optimus are: 64 nodes,

dual CPU, 2.0 GHz Dual-Core AMD Opterons, totaling 256

cores, 8GB RAM per node and 1 Terabyte of Storage in head

node.

B. Comparing Performance of ALPS versus GA and LGA

To compare the docking performance of ALPS against

traditional GA and Lamarckian GA, we calculated the

docking energy of the best docking result for each algorithm

for docking 22 ligands to cox protein. Figure 5 shows the

binding energies of these docked conformations. It clearly

shows that ALPS algorithm has achieved the lowest (best)

docking energy over all 22 ligands. LGA works worse than

ALPS but better than traditional GA, which sometimes

obtained much worse results.

Figure 5. Comparison of three algorithms of 22 ligands with

protein cox docking process. The population size was 50;

maximum number of generations was 16000 for 10 runs.

If a parent is used to

create an offspring

increment its age by 1

Level m

Replacement

…

Level n

Level n-1

…

Level 1

Level 0

Mutation

Offspring

Recombination

Selection of Parents

Evaluate fitness of individuals

Create Individuals

-15

-10

-5

0

5

10

15

20

25

1 3 5 7 9 11 13 15 17 19 21

E
n

er
g

y

Ligands

ALPS

GA

LGA

num_generations Default Description

num_evals 250000 No. of generations

pop_size 200 Population size

alps_number_layers 10 No. of layers

alps_age_gap 3 Age gaps for migration

alps_age_scheme 5 Age allocation scheme

alps_elitism 5 No. of elitism individuals

alps_tourn_size 5 Tournament selection size

alps_prob_select_prev 0.25 Selection probability

alps_recomb_prob 0.8 Crossover probability

alps_rec_rand2_prob 1.0 mutation probability

 251 Atilgan and Hu

To fully show that sustainable evolutionary algorithms such

as ALPS can help to address the premature convergence

problem of traditional GAs, we compared the performance of

ALPS, GA, and LGA in docking ligands to 3 proteins using

different numbers of evaluations. We set the population size

to 50, and varied the number of generations as 500, 1000,

2000, 4000, 8000, 16000, 32000, which makes the total

number of evaluations 25000, 50000, 100000, 200000,

400000, 800000, , respectively. This allows testing

whether a search algorithm can find better solutions given

more computational time. The mutation rate was set to 0.02,

crossover rate was set to 0.8 for GA and LGA. For ALPS, we

set the number of layers to 10, age gap to 20, age scheme to

exponential. Recombination probability was set to 0.8,

probabilistic selective rate was set to 0.25 for ALPS. The

number of runs for each experiment is set as 10. All three GAs

used the same real-value crossover operator as defined in

Autodock.

At the end of a docking process, Autodock output multiple

conformation solutions organized into clusters. For

simplicity, we only consider the best solution (lowest binding

energy) for each protein-ligand pair. For each protein, we

calculated the average of the binding energy for the given set

of ligands docked to that protein.

Figure 6. Overall results of different algorithms on protein

cox using fixed population size 50 and varying maximum

number of generations. Each algorithm was run 10 times for

each protein-ligand pair. The averages of the lowest binding

energy for all protein-ligand pairs are then calculated.

Figure 6 shows the results of 3 algorithms for docking 22

ligands to cox protein using different number of maximum

generations ranging from 500 up to 16000. Note that these are

NOT the average binding energy of a single run. Instead, for

each allowed max generation number, we restarted the

docking algorithms and calculated the average of lowest

binding energy. Figure 4 showed that for each given

maximum generation number, ALPS always gives lower

(better) binding energies than the traditional GA and

Lamarckian GA and in general, LGA worked better than basic

GA. We obtained similar conclusions for the other two

docking experiments on protein pr and hsp90 even though the

performance gap between ALPS and the other GAs varies.

Due to the premature convergence issue, it shows that when

the number of generations reaches 16000, doubling the

generations to 32000 can only help GA and LGA obtain

slightly better solutions, which are still worse than the

solutions obtained by ALPS using only 500 generations or

25,000 energy function evaluations.

To check whether the population size biased to the ALPS

algorithm, we did another set of experiments by fixing the

maximum generation number to 10,000 while varying the

population sizes for the three algorithms. Results in Figure 7

showed that when the population size increases, the traditional

GA has severe premature convergence problem leading to

significantly worse (higher binding energy) results. Again, the

ALPS algorithm gave the best result for all population sizes.

Figure 7. Docking results of three algorithms with fixed

generations and varying population sizes. We tested two

ligands for protein cox, and got the average of the lowest

binding energies. We set the number of generations to 10000,

and varied the population size from 150 to 1000.

C. Comparing Performance of ALPS, GA, LGA and SA

In this experiment, we compared SA (Simulated Annealing)

with ALPS and the other GAs of AutoDock. Because SA

ONLY works well for ligands with 8 or less torsion angles, we

have chosen the ligands with at most 8 torsions to be able to

compare this algorithm with others. When we choose the

ligands with 9 torsions, the SA algorithm always got stuck in

local minima and cannot obtain reasonable binding energy.

Thus, we have only evaluated this algorithm with one

ligand-protein pair.

One critical parameter of SA is the number of accept-reject

steps for each temperature, which indirectly determine the

total number of evaluations. Since it is not possible to predict

how many accepted or rejected steps will be made at a given

temperature, the number of evaluations will be different for

different problems. In the past experiments [27] of SA search

in Autodock, the range is between and ,

if the accepted and rejected steps initially set to 25000. The

initial temperature is . We use same

termination criteria. For the other three algorithms, we set the

population size to 50, and the maximum number of

generations to 32000. This means that the total number of

evaluations will be approximately for all three

population-based search algorithms. Figure 8 shows the

results of four algorithms on three different proteins. For all

three proteins, sustainable ALPS achieved the lowest binding

energies and simulated annealing is the worst.

D. Robustness of AutoDockX

Sustainable GA such as ALPS has a unique advantage which

is their robust search performance –their search result depends

much less on the starting random population and thus does not

require multiple runs (e.g. 10) of GA and LGA as is usually

-10

-8

-6

-4

-2

0

2

4

500 1000 2000 4000 8000 16000 32000

E
n

e
r
g

y

Number of generations

ALPS

GA

LGA

-10

-8

-6

-4

-2

0

2

4

150 250 400 750 1000

E
n

e
r
g

y

Population size

ALPS

GA

LGA

 252Improving Protein Docking Using Sustainable Genetic Algorithms

done by Autodock users. To show the robust docking

performance, we run GA, LGA, and ALPS to dock the

cox-ZINC00012342 pair each running 10 times. Table 3

shows the lowest binding energies in each result cluster after

10 runs for GA, LGA, and ALPS. A cluster is defined as the

group of solutions that have a RMSD distance lower than a

given threshold. Table 2 clearly indicates that GA and LGA

obtained widely varying results for different runs, each run

Figure 8. Comparison of binding energies of docked

conformations for 4 algorithms: ALPS, GA, LGA, and SA.

ALPS identified the lowest binding energy for all 3 target

proteins.

generating a different cluster. And thus they all need to run

multiple times to find good docking conformations. For

example, one run of GA obtained a binding energy of -0.11

while another run gave 36.26.Lamarckian GA is more robust

and obtained lower binding energy than GA but still much

inferior to ALPS in terms of both binding energy and also the

variation among the solutions of different runs. For ALPS’ 10

runs, all runs generated binding energy superior to the best

energy scores of both GA and LGA and the variance of these

10 runs is extremely small. This means that for ALPS, we

only need to run a single docking search instead of 10 runs of

traditional Autodock search algorithms to get high-quality

results. The running time efficiency of ALPS is thus much

better than GA or LGA due to its robust search capability.

GA and LGA generated 10 different clusters from 10 runs.

ALPS generated 8 clusters with cluster 3 containing results of

3 runs with very similar conformations (only the result of the

lowest energy is shown for each cluster).

Table 3. Docking results of GA, LGA, ALPS on

cox-ZINC00012342 pair after 10 runs.

Cluster

Lowest

Binding

Energy by

GA

Lowest

Binding

Energy by

LGA

Lowest

Binding

Energy by

ALPS

1 -0.11 -6.19 -7.95

2 3.15 -5.7 -7.77

3 10.48 -5.17 -7.36

4 13.91 -4.68 -7.29

5 16.54 -4.56 -7.23

6 18.02 -3.37 -7.14

7 25.67 -3.01 -6.98

8 28.01 -2.87 -6.75

9 32.8 -2.45

Finally, Figure 9 shows the energy ranges after 10 runs for

three algorithms GA, LGA, ALPS. We calculated the mean

energies and the standard deviations of 13 ligands with

protein cox. Traditional genetic algorithms may give very

different results for 10 runs. However; sustainable GA, ALPS

always finds better and consistent solutions with much

smaller quality variation. With AutodockX, there is no longer

a need to run multiple times to get desired results.

Ligand-protein Pair

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

B
in

d
in

g
 e

n
e

rg
y
 o

f
d

o
c
k
e
d

 c
o
n

fo
rm

a
ti
o

n
s

-20

-10

0

10

20

30

40

GA

LGA

ALPS

Figure 9. Binding energy variations for 10 runs of three

algorithms on 13 protein-ligand pairs. The middle mark

shows the mean value. GA has the largest variation among

different runs and ALPS has the lowest variation or highest

robustness in terms of search quality for multiple runs.

V. Conclusions

We have developed a new docking program AutoDockX by

integrating the sustainable genetic algorithm ALPS to

AutoDock, one of the most used tools in protein-ligand

docking. We tested the docking performances over three

different proteins (pr, cox and hsp90) with more than 20

candidate ligands for each protein. The results showed that

our sustainable GA based AutodockX gives significantly

better docking performance than all the existing search

algorithms implemented in the latest version of AutoDock4.

AutoDockX also has the benefits of less running time and

higher robustness. A single run of AutoDockX gets better

results than running traditional GA and LGA for multiple

times (e.g. 10 runs). As a result, AutoDockX, has unique

advantages in large-scale drug-candidate virtual screening in

which millions of ligands need to be docked.

Acknowledgment

We thank Richard Porter for his help on proofreading. This

research is supported by NSF CAREER AWARD

DBI-8527821.

References

[1] C. Bajaj, R. Chowdhury, and V. Siddavanahalli,

"F2Dock: fast Fourier protein-protein docking,"

IEEE/ACM. Trans. Comput. Biol. Bioinform., vol. 8,

no. 1, pp. 45-58, Jan.2011.

protein target

B
in

d
in

g
 e

n
e

rg
y

-20

-10

0

10

20

30

40

50

60

ALPS

GA

LGA

SA

Cox Hsp90 pr

 253 Atilgan and Hu

10 36.26 0.36

[2] A. J. Bordner and A. A. Gorin, "Protein docking using

surface matching and supervised machine learning,"

Proteins, vol. 68, no. 2, pp. 488-502, Aug.2007.

[3] J. I. Garzon, J. R. Lopez-Blanco, C. Pons, J. Kovacs, R.

Abagyan, J. Fernandez-Recio, and P. Chacon,

"FRODOCK: a new approach for fast rotational

protein-protein docking," Bioinformatics., vol. 25, no.

19, pp. 2544-2551, Oct.2009.

 [4] T. Geppert, E. Proschak, and G. Schneider,

"Protein-protein docking by shape-complementarity

and property matching," J. Comput. Chem., vol. 31, no.

9, pp. 1919-1928, July2010.

 [5] S. Y. Huang and X. Zou, "MDockPP: A hierarchical

approach for protein-protein docking and its

application to CAPRI rounds 15-19," Proteins, vol. 78,

no. 15, pp. 3096-3103, Nov.2010.

 [6] G. M. Morris, R. Huey, W. Lindstrom, M. F. Sanner, R.

K. Belew, D. S. Goodsell, and A. J. Olson,

"AutoDock4 and AutoDockTools4: Automated

docking with selective receptor flexibility," J. Comput.

Chem., vol. 30, no. 16, pp. 2785-2791, Dec.2009.

[7] E. Noy and A. Goldblum, "Flexible protein-protein

docking based on Best-First search algorithm," J.

Comput. Chem., vol. 31, no. 9, pp. 1929-1943,

July2010.

[8] C. D. Rosin, R. S. Halliday, H. Packard, W. E. Hart,

and R. K. Belew, "A comparison of global and local

search methods in drug docking," Morgan Kaufmann

Publishers, Inc, 1997, pp. 221-228.

[9] A. Solernou and J. Fernandez-Recio, "Protein docking

by Rotation-Based Uniform Sampling (RotBUS) with

fast computing of intermolecular contact distance and

residue desolvation," BMC. Bioinformatics., vol. 11, p.

352, 2010.

 [10] C. Pons, S. Grosdidier, A. Solernou, L. Perez-Cano,

and J. Fernandez-Recio, "Present and future challenges

and limitations in protein-protein docking," Proteins,

vol. 78, no. 1, pp. 95-108, Jan.2010.

 [11] D. W. Ritchie and V. Venkatraman, "Ultra-fast FFT

protein docking on graphics processors,"

Bioinformatics, vol. 26, no. 19, pp. 2398-2405,

Oct.2010.

 [12] D. W. Ritchie, D. Kozakov, and S. Vajda,

"Accelerating and focusing protein-protein docking

correlations using multi-dimensional rotational FFT

generating functions," Bioinformatics, vol. 24, no. 17,

pp. 1865-1873, Sept.2008.

 [13] D. Kozakov, R. Brenke, S. R. Comeau, and S. Vajda,

"PIPER: an FFT-based protein docking program with

pairwise potentials," Proteins, vol. 65, no. 2, pp.

392-406, Nov.2006.

 [14] E. Sakk, "On the computation of molecular surface

correlations for protein docking using fourier

techniques," J. Bioinform. Comput. Biol., vol. 5, no. 4,

pp. 915-935, Aug.2007.

 [15] A. Berchanski, B. Shapira, and M. Eisenstein,

"Hydrophobic complementarity in protein-protein

docking," Proteins, vol. 56, no. 1, pp. 130-142,

July2004.

 [16] V. Venkatraman, Y. D. Yang, L. Sael, and D. Kihara,

"Protein-protein docking using region-based 3D

Zernike descriptors," BMC Bioinformatics, vol. 10, p.

407, 2009.

 [17] X. Gong, P. Wang, F. Yang, S. Chang, B. Liu, H. He, L.

Cao, X. Xu, C. Li, W. Chen, and C. Wang,

"Protein-protein docking with binding site patch

prediction and network-based terms enhanced

combinatorial scoring," Proteins, vol. 78, no. 15, pp.

3150-3155, Nov.2010.

 [18] D. V. Ravikant and R. Elber, "PIE-efficient filters and

coarse grained potentials for unbound protein-protein

docking," Proteins, vol. 78, no. 2, pp. 400-419,

Feb.2010.

 [19] D. Tobi, "Designing coarse grained- and atom based-

potentials for protein-protein docking," BMC Struct.

Biol., vol. 10, no. 1, p. 40, Nov.2010.

 [20] G. Y. Chuang, D. Kozakov, R. Brenke, S. R. Comeau,

and S. Vajda, "DARS (Decoys As the Reference State)

potentials for protein-protein docking," Biophys. J., vol.

95, no. 9, pp. 4217-4227, Nov.2008.

 [21] I. C. Paschalidis, Y. Shen, P. Vakili, and S. Vajda,

"Protein-protein docking with reduced potentials by

exploiting multi-dimensional energy funnels," Conf.

Proc. IEEE Eng Med. Biol. Soc., vol. 1, pp. 5330-5333,

2006.

 [22] D. Tobi and I. Bahar, "Optimal design of protein

docking potentials: efficiency and limitations,"

Proteins, vol. 62, no. 4, pp. 970-981, Mar.2006.

 [23] D. K. S. Chao Lin Chu, "Spider Search: An Efficient

and Non-Frontier-Based Real-Time Search

Algorithm," International Journal of Computer

Information Systems and Industrial Management, vol.

1, no. 1, pp. 234-242, 2009.

 [24] P. S. A. S. Ruhaidah Samsudin, "Combination of

Forecasting Using Modified GMDH and Genetic

Algorithm," International Journal of Computer

Information Systems and Industrial Management, vol.

1, no. 1, pp. 170-176, 2009.

 [25] M. V. N. K. P. V. R. E.V.Gopal, "Fast and Accurate

Watermark Retrieval Using Evolutionary Algorithms,"

International Journal of Computer Information

Systems and Industrial Management, vol. 1, no. 1, pp.

121-136, 2009.

 [26] C. S. V. G.Jeyakumar, "An Empirical Performance

Analysis of Differential Evolution Variants on

Unconstrained Global Optimization Problems,"

International Journal of Computer Information

Systems and Industrial Management, vol. 1, no. 1, pp.

77-86, 2009.

 [27] G. M. Morris, D. S. Goodsell, R. S. Halliday, R. Huey,

W. E. Hart, R. K. Belew, and A. J. Olson, "Automated

docking using a Lamarckian genetic algorithm and an

empirical binding free energy function," J. Comput.

Chem., vol. 19, no. 14, pp. 1639-1662, Jan.1998.

 [28] G. S. Hornby, "Alps: The age-layered population

structure for reducing the problem of premature

convergence.,". M. Cattolico, Ed. ACM, 2006, pp.

815-822.

 [29] J. Hu, E. Goodman, K. Seo, Z. Fan, and R. Rosenberg,

"The hierarchical fair competition (HFC) framework

for sustainable evolutionary algorithms," Evol.

Comput., vol. 13, no. 2, pp. 241-277, 2005.

 [30] G. S. Hornby, "Steady-State Alps for real-valued

problems,". F. Rothlauf, Ed. ACM Press, 2009, pp.

795-802.

 254Improving Protein Docking Using Sustainable Genetic Algorithms

 [31] G. S. Hornby, "A Steady-State Version of Age Layered

Population Structure EA," in Genetic Programming

Theory and Practice VII. R. Riolo, U. O'Reilly, and T.

cConaghy, Eds. Springer, 2009, pp. 87-102.

 [32] J. Hu, E. D. Goodman, K. Seo, and M. Pei, "Adaptive

hierarchical fair competition (AHFC) model for

parallel evolutionary algorithms,". M. Kaufmann, Ed.

2002, pp. 772-779.

 [33] J. Hu and E. D. Goodman, "The Hierarchical Fair

Competition (HFC) Model for Parallel Evolutionary

Algorithms," IEEE Press, 2002, pp. 49-54.

 [34] R. D. Taylor, P. J. Jewsbury, and J. W. Essex, "A

review of protein-small molecule docking methods," J.

Comput. Aided Mol. Des, vol. 16, no. 3, pp. 151-166,

Mar.2002.

 [35] M. L. Teodoro, G. N. Philips, and L. E. Kavraki,

"Molecular docking: A problem with thousands of

degrees of freedom,", 1 ed IEEE Press, 2001, pp.

960-966.

 [36] D. S. Goodsell, G. M. Morris, and A. J. Olson,

"Automated docking of flexible ligands: applications

of AutoDock," J. Mol. Recognit., vol. 9, no. 1, pp. 1-5,

Jan.1996.

 [37] X. Jiang, K. Kumar, X. Hu, A. Wallqvist, and J.

Reifman, "DOVIS 2.0: an efficient and easy to use

parallel virtual screening tool based on AutoDock 4.0,"

Chem. Cent. J., vol. 2, p. 18, 2008.

 [38] S. Zhang, K. Kumar, X. Jiang, A. Wallqvist, and J.

Reifman, "DOVIS: an implementation for

high-throughput virtual screening using AutoDock,"

BMC. Bioinformatics., vol. 9, p. 126, 2008.

 [39] S. Cosconati, S. Forli, A. L. Perryman, R. Harris, D. S.

Goodsell, and A. J. Olson, "Virtual screening with

AutoDock: theory and practice," Expert Opin. Drug

Discov., vol. 5, no. 6, pp. 597-607, Apr.2010.

 [40] L. E. Kavraki, "Protein-Ligand Docking, Including

Flexible Receptor- Flexible Ligand Docking,"

Connexions module, 2007.

 [41] D. S. Goodsell and A. J. Olson, "Automated docking of

substrates to proteins by simulated annealing,"

Proteins, vol. 8, no. 3, pp. 195-202, 1990.

 [42] G. M. Morris, D. S. Goodsell, R. Huey, and A. J. Olson,

"Distributed automated docking of flexible ligands to

proteins: parallel applications of AutoDock 2.4," J.

Comput. Aided Mol. Des, vol. 10, no. 4, pp. 293-304,

Aug.1996.

 [43] O. Trott and A. J. Olson, "AutoDock Vina: improving

the speed and accuracy of docking with a new scoring

function, efficient optimization, and multithreading," J.

Comput. Chem., vol. 31, no. 2, pp. 455-461, Jan.2010.

Author Biographies

Emrah Atilgan is a Ph.D. student in Computer Science at

University of South Carolina. He was graduated from

Eskisehir Osmangazi University in Turkey with B.S. in
Mathematics. He received his M.S degree in Computer

Science from University of South Carolina. His research

interests include high-performance computing, parallel
computing, data mining and bioinformatics.

Jianjun Hu is assistant professor in the Department of

Computer Science and Engineering, University of South

Carolina. He received the B.S. and the M.S. degrees in
mechanical engineering, in 1995 and 1998, respectively,

from Wuhan University of Technology, China. He

received the Ph.D. in Computer Science in 2004 from
Michigan State University. He was postdoctoral fellow of

bioinformatics at Purdue University and University of

Southern California. Dr. Hu is a member of ACM and
IEEE. His current research interests include evolutionary

computation, machine learning, and data mining as well as

their application in engineering design and bioinformatics.

 255 Atilgan and Hu

