
 
 

 

  
Abstract—We have introduced a well-defined scalable 

benchmark problem—the eigenvalue placement problem––to 
investigate scalability issues in automated topology synthesis of 
mechatronic systems based on bond graphs and genetic 
programming. This classical inverse problem shares 
characteristics with many other system synthesis problems, 
such as electric circuit and controller synthesis, in terms of 
epistasis and multi-modality of the search space. Critical issues 
of open-ended topology search by genetic programming are 
investigated, including encoding, population seeding, scalability 
and evolvability. For the eigenvalue problems, we have found 
there exists a correlation between structure and function that is 
important for efficient topology search. Standard genetic 
programming has been used to solve up to 20-eigen-value 
problems, finding the target system of bush topology out of 
823,065 possibilities with only 29506 topology evaluations. 

I. INTRODUCTION 
omputational synthesis as a solution to open-ended 
design problems has received increasing attention from 

many design areas [1]. Notably, many success stories with 
automated evolutionary synthesis have been recently 
reported, including automatically synthesized electric 
circuits infringing several recent patents [2], an automatically 
created general-purpose non-PID controller [2],[3] for which 
a patent is sought, mechatronic systems [5], [6], and digital 
circuits [10]. It can be observed that a large number of 
open-ended design problems can be summarized as: given a 
set of heterogeneous functional building blocks, 
connection/combination rules or constraints, and the 
functional requirements, how can one synthesize a solution to 
achieve the desired system behavior, automatically or 
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interactively? The difficulty lies in that one needs to identify 
the appropriate topology of the system as well as its 
appropriate parameters, simultaneously, from an 
extraordinarily large search space, to achieve the desired 
behavior. 

Despite the apparent difficulty, the examples cited above 
have been offered as an existence proof of the adequacy of 
genetic programming for addressing that challenge in some 
areas of open-ended design innovation [2]. However, critical 
issues remain concerning effective design of such a tool for 
open-ended topological exploration, leaving the prospective 
practitioners with many seemingly arbitrary decisions to 
make. While there is increasing concern over the scalability 
of generic evolutionary synthesis, in applications such as 
evolvable hardware [12], and digital circuit design [13], 
there are few explicit theoretical and experimental studies in 
the context of topological search per se on issues like 
appropriate representations, appropriate levels of building 
blocks, topological operations employed in the search 
process, scalability, and balanced topological and parameter 
search. One reason can be traced to the difficulty of 
establishing common benchmark problems, accessible to all 
researchers, requiring relatively small amounts of 
computational resources, and representative of multiple 
design domains. 

In this paper, we introduce a set of carefully designed 
open-ended system synthesis benchmark problems and 
investigate issues involved in search-based automated 
topology synthesis––in particular, in genetic programming. 
Our goal is to enable synthesis of high-performance systems 
with several dozen components within a few CPU-days of 
computing effort, rather than taking several days of 
computing by hundreds of PCs, as Koza typically uses [2]. In 
this paper, systems to be synthesized are represented by bond 
graphs [14] – a multi-domain modeling scheme which can 
unify design domains such as analog circuits, mechatronic 
systems, and controllers. One of our test problems is called 
the eigenvalue placement problem, which has a tunable 
problem size in terms of order of a dynamic system. We 
adopt a systematic divide-and-conquer strategy to investigate 
critical issues in evolutionary topology search by genetic 
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programming; early progress in the first step, a 
topology-only search investigation, is reported in this paper.   

II.  BOND GRAPH-BASED SYSTEM SYNTHESIS BY GENETIC 
PROGRAMMING 

A.  Bond Graphs 
The bond graph is a multi-domain modeling tool for 

analysis and design of dynamic systems, especially hybrid 
multi-domain systems including mechanical, electrical, 
pneumatic, hydraulic, etc. [14]. One of the advantages of 
using bond graphs for open-ended design exploration is that 
complex loops typical in electric circuits can be transformed 
into tree-like structures by the bond graph’s 1-junction (serial 
connection) and 0-junction (parallel connection) concepts, 
which tend to be easier to evolve in general. Details of 
notation and methods of system analysis related to the bond 
graph representation can be found in [14]. Many researchers 
have explored the bond graph as a tool for design [11], [15]. 
Design of controllers by augmenting bond graphs with 
signals (as used in “block-diagram” representations) has also 
been practiced [16]. Fig 1 illustrates a bond graph that 
represents either of the accompanying electrical or 
mechanical systems.  

B. Automated synthesis by genetic programming 
Genetic programming (GP) [4] is an extension of the 

genetic algorithm. The distinctive feature of genetic 
programming is that it aims to evolve variable-length 
open-ended structures such as computer programs, so is 
widely used in open-ended problems. We use a 
developmental strongly-typed genetic programming method 
as described in [4] to evolve a program tree, whose 
pre-ordered execution will grow a given minimal embryo 
bond graph into a complex design solution. Fig 2 illustrates 
how an embryo bond graph (a) can be developed into a 
complex solution (d) by executing a program (c) which 
manipulates the topology and parameters of the growing 
embryo at each step. By iterative application of evaluation, 
crossover, mutation, and selection operators, a genetic 
programming can evolve a population of better and better 
bond graph-generating GP trees as the one in Fig 2.(c). 
Further details can be found in [6]. It is important to note that 
the embryo, the function set, and the type of modifiable sites 

are all factors influencing the search efficiency.  

III. THE EIGENVALUE PLACEMENT PROBLEM: A BENCHMARK 
FOR AUTOMATED SYSTEM SYNTHESIS 

Designing a good benchmark problem for investigating 
open-ended system synthesis is difficult for several reasons. 
The generic electrical circuit synthesis problem of Koza et al. 
[4], widely known as it is, requires a complicated simulation 
package such as SPICE, and the simulation complexity is 
fairly high. Other topology synthesis problems, such as 
molecule design, suffer from the lack of a “standard” and 
universally available simulation engine. Communication 
network design [7], neural network design [8] and other pure 
graph-oriented topology synthesis procedures [19], however, 
have quite different characteristics in terms of the search 
space and the fitness landscape. As a result, we introduce a 
set of bond graph-based benchmark problems for evaluating 
methods and identifying issues in automated evolutionary 
synthesis of mechatronic systems.  

The benchmark problem proposed is called the eigenvalue 
placement problem, in which an analog circuit represented as 
a bond graph model is to be synthesized (including its 
topology and sizing of components) to achieve a specific 
behavior. The bond graph model domain to be used is 
composed of a set of inductors (I), resistors (R), capacitors 
(C), transformers (TF), gyrators (GY), and Sources of Effort 
(SE). Our synthesis task in the K-eigenvalue placement 
problem is to evolve a dynamic system with K eigenvalues 
that approximate a pre-specified set as closely as possible. 
By increasing the number of eigenvalues (K) (and, 
correspondingly, the order of the dynamic system), we can 
define a sequence of synthesis problems of increasing 
difficulty, for use in evaluating the scalability of various 
techniques. The problem difficulty can also be varied by 
choosing different sets of primitive building blocks 
(modules) to be used in the search process. In this paper, we 
use a set of causally well-posed primitives (CWP), in which 
each junction has a resistor attached, 1-junctions always have 
an inductor attached, 0-junctions have a capacitor attached, 
0-junctions can only be adjacent to 1-junctions, and 
vice-versa. Such systems are readily realized in the form of 
mechanical systems as well as in the electrical domain. The 
space of all possible topologies generated using these 
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Fig 1.  Bond graph as a unified modeling tool for mechanical and electric systems



 
 

 

primitives consists of connected graphs without loops (i.e., 
trees), and the conditions are strong enough to guarantee that 
the corresponding systems satisfy causality constraints.  

Given a bond graph model, the fitness evaluation is 
conducted as follows:   

1) Derive the A matrix of the state space model from the 
bond graph model [14]. 

2) Compute the eigenvalues of the A matrix (code to do 
this is widely available, or a procedure converted 
from Matlab may be used, for example) 

3) Match the resulting eigenvalues to the target 
eigenvalue set to compute a relative-distance-based 
error measure by Procedure 1.   

4) Calculate the fitness of the bond graph by normalizing 
that error measure into a fitness value (to be 
maximized) between 0 and 1 according the following 
scaling rule: 

  if distance/order <0.1 then  
fitness = 0.1 /(0.1+distance/order)  

  else  fitness = 5.05 /(10+distance/order) 
        where order is the number of energy-storing 
components (capacitor and inductors). 

The fitness scaling measure in 4) above is chosen such that 
50% of the fitness range is occupied by error measures 
greater than 0.1, and the remainder is used for error measures 
less than 0.1.  It is continuous, with a single slope 
discontinuity, and approaches 1 asymptotically as the error 
measure approaches 0. This transformation converts the 
fitness into the classical maximization form of evolutionary 
computation, without a singularity for an error of 0 (an exact 
match of candidates to the targets). Note that many 
evolutionary methods (using tournament or rank-based 

selection, for example) will not require or be sensitive to the 
scaling suggested in step 4,  

Procedure 1. calculating distance between two sets of eigenvalues 

Input:  target eigenvalue set ( , ), 1,...,t t
i i tx y i O= ,  

where tO is the number of target eigenvalues;  

           candidate eigenvalue set ( , ), 1,...,i i cx y i O= , where cO is 

the number of candidate eigenvalues. 
Output: summed relative distances between two sets of eigenvalues 

if order (cardinality) of candidate set cO  is different from that of target  

set, tO  return ∞  

otherwise 

calculate the average length avel of target eigenvalues (distance from 

the origin),    
1

tO

ave i
i

l l
=

= ∑ , il  is the length of thi target eigenvalue 

label all eigenvalues as unmatched 
distance ← 0 

for i = 1 to tO  

 find an unmatched candidate eigenvalue j, which is closest to target 
eigenvalue i 
 label the candidate eigenvalue j as matched 

 distance ← distance + 
2 2( ) ( ) /t t

j i j i avex x y y l− + −  

where ( , )j jx y  is the candidate eigenvalue,  

and ( , )t t
i ix y is the current target eigenvalue i. 

end for 
return distance; 

Fig 2. (a) The embryo bond graph used in all the experiments of this paper––the 1-junction node in rectangle is a modifiable site where a new 
construct can be added; (b) the function set for bond graph topological modification (topology manipulating operators) called node-encoding 
approach; (c) An example of the GP tree, composed of topology operators; (d) the developed bond graph after the depth-first execution of (c).  



 
 

 

A.  Some interesting variants of this problem formulation 
It is possible to use this problem formulation in at least two 

interesting ways.  First, a set of eigenvalues may be generated 
arbitrarily, without knowledge of a system that would have 
such a set of eigenvalues. This provides an open-ended 
problem with no known answer and unknown properties.  
Second, it is possible, and often useful, to start from a known 
system, calculate its eigenvalues, and use that set as the 
target, thereby providing a target with at least one known 
optimal solution (error 0, fitness 1).  This allows the user to 
readily assess the efficiency of the evolutionary design 
system as a global optimizer. 

This problem formulation explicitly specifies the order of 
the system.  It is useful and often pre-specified in real-world 
applications, as cost often correlates well with order.  
Alternative formulations could allow candidate systems of 
higher order than the target to receive finite error measures, 
but require that unmatched eigenvalues be outside the range 
of the target set, for example. Another interesting 
formulation of the problem, with many of the same properties 
but requiring much less computational effort, would use the 
coefficients of the characteristic polynomial of the A matrix 
as the targets to be matched by those coefficients of 
candidate systems, thereby avoiding the cost of numerically 
calculating the eigenvalues. However, systems with widely 
differing eigenvalues can possess only small differences in 
characteristic polynomials, so the authors have chosen here 
to study the eigenvalues themselves, with the hope of better 
illuminating structure/function relationships in the systems 
evolved. 

IV. EXPLORATION OF TOPOLOGY-ONLY SEARCH IN BOND 
GRAPH SYNTHESIS 

Solution of the dynamic system synthesis problem posed 
involves the need to solve simultaneously for the topology 
and parameters of the system––the goodness of a topology 
cannot be assessed without assigning values to its 
parameters, and a set of parameters independent of the 
topology to which they are assigned defines no performance 
at all.  Here we shall begin to explore the properties of the 
various topology-affecting search operators by looking at a 
dramatically reduced sub-problem that eliminates the 
requirement for parameter searching by making them all 
identical at unity (i.e., all resistors, capacitors, and inductors 
have numerical parameters of 1.0).  To explore such systems, 
the target eigenvalue sets are determined from assorted 
topologies with unit parameters for all of their components. 
Since parameter search is very expensive for high-order 
eigenvalue problems, this topology-only search defines a 
much simpler problem, but one that may illuminate 
properties of the topology search for the more general 
problems. The function set primitives used here restrict the 
resulting bond graphs to having C components attached to 

each and only 0-junctions and I components attached to each 
and only 1-junctions, which results in systems readily 
realizable in any energy domain and which need not be 
checked for being causally well-posed.  Of course, it is only a 
sub-problem of the more general case in which I components 
might optionally be attached to 0-junctions and C 
components to 1-junctions, as well. 

A. Properties of the topological space in bond graph 
synthesis with causally-well-posed sets 
The size of the topology-only search space, expressed in 
terms of distinct bond graph junction structures, has been 
enumerated [18].  Since each 0-junction or 1-junction in the 
causally well-posed function set used has a determined set of 
attached components (the 1-junction has I and R, while the 
0-junction has C and R), and since the embryo contains a 
fixed 1-junction, counting the junction topologies also counts 
the distinct bond graph topologies, and number of junctions 
and order of system are identical.  For systems of order four, 
there are only two possible bond graphs.  For order 8, there 
are 23 different bond graphs; for 12, there are 551; for 16, 
there are 19,320, for 18 there are 128,340, and for 20, it is 
823,065). It is obvious that the search space increases 
quickly with increasing number of components. However, 
since multiple GP trees may map to the same bond graph 
topology, the genotype search space is actually much larger.  

In the following experiments, we choose the three bond 
graph topologies in Table 1 as our targets:  

Table 2 shows the search effort to find the target 
topologies of an 8, 12, 16, 18, and 20-eigenvalue problems 
using a generational GP with population size 500 for 8 and 
12-eigenvalue problems, and 1000 for 16 and higher order 
-eigenvalue problems (with 20 runs for each target). Other 
primary parameters for the GP runs are as follows:   

crossover rate: 0.4; mutation rate:  0.05; tournament 
selection with tournament size: 7; subtree swap mutation: 
0.55 (this operator chooses two separate subtrees of the 
same individual and swaps them, preserving system 
order); initialization: ramped-half-and-half initialisation to 
generate random trees with maximum depth of 5. Maximal 
evaluations: 100,000 for 8  and 12 eigenvalue problems, 
200,000 for 16, 18, 20-eigenvalue problems. 

From Table 2, it turns out genetic programming can easily 
find the target topology for 8 to 20 eigenvalue problems and 
the node-encoding method is a little biased for bush 
topologies.  

B. Gene compatibility and its influence on the efficiency of 
topology search  

In the experiments above, we used a minimal function set 
{EndNode, Add_J_CI_R}, which employs a node-encoding 
approach to cover all possible tree-structured bond graphs 
with the restricted set of components attached to each 
junction as illustrated in Fig 2. This method solves the 
8-eigenvalue problems easily. However, when we first began 



 
 

 

studying this problem, we employed a hybrid encoding 
approach by allowing both the junctions (nodes) and the 
bonds (edges) to be modifiable sites, where new structures 
could be inserted or attached. This approach is widely used 
by Koza and others [4, 19]. The motivation is that the 
encoding should be as flexible as possible and every point 
can be modified. Correspondingly, we added two additional 
GP functions: a) Insert_J0C_J1I_R, which inserts a 
0-junction and 1-junction pair into a bond to maintain 
causality, and b) EndBond.  

Fig. 3 illustrates that all constructs in the bond graph 
become modifiable sites and thus might be expected to allow 
more rapid or effective evolution. However, experimental 
results (Table 3) are quite surprising. While this hybrid 
encoding approach has no difficulty on the 8 to 
18-eigenvalue problems, its bias makes it unable to scale to 
the 20-eigenvalue problem for bush target topologies. Many 
more evaluations are needed to find bush topology, and in 
most cases, it can’t find it at all. However, it is pretty good for 
finding chain topology, using 1/3 of evaluations of 
node-encoding methods. But in general, node encoding is 
more robust to search target topologies. 

It is apparent that the hybrid encoding method is 
comparable to node-encoding approach for the easy 
8-eigenvalue problems when searching for intermediate and 
chain topologies, but at the cost of slower search on the bush 
topology caused by its bias, while the unbiased 
node-encoding achieves similar performance for all types of 
topologies. But for the 12-eigenvalue problems, hybrid 
encoding is much worse than node-encoding when searching 
for bush-type topologies, 12 runs out of 20 fails to find the 
target within 100,000 evaluations. After examining where the 
difficulty comes from, it is observed that the hybrid-encoding 
approach can find a topology fairly similar to the target 
topology quite quickly. However, since there are two types of 
genes in the genome (bond manipulation and junction 
manipulation), it is highly constrained in local manipulations 
of the genome because of the gene incompatibility. It thus 
lacks sufficient local topology modification capability. The 
superficial flexibility in the phenotype space with all possible 
modifiable sites hides the rigidity in the genotype 
manipulation capability. In contrast, the node-encoding 
approach allows very flexible genotype manipulation and 
thus is able to achieve better results.   

Table 1: Three types of target bond graph topologies (the attached C, I, and R elements are omitted for simplicity) 

target topology structure 

bush topology 

 

intermediate topology 

 
chain topology 

 
 

Table 2: Topology search with node-encoding approach for three types of target topologies for 8 to 20-eigenvalue problems. 

target 
topology 

mean (std. dev.) 
order= 8 

mean (std. dev.) 
order= 12 

mean (std. dev.) 
order= 16 

mean (std. dev.) 
order= 18 

mean (std. dev.) 
order= 20 

bush 1759( ± 385) 3971 ( ± 858) 19407( ± 3189) 26504( ± 3470) 29506( ± 3687) 
intermediate 1466( ± 340) 1999 ( ± 331) 14207( ± 2029) 22356( ± 3157) 25783( ± 3451) 

chain 1649( ± 384) 3579 ( ± 677) 27782( ± 5326) 35961( ± 8058) 46651( ± 10588) 
 

Table 3: Searches with hybrid encoding approach for three types of target topologies for 8-, 12-, 16-, 18, 20-, eigenvalue problems, 

 each with 20 runs. Parameter setting is the same with Table 2. 
mean (std. dev) number of evaluations for topology search target topology 

order 8 order 12 order 16 order 18 order 20 
bush 

3031 ( ± 1392) 
8 runs succeed 
7228( ± 2440) 

8 runs succeed 
40871( ± 4908) 

6 runs succeed 
48920( ± 8896) 

All failed 

intermediate 821 ( ± 246) 2851( ± 1095) 1634 ( ± 4587) 24987( ± 6787) 36549( ± 7632) 
chain 792 ( ± 169) 854( ± 397) 5133( ± 1968) 368( ± 2177) 11885( ± 4032) 



 
 

 

C. Effect of initial population seeding on the efficiency of 
topology search  

One common practice in evolutionary synthesis is to seed 
the initial population with individuals of a certain property. 
In [17], the initial population is seeded with different types of 
components whose proportions are extracted from existing 
molecule designs. To evaluate the impact of various 
population initialization methods, a set of topology 
transformation experiments was conducted. We started from 
an initial population with identical individuals (bond graph 
constructor trees) whose execution will generate an identical 
source topology––e.g., the bush topology. Then we evolved 
this initially uniform population toward a target topology. 
The experimental results are summarized in Table 4, with 
means and standard deviations. Each source-target pair 
experiment was repeated 20 times, all with same parameters 
as in Table 2. 

Table 4. Topological transformation with different initial homogenous 
populations 

mean (std. dev) evaluations                   target 
topology 

initial uniform 
 topology 

Bush Intermediate chain 

bush N/A 
2825 

( ± 411) 
3433 

( ± 396) 

intermediate 
2348 

( ± 471) 
N/A 

1864 
( ± 359) 

chain 
3183 

( ± 294) 
2227 

( ± 273) 
N/A 

It is interesting that since bush and chain topologies 
represent the two extremes, transformation between them is 
most difficult, while transformation from the selected initial 
intermediate to either chain or bush is much easier. As the 
intermediate topology is between bush and chain topologies 
in some sense, our results confirm that seeding with a more 
similar topology will speed up the evolution. If one does not 

have any idea of what the topology of the final solution looks 
like, it is thus advisable to use one or more intermediate 
topologies as the starting points. Another observation is that 
genetic programming is able to break the symmetry in the 
initial population and evolve toward the target topology even 
if it starts with the opposite topology type, such as evolving 
from bush to chain topology.  

D. Evolvability and scalability of topology search with 
causally-well-posed primitives 

As is generally true, the evolvability of topology search 
depends strongly on the correlation of the topology with its 
fitness. The less rugged and deceptive the fitness landscape, 
with respect to changes caused by single applications of 
genetic operators, the easier the problem will be to solve. In 
the eigenvalue problem, we find a correlation between 
topologies and their functional behavior. We saw above that 
the 8 to 20-eigenvalue problems were solved fairly quickly; 
Identifying the target bush topology from 823,065 possible 
topologies using only 29506 evaluations demonstrates the 
search capability of GP for topology search. Next, we used 
the same experiment settings to try to solve 24-eigenvalue 
problems, except that the population size was increased to 
2000, maximum number of evaluations to 500,000, and the 
maximum tree depth increased to 30. Unfortunately, current 
node encoding approach failed to find the target bush 
topology.  

This failure can be attributed to several causes. One is the 
high epistasis and multimodality of the topology search 
space. The resulting low neutrality and sparseness of 
intermediate solutions make it extremely difficult to find the 
target topology. The lack of effective local topology search 
mechanisms as discussed in section IV.B is another factor. 
Moreover, the standard genetic programming, with its 
random crossover and mutation, is random in its choice of 
directions to explore, and perhaps that is too unstructured to 

 
Fig 3.  Insert_J0C_J1I_R function and hybrid encoding approach for bond graph evolution 



 
 

 

succeed in such cases. It often leads to random scrambling, 
most of which destroys the framework discovered so far and 
wastes search effort.  

V. CONCLUSIONS 
We have introduced a well-defined scalable benchmark 

problem for studying automated synthesis of dynamic 
systems—the eigenvalue placement problem, based on the 
bond graph representation. For this problem, we found that 
similar topologies of bond graphs lead to somewhat similar 
behaviors in terms of their eigenvalue distributions. This 
correlation between structure and function of the problem is 
important for efficient topology search. Without some 
significant correlation, such inverse problems are essentially 
intractable. 

Using genetic programming as the topology search engine, 
and on a fixed-parameter reduced version of the problem, we 
investigated the properties of the topology-only search space, 
which has quite different properties from other (parametric) 
search problems, including low neutrality, high 
multi-modality, discreteness, and lack of information to 
guide local topology search. We find that standard genetic 
programming, with node-encoding only, can easily solve up 
to 20-eigenvalue problems, but has difficulty to scale to 
24-eigenvalue problems (with a search space of 39,299,897) 
or higher. Two encoding schemes, node-encoding and hybrid 
(node and edge) encoding are compared, applied to the 8- to 
20-eigenvalue problems. The result is that node encoding is 
much better than the hybrid encoding in terms of scalability 
and robustness. It turns out that incompatibility of the 
“genes” in the hybrid encoding introduces too strong a bias 
for bush topology search. However, its bias enables it to find 
chain topology very efficiently. With topology transforming 
experiments, we confirmed that appropriate population 
seeding is beneficial to the search process. If faced with an 
unfamiliar problem, it appears to be better to seed with 
diverse topologies. We have intentionally neglected 
parameter search, which we have treated elsewhere in the 
context of topology search [9].  

Our experiments showed that current developmental 
genetic programming is powerful for topological search in 
design innovation. But it still lacks some essential 
mechanisms to scale up to even larger size dynamic system 
synthesis problems, at least unless enormous population sizes 
and numbers of evaluations are used. One promising 
direction appears to be introduction of mechanisms for 
framework or module discovery and reuse. A second is a 
local genotype operator that exploits the locality of topology. 
Another possible improvement may come from smarter 
crossover and mutation operators rather than the random 
swapping and mutation of GP sub-trees.  
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