

Abstract—We have introduced a well-defined scalable

benchmark problem—the eigenvalue placement problem––to
investigate scalability issues in automated topology synthesis of
mechatronic systems based on bond graphs and genetic
programming. This classical inverse problem shares
characteristics with many other system synthesis problems,
such as electric circuit and controller synthesis, in terms of
epistasis and multi-modality of the search space. Critical issues
of open-ended topology search by genetic programming are
investigated, including encoding, population seeding, scalability
and evolvability. For the eigenvalue problems, we have found
there exists a correlation between structure and function that is
important for efficient topology search. Standard genetic
programming has been used to solve up to 20-eigen-value
problems, finding the target system of bush topology out of
823,065 possibilities with only 29506 topology evaluations.

I. INTRODUCTION
omputational synthesis as a solution to open-ended
design problems has received increasing attention from

many design areas [1]. Notably, many success stories with
automated evolutionary synthesis have been recently
reported, including automatically synthesized electric
circuits infringing several recent patents [2], an automatically
created general-purpose non-PID controller [2],[3] for which
a patent is sought, mechatronic systems [5], [6], and digital
circuits [10]. It can be observed that a large number of
open-ended design problems can be summarized as: given a
set of heterogeneous functional building blocks,
connection/combination rules or constraints, and the
functional requirements, how can one synthesize a solution to
achieve the desired system behavior, automatically or

This work was supported in part by the Dissertation fellowship program
of College of Engineering, Michigan State University, East Lansing, MI,
48823 and by National Science Foundation under contract DMI0084934.

Jianjun Hu is with the Department of Computer Science and
Engineering, Michigan State University, East Lansing, MI, 48823, USA
(phone: 517-355-3796; e-mail: hujianju@ cse.msu.edu).

Erik D. Goodman is with Department of Electrical and Computer
Engineering, Michigan State University, East Lansing, MI, 48823, USA
(e-mail: goodman@egr.msu.edu).

Ronald Rosenberg is with the Department of Mechanical Engineering,
Michigan State University, East Lansing, MI, 48823, USA (e-mail:
rosenber@egr.msu.edu).

interactively? The difficulty lies in that one needs to identify
the appropriate topology of the system as well as its
appropriate parameters, simultaneously, from an
extraordinarily large search space, to achieve the desired
behavior.

Despite the apparent difficulty, the examples cited above
have been offered as an existence proof of the adequacy of
genetic programming for addressing that challenge in some
areas of open-ended design innovation [2]. However, critical
issues remain concerning effective design of such a tool for
open-ended topological exploration, leaving the prospective
practitioners with many seemingly arbitrary decisions to
make. While there is increasing concern over the scalability
of generic evolutionary synthesis, in applications such as
evolvable hardware [12], and digital circuit design [13],
there are few explicit theoretical and experimental studies in
the context of topological search per se on issues like
appropriate representations, appropriate levels of building
blocks, topological operations employed in the search
process, scalability, and balanced topological and parameter
search. One reason can be traced to the difficulty of
establishing common benchmark problems, accessible to all
researchers, requiring relatively small amounts of
computational resources, and representative of multiple
design domains.

In this paper, we introduce a set of carefully designed
open-ended system synthesis benchmark problems and
investigate issues involved in search-based automated
topology synthesis––in particular, in genetic programming.
Our goal is to enable synthesis of high-performance systems
with several dozen components within a few CPU-days of
computing effort, rather than taking several days of
computing by hundreds of PCs, as Koza typically uses [2]. In
this paper, systems to be synthesized are represented by bond
graphs [14] – a multi-domain modeling scheme which can
unify design domains such as analog circuits, mechatronic
systems, and controllers. One of our test problems is called
the eigenvalue placement problem, which has a tunable
problem size in terms of order of a dynamic system. We
adopt a systematic divide-and-conquer strategy to investigate
critical issues in evolutionary topology search by genetic

Topological Search in Automated Mechatronic
System Synthesis Using Bond Graphs and

Genetic Programming
Jianjun Hu, Erik Goodman, Ronald Rosenberg

C

programming; early progress in the first step, a
topology-only search investigation, is reported in this paper.

II. BOND GRAPH-BASED SYSTEM SYNTHESIS BY GENETIC
PROGRAMMING

A. Bond Graphs
The bond graph is a multi-domain modeling tool for

analysis and design of dynamic systems, especially hybrid
multi-domain systems including mechanical, electrical,
pneumatic, hydraulic, etc. [14]. One of the advantages of
using bond graphs for open-ended design exploration is that
complex loops typical in electric circuits can be transformed
into tree-like structures by the bond graph’s 1-junction (serial
connection) and 0-junction (parallel connection) concepts,
which tend to be easier to evolve in general. Details of
notation and methods of system analysis related to the bond
graph representation can be found in [14]. Many researchers
have explored the bond graph as a tool for design [11], [15].
Design of controllers by augmenting bond graphs with
signals (as used in “block-diagram” representations) has also
been practiced [16]. Fig 1 illustrates a bond graph that
represents either of the accompanying electrical or
mechanical systems.

B. Automated synthesis by genetic programming
Genetic programming (GP) [4] is an extension of the

genetic algorithm. The distinctive feature of genetic
programming is that it aims to evolve variable-length
open-ended structures such as computer programs, so is
widely used in open-ended problems. We use a
developmental strongly-typed genetic programming method
as described in [4] to evolve a program tree, whose
pre-ordered execution will grow a given minimal embryo
bond graph into a complex design solution. Fig 2 illustrates
how an embryo bond graph (a) can be developed into a
complex solution (d) by executing a program (c) which
manipulates the topology and parameters of the growing
embryo at each step. By iterative application of evaluation,
crossover, mutation, and selection operators, a genetic
programming can evolve a population of better and better
bond graph-generating GP trees as the one in Fig 2.(c).
Further details can be found in [6]. It is important to note that
the embryo, the function set, and the type of modifiable sites

are all factors influencing the search efficiency.

III. THE EIGENVALUE PLACEMENT PROBLEM: A BENCHMARK
FOR AUTOMATED SYSTEM SYNTHESIS

Designing a good benchmark problem for investigating
open-ended system synthesis is difficult for several reasons.
The generic electrical circuit synthesis problem of Koza et al.
[4], widely known as it is, requires a complicated simulation
package such as SPICE, and the simulation complexity is
fairly high. Other topology synthesis problems, such as
molecule design, suffer from the lack of a “standard” and
universally available simulation engine. Communication
network design [7], neural network design [8] and other pure
graph-oriented topology synthesis procedures [19], however,
have quite different characteristics in terms of the search
space and the fitness landscape. As a result, we introduce a
set of bond graph-based benchmark problems for evaluating
methods and identifying issues in automated evolutionary
synthesis of mechatronic systems.

The benchmark problem proposed is called the eigenvalue
placement problem, in which an analog circuit represented as
a bond graph model is to be synthesized (including its
topology and sizing of components) to achieve a specific
behavior. The bond graph model domain to be used is
composed of a set of inductors (I), resistors (R), capacitors
(C), transformers (TF), gyrators (GY), and Sources of Effort
(SE). Our synthesis task in the K-eigenvalue placement
problem is to evolve a dynamic system with K eigenvalues
that approximate a pre-specified set as closely as possible.
By increasing the number of eigenvalues (K) (and,
correspondingly, the order of the dynamic system), we can
define a sequence of synthesis problems of increasing
difficulty, for use in evaluating the scalability of various
techniques. The problem difficulty can also be varied by
choosing different sets of primitive building blocks
(modules) to be used in the search process. In this paper, we
use a set of causally well-posed primitives (CWP), in which
each junction has a resistor attached, 1-junctions always have
an inductor attached, 0-junctions have a capacitor attached,
0-junctions can only be adjacent to 1-junctions, and
vice-versa. Such systems are readily realized in the form of
mechanical systems as well as in the electrical domain. The
space of all possible topologies generated using these

k
F(t) m

b

x

L i

R

C

Se

C

I1

R
Fig 1. Bond graph as a unified modeling tool for mechanical and electric systems

primitives consists of connected graphs without loops (i.e.,
trees), and the conditions are strong enough to guarantee that
the corresponding systems satisfy causality constraints.

Given a bond graph model, the fitness evaluation is
conducted as follows:

1) Derive the A matrix of the state space model from the
bond graph model [14].

2) Compute the eigenvalues of the A matrix (code to do
this is widely available, or a procedure converted
from Matlab may be used, for example)

3) Match the resulting eigenvalues to the target
eigenvalue set to compute a relative-distance-based
error measure by Procedure 1.

4) Calculate the fitness of the bond graph by normalizing
that error measure into a fitness value (to be
maximized) between 0 and 1 according the following
scaling rule:

 if distance/order <0.1 then
fitness = 0.1 /(0.1+distance/order)

 else fitness = 5.05 /(10+distance/order)
 where order is the number of energy-storing
components (capacitor and inductors).

The fitness scaling measure in 4) above is chosen such that
50% of the fitness range is occupied by error measures
greater than 0.1, and the remainder is used for error measures
less than 0.1. It is continuous, with a single slope
discontinuity, and approaches 1 asymptotically as the error
measure approaches 0. This transformation converts the
fitness into the classical maximization form of evolutionary
computation, without a singularity for an error of 0 (an exact
match of candidates to the targets). Note that many
evolutionary methods (using tournament or rank-based

selection, for example) will not require or be sensitive to the
scaling suggested in step 4,

Procedure 1. calculating distance between two sets of eigenvalues

Input: target eigenvalue set (,), 1,...,t t
i i tx y i O= ,

where tO is the number of target eigenvalues;

 candidate eigenvalue set (,), 1,...,i i cx y i O= , where cO is

the number of candidate eigenvalues.
Output: summed relative distances between two sets of eigenvalues

if order (cardinality) of candidate set cO is different from that of target

set, tO return ∞

otherwise

calculate the average length avel of target eigenvalues (distance from

the origin),
1

tO

ave i
i

l l
=

= ∑ , il is the length of thi target eigenvalue

label all eigenvalues as unmatched
distance ← 0

for i = 1 to tO

 find an unmatched candidate eigenvalue j, which is closest to target
eigenvalue i
 label the candidate eigenvalue j as matched

 distance ← distance +
2 2() () /t t

j i j i avex x y y l− + −

where (,)j jx y is the candidate eigenvalue,

and (,)t t
i ix y is the current target eigenvalue i.

end for
return distance;

Fig 2. (a) The embryo bond graph used in all the experiments of this paper––the 1-junction node in rectangle is a modifiable site where a new
construct can be added; (b) the function set for bond graph topological modification (topology manipulating operators) called node-encoding
approach; (c) An example of the GP tree, composed of topology operators; (d) the developed bond graph after the depth-first execution of (c).

A. Some interesting variants of this problem formulation
It is possible to use this problem formulation in at least two

interesting ways. First, a set of eigenvalues may be generated
arbitrarily, without knowledge of a system that would have
such a set of eigenvalues. This provides an open-ended
problem with no known answer and unknown properties.
Second, it is possible, and often useful, to start from a known
system, calculate its eigenvalues, and use that set as the
target, thereby providing a target with at least one known
optimal solution (error 0, fitness 1). This allows the user to
readily assess the efficiency of the evolutionary design
system as a global optimizer.

This problem formulation explicitly specifies the order of
the system. It is useful and often pre-specified in real-world
applications, as cost often correlates well with order.
Alternative formulations could allow candidate systems of
higher order than the target to receive finite error measures,
but require that unmatched eigenvalues be outside the range
of the target set, for example. Another interesting
formulation of the problem, with many of the same properties
but requiring much less computational effort, would use the
coefficients of the characteristic polynomial of the A matrix
as the targets to be matched by those coefficients of
candidate systems, thereby avoiding the cost of numerically
calculating the eigenvalues. However, systems with widely
differing eigenvalues can possess only small differences in
characteristic polynomials, so the authors have chosen here
to study the eigenvalues themselves, with the hope of better
illuminating structure/function relationships in the systems
evolved.

IV. EXPLORATION OF TOPOLOGY-ONLY SEARCH IN BOND
GRAPH SYNTHESIS

Solution of the dynamic system synthesis problem posed
involves the need to solve simultaneously for the topology
and parameters of the system––the goodness of a topology
cannot be assessed without assigning values to its
parameters, and a set of parameters independent of the
topology to which they are assigned defines no performance
at all. Here we shall begin to explore the properties of the
various topology-affecting search operators by looking at a
dramatically reduced sub-problem that eliminates the
requirement for parameter searching by making them all
identical at unity (i.e., all resistors, capacitors, and inductors
have numerical parameters of 1.0). To explore such systems,
the target eigenvalue sets are determined from assorted
topologies with unit parameters for all of their components.
Since parameter search is very expensive for high-order
eigenvalue problems, this topology-only search defines a
much simpler problem, but one that may illuminate
properties of the topology search for the more general
problems. The function set primitives used here restrict the
resulting bond graphs to having C components attached to

each and only 0-junctions and I components attached to each
and only 1-junctions, which results in systems readily
realizable in any energy domain and which need not be
checked for being causally well-posed. Of course, it is only a
sub-problem of the more general case in which I components
might optionally be attached to 0-junctions and C
components to 1-junctions, as well.

A. Properties of the topological space in bond graph
synthesis with causally-well-posed sets
The size of the topology-only search space, expressed in
terms of distinct bond graph junction structures, has been
enumerated [18]. Since each 0-junction or 1-junction in the
causally well-posed function set used has a determined set of
attached components (the 1-junction has I and R, while the
0-junction has C and R), and since the embryo contains a
fixed 1-junction, counting the junction topologies also counts
the distinct bond graph topologies, and number of junctions
and order of system are identical. For systems of order four,
there are only two possible bond graphs. For order 8, there
are 23 different bond graphs; for 12, there are 551; for 16,
there are 19,320, for 18 there are 128,340, and for 20, it is
823,065). It is obvious that the search space increases
quickly with increasing number of components. However,
since multiple GP trees may map to the same bond graph
topology, the genotype search space is actually much larger.

In the following experiments, we choose the three bond
graph topologies in Table 1 as our targets:

Table 2 shows the search effort to find the target
topologies of an 8, 12, 16, 18, and 20-eigenvalue problems
using a generational GP with population size 500 for 8 and
12-eigenvalue problems, and 1000 for 16 and higher order
-eigenvalue problems (with 20 runs for each target). Other
primary parameters for the GP runs are as follows:

crossover rate: 0.4; mutation rate: 0.05; tournament
selection with tournament size: 7; subtree swap mutation:
0.55 (this operator chooses two separate subtrees of the
same individual and swaps them, preserving system
order); initialization: ramped-half-and-half initialisation to
generate random trees with maximum depth of 5. Maximal
evaluations: 100,000 for 8 and 12 eigenvalue problems,
200,000 for 16, 18, 20-eigenvalue problems.

From Table 2, it turns out genetic programming can easily
find the target topology for 8 to 20 eigenvalue problems and
the node-encoding method is a little biased for bush
topologies.

B. Gene compatibility and its influence on the efficiency of
topology search

In the experiments above, we used a minimal function set
{EndNode, Add_J_CI_R}, which employs a node-encoding
approach to cover all possible tree-structured bond graphs
with the restricted set of components attached to each
junction as illustrated in Fig 2. This method solves the
8-eigenvalue problems easily. However, when we first began

studying this problem, we employed a hybrid encoding
approach by allowing both the junctions (nodes) and the
bonds (edges) to be modifiable sites, where new structures
could be inserted or attached. This approach is widely used
by Koza and others [4, 19]. The motivation is that the
encoding should be as flexible as possible and every point
can be modified. Correspondingly, we added two additional
GP functions: a) Insert_J0C_J1I_R, which inserts a
0-junction and 1-junction pair into a bond to maintain
causality, and b) EndBond.

Fig. 3 illustrates that all constructs in the bond graph
become modifiable sites and thus might be expected to allow
more rapid or effective evolution. However, experimental
results (Table 3) are quite surprising. While this hybrid
encoding approach has no difficulty on the 8 to
18-eigenvalue problems, its bias makes it unable to scale to
the 20-eigenvalue problem for bush target topologies. Many
more evaluations are needed to find bush topology, and in
most cases, it can’t find it at all. However, it is pretty good for
finding chain topology, using 1/3 of evaluations of
node-encoding methods. But in general, node encoding is
more robust to search target topologies.

It is apparent that the hybrid encoding method is
comparable to node-encoding approach for the easy
8-eigenvalue problems when searching for intermediate and
chain topologies, but at the cost of slower search on the bush
topology caused by its bias, while the unbiased
node-encoding achieves similar performance for all types of
topologies. But for the 12-eigenvalue problems, hybrid
encoding is much worse than node-encoding when searching
for bush-type topologies, 12 runs out of 20 fails to find the
target within 100,000 evaluations. After examining where the
difficulty comes from, it is observed that the hybrid-encoding
approach can find a topology fairly similar to the target
topology quite quickly. However, since there are two types of
genes in the genome (bond manipulation and junction
manipulation), it is highly constrained in local manipulations
of the genome because of the gene incompatibility. It thus
lacks sufficient local topology modification capability. The
superficial flexibility in the phenotype space with all possible
modifiable sites hides the rigidity in the genotype
manipulation capability. In contrast, the node-encoding
approach allows very flexible genotype manipulation and
thus is able to achieve better results.

Table 1: Three types of target bond graph topologies (the attached C, I, and R elements are omitted for simplicity)

target topology structure

bush topology

intermediate topology

chain topology

Table 2: Topology search with node-encoding approach for three types of target topologies for 8 to 20-eigenvalue problems.

target
topology

mean (std. dev.)
order= 8

mean (std. dev.)
order= 12

mean (std. dev.)
order= 16

mean (std. dev.)
order= 18

mean (std. dev.)
order= 20

bush 1759(± 385) 3971 (± 858) 19407(± 3189) 26504(± 3470) 29506(± 3687)
intermediate 1466(± 340) 1999 (± 331) 14207(± 2029) 22356(± 3157) 25783(± 3451)

chain 1649(± 384) 3579 (± 677) 27782(± 5326) 35961(± 8058) 46651(± 10588)

Table 3: Searches with hybrid encoding approach for three types of target topologies for 8-, 12-, 16-, 18, 20-, eigenvalue problems,

 each with 20 runs. Parameter setting is the same with Table 2.
mean (std. dev) number of evaluations for topology search target topology

order 8 order 12 order 16 order 18 order 20
bush

3031 (± 1392)
8 runs succeed
7228(± 2440)

8 runs succeed
40871(± 4908)

6 runs succeed
48920(± 8896)

All failed

intermediate 821 (± 246) 2851(± 1095) 1634 (± 4587) 24987(± 6787) 36549(± 7632)
chain 792 (± 169) 854(± 397) 5133(± 1968) 368(± 2177) 11885(± 4032)

C. Effect of initial population seeding on the efficiency of
topology search

One common practice in evolutionary synthesis is to seed
the initial population with individuals of a certain property.
In [17], the initial population is seeded with different types of
components whose proportions are extracted from existing
molecule designs. To evaluate the impact of various
population initialization methods, a set of topology
transformation experiments was conducted. We started from
an initial population with identical individuals (bond graph
constructor trees) whose execution will generate an identical
source topology––e.g., the bush topology. Then we evolved
this initially uniform population toward a target topology.
The experimental results are summarized in Table 4, with
means and standard deviations. Each source-target pair
experiment was repeated 20 times, all with same parameters
as in Table 2.

Table 4. Topological transformation with different initial homogenous
populations

mean (std. dev) evaluations target
topology

initial uniform
 topology

Bush Intermediate chain

bush N/A
2825

(± 411)
3433

(± 396)

intermediate
2348

(± 471)
N/A

1864
(± 359)

chain
3183

(± 294)
2227

(± 273)
N/A

It is interesting that since bush and chain topologies
represent the two extremes, transformation between them is
most difficult, while transformation from the selected initial
intermediate to either chain or bush is much easier. As the
intermediate topology is between bush and chain topologies
in some sense, our results confirm that seeding with a more
similar topology will speed up the evolution. If one does not

have any idea of what the topology of the final solution looks
like, it is thus advisable to use one or more intermediate
topologies as the starting points. Another observation is that
genetic programming is able to break the symmetry in the
initial population and evolve toward the target topology even
if it starts with the opposite topology type, such as evolving
from bush to chain topology.

D. Evolvability and scalability of topology search with
causally-well-posed primitives

As is generally true, the evolvability of topology search
depends strongly on the correlation of the topology with its
fitness. The less rugged and deceptive the fitness landscape,
with respect to changes caused by single applications of
genetic operators, the easier the problem will be to solve. In
the eigenvalue problem, we find a correlation between
topologies and their functional behavior. We saw above that
the 8 to 20-eigenvalue problems were solved fairly quickly;
Identifying the target bush topology from 823,065 possible
topologies using only 29506 evaluations demonstrates the
search capability of GP for topology search. Next, we used
the same experiment settings to try to solve 24-eigenvalue
problems, except that the population size was increased to
2000, maximum number of evaluations to 500,000, and the
maximum tree depth increased to 30. Unfortunately, current
node encoding approach failed to find the target bush
topology.

This failure can be attributed to several causes. One is the
high epistasis and multimodality of the topology search
space. The resulting low neutrality and sparseness of
intermediate solutions make it extremely difficult to find the
target topology. The lack of effective local topology search
mechanisms as discussed in section IV.B is another factor.
Moreover, the standard genetic programming, with its
random crossover and mutation, is random in its choice of
directions to explore, and perhaps that is too unstructured to

Fig 3. Insert_J0C_J1I_R function and hybrid encoding approach for bond graph evolution

succeed in such cases. It often leads to random scrambling,
most of which destroys the framework discovered so far and
wastes search effort.

V. CONCLUSIONS
We have introduced a well-defined scalable benchmark

problem for studying automated synthesis of dynamic
systems—the eigenvalue placement problem, based on the
bond graph representation. For this problem, we found that
similar topologies of bond graphs lead to somewhat similar
behaviors in terms of their eigenvalue distributions. This
correlation between structure and function of the problem is
important for efficient topology search. Without some
significant correlation, such inverse problems are essentially
intractable.

Using genetic programming as the topology search engine,
and on a fixed-parameter reduced version of the problem, we
investigated the properties of the topology-only search space,
which has quite different properties from other (parametric)
search problems, including low neutrality, high
multi-modality, discreteness, and lack of information to
guide local topology search. We find that standard genetic
programming, with node-encoding only, can easily solve up
to 20-eigenvalue problems, but has difficulty to scale to
24-eigenvalue problems (with a search space of 39,299,897)
or higher. Two encoding schemes, node-encoding and hybrid
(node and edge) encoding are compared, applied to the 8- to
20-eigenvalue problems. The result is that node encoding is
much better than the hybrid encoding in terms of scalability
and robustness. It turns out that incompatibility of the
“genes” in the hybrid encoding introduces too strong a bias
for bush topology search. However, its bias enables it to find
chain topology very efficiently. With topology transforming
experiments, we confirmed that appropriate population
seeding is beneficial to the search process. If faced with an
unfamiliar problem, it appears to be better to seed with
diverse topologies. We have intentionally neglected
parameter search, which we have treated elsewhere in the
context of topology search [9].

Our experiments showed that current developmental
genetic programming is powerful for topological search in
design innovation. But it still lacks some essential
mechanisms to scale up to even larger size dynamic system
synthesis problems, at least unless enormous population sizes
and numbers of evaluations are used. One promising
direction appears to be introduction of mechanisms for
framework or module discovery and reuse. A second is a
local genotype operator that exploits the locality of topology.
Another possible improvement may come from smarter
crossover and mutation operators rather than the random
swapping and mutation of GP sub-trees.

REFERENCES
[1] E. K. Antonsson and J. Cagan. Formal Engineering Design Synthesis,

Cambridge University press, Cambridge, 2001.
[2] J. R. Koza, M. A. Keane, M. Streeter, J., Mydlowec, William, J.Yu,

and G. Lanza,.Genetic Programming IV: Routine
Human-Competitive Machine Intelligence. Kluwer Academic
Publishers, 2003.

[3] J. R. Koza, M. A. Keane., J. Yu, F.H. Bennett III, and W. Mydlowec,
“Automatic creation of human-competitive programs and controllers
by means of genetic programming”, Genetic Programming and
Evolvable Machines. 1 (1 -2), pp.121 – 164, 2000.

[4] J. R. Koza, F.H. Bennett III, D.Andre, M.A. Keane, Genetic
Programming III: Darwinian Invention and Problem Solving,
Morgan Kaufmann, San Francisco, 1999.

[5] K. Seo, J. Hu, Z. Fan, E. D. Goodman, and R. C. Rosenberg,
“Automated Design Approaches for Multi-Domain Dynamic Systems
Using Bond Graphs and Genetic Programming”. The International
Journal of Computers, Systems and Signals, vol.3, no.1, pp.55-70,
2002

[6] K. Seo, Z. Fan, J. Hu, E. D. Goodman, and R. C. Rosenberg, “Toward
an Automated Design Method for Multi-Domain Dynamic Systems
Using Bond Graphs and Genetic Programming,” Mechatronics, V.
13, Issues 8-9, pp. 851-885, 2003.

[7] B., Dengiz, F. Altiparmak & A.E. Smith, “Local search genetic
algorithm for optimal design of reliable networks”,IEEE Transactions
on Evolutionary Computation v1 n3, September 1997, pp.179-188

[8] K.O. Stanley and,R. Miikkulainen, “Evolving Neural Networks
through augmenting topologies”, Evolutionary Computation 10(2),
pp.99-127, 2002.

[9] J. Hu, K. Seo, S. Li, Z. Fan, R. C. Rosenberg, E. D. Goodman,
"Structure Fitness Sharing (SFS) for Evolutionary Design by Genetic
Programming," Proceedings of the Genetic and Evolutionary
Computation Conference, GECCO-2002, New York, July, 2002, pp.
780-787.

[10] J. F. Miller, D. Job, and V. K. Vassilev, “Principles in the
Evolutionary Design of Digital Circuits -- Part I”. Journal of Genetic
Programming and Evolvable Machines, 1(1), 2000, pp. 8-35.

[11] R.F. Ngwompo, S. Scavarda, and D. Thomasset, “Physical
model-based inversion in control systems design using bond graph
representation”, Journal of Systems and Control Engineering,
215(12), pp.95-103., 2001.

[12] T.G..M. Gordon and P.J. Bentley (2002), “Towards Development in
Evolvable Hardware”. In Proceedings of the 2002 NASA/DoD
Conference on Evolvable Hardware, Washington D.C., U.S.A., July
15-18, 2002, pp. 241-250.

[13] V. K. Vassilev and J. F. Miller, "Scalability Problems of Digital
Circuit Evolution",in Proceedings of the 2nd NASA/DOD Workshop
on Evolvable Hardware, IEEE Computer Society, pp. 55-64, 2000.

[14] D. C. Karnopp, D. L. Margolis and R. C. Rosenberg. System
Dynamics: Modeling anrd Simulation of Mechatronic Systems. Third
Edition. New York: John Wiley & Sons, Inc, 2000.

[15] E. Tay, W. Flowers and J. Barrus, “Automated Generation and
Analysis of Dynamic System Designs”, Research in Engineering
Design, 10 (1), 15 – 29, 1998.

[16] K. Youcef-Toumi, “Modeling, Design, and Control Integration: A
necessary Step in Mechatronics”, IEEE/ASME Trans. Mechatronics,
1(1), 29-38, 1996.

[17] R. B. Nachbar, “Molecular Evolution: Automated Manipulation of
Hierarchical Chemical Topology and Its Application to Average
Molecular Structures”, Genetic Programming and Evolvable
Machines 1(1): 57-94, 2000.

[18] F. Harary and E. Palmer. (1973) Graphical Enumeration. Academic
Press, New York.

[19] S. Luke, and L. Spector, “Evolving Graphs and Networks with Edge
Encoding: Preliminary Report”. In Koza, John R. (editor),
Late-Breaking Papers at the Genetic Programming 1996
Conference. Palo Alto, CA.,1996.

