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Abstract 

We explored how integration of different protein-protein 

correlation (PPC) networks improves the performance of a 

network based classifier, NetLoc, in predicting protein 

subcellular localization. We investigated different 

integration approaches and evaluated their performance. 

Results showed that integration of different PPC networks 

improves NetLoc performance ranging from 3% to 49% 

depending on the base networks for integration and the 

integration approaches. 
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1. INTRODUCTION 

Literature shows that integrating multiple evidences can 

greatly improve the prediction accuracy [1-3] of classifiers 

for predicting protein localization. Wolf-PSort [1] achieved 

competitive results by combining features from PSORT, 

iPsort, amino acid content, and sequence length. Drawid 

and Gerstein [2] proposed a naïve Bayesian classifier to 

integrate features including motifs, sequence properties, 

and whole-genome gene expression features. Recently, 

Scott et al. [3] proposed a two-level Bayesian network 

approach to integrate information from InterPro motifs, 

targeting signals, and protein interacting partner 

relationships. 

In our previous work [4], we proposed a network based 

approach for protein localization prediction. We showed 

that different protein-protein correlation networks such as 

physical protein-protein interaction (PPPI), genetic PPI 

(GPPI), mixed PPI (MPPI), and co-expressed PPI 

(COEXP) carry different levels of localization information 

and the performance of the proposed algorithm, NetLoc [4], 

depends on the topological characteristics such as 

connectivity and percentages of co-localized PPIs in the 

network [5]. Figure 1 presents the distribution of PPIs 

among 4 different networks: PPPI(P), GPPI(G), MPPI(M), 

and COEXP70(C). Most of the PPIs of each network are 

not shared by other networks. For example, in PPPI 

network 43363 out of 50997 PPIs are not shared by other 

three networks. Similarly, GPPI has 103631 PPIs and 

95120 PPIs are not shared by other three networks. So, 

integration of different networks would change the 

topological characteristics of the resulting network and may 

improve the prediction performance. 

In the present study, we developed a PPC network based 

integration framework for protein localization prediction. 

This method is inspired by the successful application of 

network integration methods in protein/gene function 

prediction [6]. Integration of different networks may or 

may not change the scope of the resulting network from the 

original networks depending on the integration approach. 

The scope of a network in the present context is concerned 

with either the number of proteins in the network or the 

number of annotated proteins in the network or the number 

of PPIs in the network. Our objective is to find a unified 

network, with maximum scope in terms of network proteins 

and annotated proteins for a species by combining all 

available networks, which could be used as the standard 

network for protein localization prediction for that species. 

 

 

 

 
Figure 1. Distribution of PPIs in different networks 
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2. UNIFIED NETWORK FOR A SPECIES 

Different kinds of PPI networks exist for a species and 

they provide different level of information for protein 

localization as mentioned earlier.  One reasonable question 

to ask is how to come up with a unified network for 

network based classifiers such as NetLoc, which can be 

then used as the standard network for predicting protein 

subcellular localization for that species. Before 

enumerating the properties of the unified network, we 

define the following terms: 

Co-Localized PPIs (coPPIs): PPIs for which both proteins 

are localized at the same location. 

Non-co-localized PPIs (ncPPIs): PPIs for which two 

proteins are localized at two different locations. 

Signal to Noise Ratio (SNR): Ratio of coPPIs to ncPPIs. 

Density of coPPI (DCOP): Number of coPPI per annotated 

protein. 

Based on the results presented in [5, 7], criteria for a 

unified network for protein localization include: i) the 

network should have high values of SNR and DCOP [7]; ii) 

the network should have large connected components [5]; 

iii) the network should have maximum possible scope with 

respect to the number of proteins and the number of 

annotated proteins i.e., network with most of the proteins in 

a genome; and iv) the network should have more coPPIs. 

The more the coPPIs the better is the network [7]. 

Answers to the following questions would help in 

finding the unified network for a species. Question-1: 

which type of PPIs carries more information about protein 

localization? Question-2: does removing some PPIs from 

any network improve the performance? Question-3: how 

does the integration approach affect the performance? 

Question-4: which approach should we use to integrate 

different networks?  
 

3. DATA AND METHODS   

3.1 Datasets 

We conducted experiments on data sets for 

Saccharomyces cerevisiae used by Mondal and Hu [4, 5, 7]. 

Two networks, physical PPI (PPPI) network and genetic 

PPI (GPPI) network, are obtained from BioGRID [8], 

mixed PPI (MPPI) network is from MIPS [9] and the co-

expression (COEXP) network is from gene expression data 

of Stanford University [10]. PPPI contains only physical 

interactions whereas MPPI contains both physical and 

genetic interactions. MPPI has much less interactions since 

it has not been updated since 2006.  

The localization data of Huh et al. [11] was used as the 

basis for annotation. The experiment was carried out using 

high-resolution localization (22 locations) for networks 

COEXP70, GPPI, MPPI and PPPI. Table 1 shows the 

summary of the four network datasets used in this study. In 

terms of the number of interactions, GPPI is the largest 

network followed by PPPI, COEXP70 and MPPI. 

Considering the number of proteins, PPPI is the largest 

network followed by GPPI, MPPI and COEXP70. GPPI is 

the densest graph, meaning it has the highest values in 

terms of the average degree of nodes, followed by PPPI, 

COEXP70 and MPPI. The PPPI network has the largest 

number of proteins with annotated localization followed by 

GPPI, MPPI, and COEXP70.  

TABLE 1. PPC Networks and Annotation 

Property COEXP70 GPPI MPPI PPPI 

Number of 

PPIs 
11954 103631 11421 50997 

Number of 

Proteins 
2004 5252 4319 5477 

Average 

Degree of 

Nodes 

11.92 39.46 5.28 18.62 

Number of 
Annotated 

Proteins 

1479 3732 3026 3803 

Localization 1961 4947 4049 5039 

 

3.2 Integration Approaches  

3.2.1 Integration without changing the scope of the base 

network 

In this approach, a network is firstly selected as the 

base network. Interactions from other networks that fit into 

the base network are imported to the base network. This 

integration does not change the scope of the base network 

in terms of network proteins and annotated proteins. The 

only changes are the number of PPIs or edges in the 

integrated network. This integration can be carried out in 

two different methods. In the first method, all types of PPIs 

from other networks that fit into the base network are 

imported and in the second method, only the coPPIs from 

other networks that fit into the base network are imported. 

In the second method we are avoiding importing noises or 

ncPPIs to maintain lower level of noise in the integrated 

network. For subsequent discussion, the scope of the 

integrated network in first method is called scope-1 and in 

second method it is called scope-2. 

Table 2 summarizes the network structures before and 

after integration without changing the scope of the base 

network in terms of network proteins and annotated 

proteins. For example, for integration considering MPPI as 

the base network, the number of network proteins (4319) 

and annotated proteins (3026) in the resulting integrated 

network remains the same as the base network. Integration 

using scope-1 produces a network with 119965 PPIs and 

scope-2 produces a network with 49066 PPIs. It is clear 

that integrated network with scope-2 is more connected 

(more edges or PPIs) than the base network (49066 > 

11421) and network with scope-1 is more connected than 

network with scope-2 (119965 > 49066) as expected. 
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Table 2 Networks upon integration without changing the scope of 
the base network 

  Proteins PPIs 

Networks Network Annotated Base Scope-1 Scope-2 

COEXP70 2004 1479 11954 34688 20468 

GPPI 5252 3732 103631 157423 124839 

MPPI 4319 3026 11421 119965 49066 

PPPI 5477 3803 50997 158983 83457 

 

3.2.2 Integration with changing the scope of the base network 

The resulting network upon union of two or more 

networks would have different scopes than the original 

networks in terms of network proteins and annotated 

proteins. In general, union of two or more networks would 

broaden the scope by increasing the numbers of both 

network proteins and annotated proteins. Two different 

methods are employed to integrate the networks in union 

approach. In the first method, the resulting network 

proteins are union of four original networks and the 

resulting annotated proteins are union of annotated proteins 

of four original networks. In the second method, a network 

is considered as the base and only the coPPIs from other 

networks are imported where coPPIs are determined based 

on the resulting annotated proteins found in the first 

method.  In the second method we are avoiding importing 

noises or ncPPIs to maintain lower level of noise in the 

integrated network. For subsequent discussion, scope in the 

first union method is called scope-3 and that in the second 

is called scope-4.  

Table 3 summarizes the network structures before and 

after integration with changing the scope of the base 

network in terms of network proteins and annotated 

proteins. By definition, integrated networks in scope-3 have 

only one value for each network for each of the network 

attributes such as network proteins (= 6079), annotated 

proteins (= 3899), and number of PPIs (=164908). For 

completeness, the same value is shown for each of the base 

networks. Integration using both scope-3 and scope-4 

increases the scope in terms of network proteins and 

annotated proteins but the increase is less in scope-4. For 

example, for COEXP70, network proteins increase from 

2004 to 4296 in scope-4 and 2004 to 6079 in scope-3. 

Similarly, annotated proteins increase from 1479 to 3771 in 

scope-4 and 1479 to 3899 in scope-3. Scope-4 produces 

integrated networks of different sizes ranging from 62203 

PPIs for COEXP70 to 126807 PPIs for GPPI. In general, 

integrated networks are more connected (more PPIs or 

edges) than the base network.  

 

 

 

Table 3 Networks upon integration with changing the scope of the 
base network.  

  Network Proteins Annotated Proteins PPIs 

Networks Base Scope-3 Scope-4 Base Scope-3 Scope-4 Base Scope-3 Scope-4 

COEXP70 2004 6079 4296 1479 3899 3771 11954 164908 62203 

GPPI 5252 6079 5389 3732 3899 3869 103631 164908 126807 

MPPI 4319 6079 5132 3026 3899 3839 11421 164908 62375 

PPPI 5477 6079 5544 3803 3899 3870 50997 164908 84057 

 

3.3 Classification Algorithm 

We applied the diffusion kernel-based logistic 

regression (KLR) model [12] as used in [4, 5, 7] to predict 

protein subcellular localization. The KLR model based 

subcellular prediction problem can be formulated as in 

[12]. Given a protein-protein interaction network with   

proteins         with   of them         with unknown 

subcellular locations, the task is to assign subcellular 

location labels to the   unknown proteins based on the 

location labels of known proteins and the protein-protein 

interaction network.  

Let [ ] 1 1 1( ,..., , ,..., )i i i NX X X X X   , 

0

,

( ) ( , ) { 0}
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j
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1
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j
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
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where ( , )K i j  is the kernel function for calculating the 

similarity distances between two proteins in the network. 

        is an indicator which indicates the interacting 

protein j does not have the location of interest and      

    indicates that protein j does have the location of 

interest. Diffusion kernel K, to represent the interaction 

network, is defined using the following equation. 

        

Where 

        
                                      

                                        
                                                              

  

Where    is the number of interaction partners of protein  , 

  is the diffusion constant, and      represents the matrix 

exponential of the Laplacian matrix  . Then the KLR 

model is given by: 
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which means that the logit of                  , the 

probability of a protein targeting a location   is linear based 

on the summed distances of proteins targeting to   or other 

location.  We then have: 
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The parameters           can be estimated using the 

maximum likelihood estimation (MLE) method. Note that 

here only the annotated proteins are used in the estimation 

procedure. 

Fig. 2 presents the schematic overview of the network-

based framework for protein localization prediction using 

the KLR model by integrating different PPC networks. 

First, an integrated network is obtained by combining 

different PPC networks using one of the four scopes. Then 

diffusion kernel type feature, which is a square matrix 

consisting of 1 (interaction) and 0 (no interaction), is 

developed for the integrated network.  
 

 

Figure 2. Protein localization prediction using the KLR model by 
integrating PPC networks. 

Annotation matrix, which is an m by n matrix, consists of 1 
(annotated) and 0 (not annotated), where m is the number 
of annotated proteins and n is the number of localizations, 
is developed from annotated proteins. KLR model is 
developed using kernel type features and annotation matrix 
using logistic regression. The KLR model produces 
confidences for each protein for all locations. Then a 
threshold on confidences is used to classify the proteins to 
be localized at a location or not. 
 

4. RESULTS AND DISCUSSION 

4.1 Quality of PPI 

To answer question-1, we need to find the quality of 

each type of PPI network, which depends on how much 

information is carried out by that type in predicting protein 

localization. There are three fundamental types of PPIs 

used in the present study – physical PPI, genetic PPI, and 

co-expressed PPI. In order to determine the quality of 

different types of PPI, we need to fix the scope of networks 

with respect to i) number of network proteins (same 

number of same proteins), ii) number of annotated proteins 

(same number of same proteins) and iii) number of PPIs 

(same number of PPIs but different types). Table 4 shows 

the common proteins among three fundamental networks 

and the corresponding PPIs in different networks. 

 

 

 

 

 

 

Table 4: Numbers of common proteins and corresponding 

PPIs 

Item COEXP70 GPPI PPPI 

Original PPIs 11954 103631 50997 

Original Network Proteins 2004 5252 5477 

Original Annotated Proteins 1479 3732 3803 

Common Network Proteins 1710 1710 1710 

Common Annotated Proteins 1390 1390 1390 

PPIs wrt common proteins 9007 12369 10136 

 
 

It is clear that there are 1710 network proteins and 1390 

annotated proteins which are common among three 

fundamental networks but they have different number of 

PPIs (COEXP70:9007, GPPI:12369, PPPI:10136). Now, 

NetLoc performance is determined by selecting a fixed 

number of PPIs (6000, 7000, 8000, 9000) randomly for 

each network. For each selection 10 sets of PPIs are 

selected and then the mean and standard deviation of 10 

performances are determined. Table 5 shows the statistics 

of performances for 10 experiments for each selection of 

edges. It is clear that for a specific number of edges, 

performance for 10 experiments are very close for each 

network since the standard deviations are very small 

compared to mean values. Figure 3 shows the trend of 

performance with different types of PPIs. It is clear that for 

a specific number of edges/PPIs, physical PPI produces the 

best performance, followed by Co-expressed PPI and then 

genetic PPI. For example, at edge equal to 7000, AUC 

values are 0.7696 for PPPI, 0.7295 for COEXP70, and 

0.6852 for GPPI. This trend increases with the increase of 

number of edges in the network. It can be concluded from 

this experiment that physical PPI has the highest 

contribution to predicting protein localization followed by 

co-expressed PPI and then by genetic PPI. So, Physical PPI 

network could be used as the basis for unified network. 

 

Table 5: Statistics of AUC values for 10 sets 

 
COEXP70 GPPI PPPI 

#Edges Mean S.D. Mean S.D. Mean S.D. 

6000 0.7211 0.0072 0.6757 0.0089 0.7612 0.0085 

7000 0.7295 0.0042 0.6852 0.0084 0.7696 0.0062 

8000 0.7374 0.0054 0.6883 0.0077 0.7730 0.0037 

9000 0.7460 0.0001 0.6960 0.0066 0.7844 0.0040 
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Figure 3. Contribution of PPI types in predicting protein 

localization. 

4.2 Effect of Removing Some Interactions 

Both GPPI and PPPI are composed of only one 

connected component, table 4 of [4]. Any of these two 

networks could be a good candidate as the basis of a 

unified network. GPPI (network proteins = 5252, annotated 

proteins = 3732, PPIs = 103631) is the densest network or 

it has too many PPIs. On the other hand PPPI (network 

proteins = 5477, annotated proteins = 3803, PPIs = 50997) 

has less PPIs (about 50% of GPPI) and lower annotation 

coverage (69.44% < 71.06%). But PPPI produces better 

results than GPPI (AUC: 0.82 > 0.75), figure 2 of [4]. This 

suggests that for a unified network, we may not need too 

many interactions. Then question arises, does removing 

some PPIs from GPPI network improve the performance 

(Question-2)? Removing edges from the whole network 

makes some of the proteins isolated from the network, 

specially, proteins with single-degree of interaction. These 

single-degree proteins are located at the edge of the 

network. In order to avoid producing isolated proteins, 

removal is also carried out from the core of the network. 

The core for the present study is composed of proteins with 

at least degree equal to 4. 
  
Figure 4 shows the performance after removing edges 

from the whole network and from the core for both GPPI 

and PPPI networks. It is clear that removal of edges 

deteriorates the performance for both networks. But there is 

hardly any difference in performance in two different 

removal approaches. This suggests that for a unified 

network, we should not remove any edges or PPIs from any 

network. 

 

 

 
Whole: represents removal from the whole network 
Core: represents removal from the core of the network 

 

Figure 4. Effect of edge removal. 

 

4.3 Effect of Changing the Scope of the Base Network 

  Table 6 summarizes the performance of integrated 

networks without changing the scope of the base network 

considering all locations (22 locations). It is clear that 

NetLoc performance significantly improves upon network 

integration. Using scope-1, performance improvement 

ranges from 3% for PPPI to 28% for COEXP70 and using 

scope-2, it ranges from 10% for PPPI to 36% for 

COEXP70. Two main reasons for improvement are- (i) 

each network becomes more connected (more edges) upon 

integration (Table 2) and (ii) increase in values for either 

SNR or DCOP or both. In our earlier study, we showed that 

NetLoc performance improves with the increase of SNR 

and DCOP [7]. In integration using scope-1, values of SNR 

for some integrated networks are slightly decreased from 

the corresponding base network but values for DCOP are 

significantly increased for each of the integrated networks 

compare to base networks, which in turn improve the 

performance of integrated networks. For a specific base 

network, values of DCOP for integrated networks using 

both scope-1 and scope-2 remain the same (14.16 for PPPI) 

but value of SNR in scope-2 (3.869 for PPPI) is 

significantly higher than that in scope-1 (0.987 for PPPI). 

As a result, scope-2 produces better results than scope-1 in 

general.   

 

Table 6 NetLoc performance upon integration without 

changing the scope of the base network 

  SNR DCOP AUC_All Improve 

Networks Base Scope-1 Scope-2 Base Scope-1 Scope-2 Base Scope-1 Scope-2 Scope-1 Scope-2 

COEXP70 1.451 1.147 4.388 2.84 8.60 8.60 0.6407 0.8229 0.8728 28% 36% 

GPPI 0.806 0.959 1.352 8.38 14.06 14.06 0.7851 0.8813 0.9086 12% 16% 

MPPI 0.996 0.961 11.709 1.16 13.60 13.60 0.7132 0.8692 0.9496 22% 33% 

PPPI 1.537 0.987 3.869 5.63 14.16 14.16 0.8525 0.8787 0.9401 3% 10% 
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4.4 Effect of Changing the Scope of the Base Network 

Table 7 summarizes the performance of integrated 

networks with changing scope of the base network 

considering all locations (22 locations). It is clear that 

NetLoc performance also significantly improves upon 

network integration with changing scope of the base 

network. Using scope-3, performance improvement ranges 

from 3% for PPPI network to 37% for COEXP70 and using 

scope-4, it ranges from 10% for PPPI to 49% for 

COEXP70. As explained earlier, the improvement in the 

performance is due to increase either in SNR or DCOP or 

in both. For example, for base network COEXP70, 

integration using scope-3 decreases SNR from 1.451 to 

0.973 but increases DCOP significantly from 2.84 to 13.97, 

which in turn improves the performance from 0.6407 to 

0.8809. In integration using scope-4, a significant increase 

happened to both SNR (from 1.451 to 18.784) and DCOP 

(from 2.84 to 14.44), which results in huge improvement in 

performance from 0.6407 to 0.9562. 

 

Table 7 NetLoc performance upon integration with 

changing the scope of the base network 

  SNR DCOP AUC_All Improve 

Networks Base Scope-3 Scope-4 Base Scope-3 Scope-4 Base Scope-3 Scope-4 Scope-3 Scope-4 

COEXP70 1.451 0.973 18.784 2.84 13.97 14.44 0.6407 0.8809 0.9562 37% 49% 

GPPI 0.806 0.973 1.402 8.38 13.97 14.07 0.7851 0.8809 0.9041 12% 15% 

MPPI 0.996 0.973 15.497 1.16 13.97 14.18 0.7132 0.8809 0.9565 24% 34% 

PPPI 1.537 0.973 3.913 5.63 13.97 14.07 0.8525 0.8809 0.9351 3% 10% 

 

4.5 Identifying Unified Network 

Figure 5 presents the performance of integrated 

networks using four different scopes compare to base 

network. It is clear that integration improves performance 

in all methods of integration. Now the question is which 

integrated network should we select as the unified network 

or which approach should we use for integration (Question-

4). 

 

Unified Network based on Performance 

Integration using Scope-2 produces better performance 

than scope-1 for all networks since scope-2 comes with 

better signals (relatively more co-localized PPIs) than 

scope-1. Similarly, scope-4 produces better performance 

than scope-3 for all networks. Considering performance, 

integrated networks using scope-2 and scope-4 are possible 

candidates for unified network. Out of 8 integrated 

networks, integration using scope-4 with base network 

MPPI produces the best performance of AUC = 0.9565 

(Figure 5). So, integrated network obtained from MPPI 

network using scope-4 can be considered as the unified 

network. 

 

 

 
 

Figure 5. NetLoc performance upon integration with different 

scopes. 

 

Unified Network based on Scope 

Integration using scope-1 and scope-2 has the minimum 

scope, which is the same as base network, in terms of both 

network proteins (Figure 6) and annotated proteins (Figure 

7) for each of the base networks. Integration using scope-3 

has the maximum scope in terms of both network proteins 

(Figure 6) and annotated proteins (Figure 7), which are 

same for each of the base network. Integration using scope-

4 has the intermediate scope in terms of both network 

proteins (Figure 6) and annotated proteins (Figure 7) for 

each of the base networks. So, considering scope, 

integrated network using scope-3 can be used as the unified 

network. 
 

 

Figure 6 Network proteins upon integration with different scopes. 
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Figure 7 Annotated proteins upon integration with different 

scopes. 

Balanced Unified Network 

Unified networks based on performance and on scope 

represent networks based on two extremes. The first unified 

network produces a maximum performance of AUC = 

0.9565 with a scope of 5132 network proteins and 3839 

annotated proteins. The latter produces a performance of 

AUC = 0.8809 with the maximum scope of 6079 network 

proteins and 3899 annotated proteins. A balanced unified 

network is the one that provides a balance between 

performance and scope. Considering base PPPI, integration 

using scope-4 achieved a performance of AUC = 0.9351 

with a scope of 5544 network proteins and 3870 annotated 

proteins.  This network has both scope and performance in 

between the two unified networks based on two extremes. 

So, integrated network obtained from PPPI network using 

scope-4 can be considered as the balanced unified network 

for predicting protein localization. The overall performance 

(AUC = 0.9351) is improved by 10% over the individual 

best performance (AUC = 0.8525) with base network PPPI. 

This proves our hypothesis that the unified network should 

be based on high quality network which is physical PPI in 

the present study (Figure 3). 

 

5. CONCLUSION 

Different kinds of integration approaches are explored 

to observe the influence of integrating different PPC 

networks on the performance of a classifier, NetLoc, to 

predict protein localization. Our results showed that 

integration of different networks significantly improves 

NetLoc performance. This study also showed that physical 

PPI has the highest contribution to predicting protein 

localization followed by co-expressed PPI and by genetic 

PPI. Finally, we proposed a balanced unified network based 

on performance and scope of the integrated networks, and 

we found that the balanced unified network is based on a 

base network with the best quality, which is physical PPI. 
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