
EBSCOhost http://weblinks3.epnet.com/citation.asp?tb=1&_ua=bo+...

1 of 9 02/17/06 14:27

Title: evolving Intentions , By: Koza, John R., Keane, Martin A., Streeter, Matthew J.,
Scientific American, 00368733, Feb2003, Vol. 288, Issue 2
Database: Academic Search Premier

Contents

Out of the
Primordial Ooze

Evolvable Hardware

Run Times

Passing an
Intelligence Test

MORE TO
EXPLORE

More
Human−Competitive
Creations

Patented Inventions
Re−created by
Computer

New Search | View Folder | Preferences | Help

KATHOLIEKE UNIVERSITEIT
LEUVEN

 Sign In to My EBSCOhost

LanguageLanguage

 23 of 35 Result List | Refine Search Print E−mail

Save
Folder is empty.

Formats: Citation HTML Full Text

evolving Intentions

Evolution is am immensely powerful creative process. From the
intricate biochemistry of individual cells to the elaborate structure of
the human unimaginable complexity. Evolution achieves these
fears with a few simple processes−−mutation, sexual
recombination and natural selection−−which it iterates for many
generations. Now computer programmers are harnessing software
versions of these same processes to achieve machine intelligence.
Called genetic programming, this technique has designed
computer programs and electronic circuits that perform specified
functions.

In the field of electronics, genetic programming has duplicated 15
previously patented inventions, including several that were hailed
as seminal in their respective fields when they were first
announced. Six of these 15 existing inventions were patented after
January 2000 by major research institutions, which indicates that
they represent current frontiers of research in domains of scientific
and practical importance. Some of the automatically produced

inventions infringe squarely on the exact claims of the previously patented inventions. Others
represent new inventions by duplicating the functionality of the earlier device in a novel way.
One of these inventions is a clear improvement over its predecessor.

Genetic programming has also classified protein sequences and produced
human−competitive results in a variety of areas, such as the design of antennas,
mathematical algorithms and general−purpose controllers [see box on page 59]. We have
recently filed for a patent for a genetically evolved general−purpose controller that is superior
to mathematically derived controllers commonly used in industry.

The first practical commercial area for genetic programming will probably be design. In
essence, design is what engineers do eight hours a day and is what evolution does. Design

EBSCOhost http://weblinks3.epnet.com/citation.asp?tb=1&_ua=bo+...

2 of 9 02/17/06 14:27

is especially well suited to genetic programming because it presents tough problems for
which people seek solutions that are very good but not mathematically perfect. Generally
there are complex trade−offs between competing considerations, and the best balance
among the various factors is difficult to foresee. Finally, design usually involves discovering
topological arrangements of things (as opposed to merely optimizing a set of numbers), a
task that genetic programming is very good at.

Human engineers tend to look at problems in particular ways, often based on ideal
mathematical models. Genetic programming offers the advantage of not being channeled
down narrow paths of thinking. Evolution does not know anything about the underlying math;
it simply tries to produce a sequence of improved results. Thus, we frequently see creative
things come out of the evolutionary process that would never occur to human designers.

Out of the Primordial Ooze

WHATEVER THE FIELD of endeavor, genetic programming begins with a primordial ooze of
randomly generated trial "organisms" and a high−level description of what function the
organisms are meant to accomplish−−the criteria for scoring their fitness. As an example,
consider a case in which the organisms are elementary mathematical functions and we are
endeavoring to find a function whose graph matches a given curve. The organisms in this
case are composed of numerical constants and primitive operations such as addition,
subtraction, multiplication and division. The fitness of a function is determined by how closely
its graph follows the target curve.

The genetic program evaluates the fitness of each mathematical function in the population.
The initial, randomly created functions will, of course, match the target curve quite poorly, but
some will be better than others. The genetic program tends to discard the worst functions in
the population, and it applies genetic operations to the surviving functions to create offspring.
The most important genetic operation is sexual reproduction, or crossover, which mates pairs
of the better organisms to sire offspring composed of genetic material from the two parents
[see top illustration on opposite page]. For instance, mating the functions (a + 1) − 2 and 1 +
(a × a) might result in the (a + 1) part of the first function substituting for one a of the second
function, producing offspring 1 + ((a + 1) × a). Recombining the traits of two relatively fit
organisms in this fashion sometimes produces superior offspring.

In addition to sexual reproduction, genetic programming copies about 9 percent of the fittest
individuals unaltered into the next generation, which generally ensures that the best
organisms in each generation are at least as fit as those of the previous generation. Finally,
about 1 percent of the programs undergo mutation−for instance, a + 2 might mutate into (3 x
a) + 2−−in the hope that a random modification of a relatively fit program will lead to
improvement.

These genetic operations progressively produce an improved population of mathematical
functions. The exploitation of small differences in fitness yields major improvements over
many generations in much the same way that a small interest rate yields large growth when
compounded over decades.

One can visualize the evolutionary process as being a search in the space of all possible
organisms. The crossover operation conducts the most creative kind of search, which is why
we use it to produce around 90 percent of the offspring in each generation [see bottom
illustration on opposite page]. Mutation, in contrast, tends to conduct a local search for
advantage near the existing good individuals. We believe that too great a mutation rate
results in less efficient evolution except in the case of particularly simple problems.

A more sophisticated example than a mathematical function is the evolution of a computer
program, such as one employing iterations and memory for classifying protein sequences. In
this case, genetic programming can carry out analogues of the biological processes of gene
duplication and gene deletion, to create or delete subroutines, iterations, loops and
recursions in the evolving population of programs. The evolutionary process itself determines
the character and content of the computer program needed to solve the problem.

EBSCOhost http://weblinks3.epnet.com/citation.asp?tb=1&_ua=bo+...

3 of 9 02/17/06 14:27

A low−pass filter circuit provides a good illustration of how genetic programming designs
analog electronic circuits. A low−pass filter is used in a hi−fi system to send only the lowest
frequencies to the woofer speaker. To create a low−pass filter by using genetic programming,
the human user specifies which components are available for building the circuit (say,
resistors, capacitors and inductors) and defines the fitness of each candidate circuit to be the
degree to which it passes frequencies up to 1,000 hertz at full power while filtering out all
higher frequencies.

The circuits are generated in a way that borrows mechanisms from developmental biology.
Each circuit begins as an elementary "embryo" consisting of a single wire running from the
input to the output. The embryonic circuit grows by progressive application of
circuit−constructing functions. Some of the circuit−constructing functions insert particular
components. Others modify the pattern of connections between components: they might
duplicate an existing wire or component in series or parallel, or they might create a
connection from a particular point to a power supply, the ground or a distant point in the
growing circuit. This developmental process yields both the circuit topology and the numerical
component sizes. The system automatically synthesizes circuits without using any advanced
know−how from the field of electrical engineering concerning circuit synthesis.

Most of the initial population of rudimentary circuits generated randomly in this way will
behave nothing like a low−pass filter. A few, however, will contain an inductor between the
circuit’s input and output, thereby slightly impeding higher frequencies. Others will have a
capacitor running from the input to the ground, thereby slightly draining the power of higher
frequencies (see illustration above). Such circuits will be selected to mate more frequently
than others, and eventually later generations will contain offspring incorporating both
features. The crossover and mutation operations acting on numerical expressions will adjust
component values so that the cutoff frequency approaches the desired 1,000 Hz. Other
crossovers and mutations will delete resistors that dissipate power. Additional crossovers will
double or triple the inductor−capacitor combination, yielding the ladder structure patented in
1917 by George A. Campbell of AT&T.

Other devices are designed with similar combinations of evolutionary and developmental
processes. Antennas, for instance, are automatically designed with a "turtle" that deposits (or
does not deposit) metal on a plane as it moves and turns under the control of various
operations (similar to those in the LOGO programming language).

The primitive ingredients used to create controllers automatically consist of differentiators,
integrators and amplifiers. An example of a basic controller is a cruise control on a car, which
must reduce fuel intake if the speed rises too high or increase it if the speed falls too low. A
good controller will allow for the delayed response to fuel changes and will continuously
monitor how the speed is varying to avoid excessive overshooting of the target speed. Of
great importance are general−purpose controllers, which can be customized to a variety of
specific tasks−−such as the control of a home furnace, manufacturing processes in factories
or the reading arm of a computer’s disk storage device. Small improvements in the "tuning
rules" used in customizing a controller can result in large economic savings.

A commonplace controller is the PID controller invented in 1939 by Albert Callender and
Allan Stevenson of Imperial Chemical Limited in Northwich, England. PID controllers (the
initials stand for the controller’s proportional, integrative and derivative parts) are used in
myriad applications. Our genetic programs have evolved two distinct improvements in this
field. First, they have developed a new set of tuning rules for PID controllers. A relatively
simple and effective set of PID tuning rules has been in general use since 1942 and was
improved on in 1995; our rules outperform the 1995 rules. Second, we evolved three new
controller circuit topologies that also outperform PID controllers that use the old tuning rules.
We have filed a patent application that covers both the new rules and the new controller
topologies. If (as we expect) the patent is granted, we believe that it will be the first one
granted for an invention created by genetic programming.

Evolvable Hardware

EBSCOhost http://weblinks3.epnet.com/citation.asp?tb=1&_ua=bo+...

4 of 9 02/17/06 14:27

DURING THE EVOLUTIONARY process, we must efficiently evaluate the fitness of
thousands or millions of offspring in each generation. For electronic circuits, we usually use
standard circuit−simulator software to predict the behavior of each circuit in the population. In
an important emerging area of technology called evolvable hardware, however, microchips
can be instantaneously configured to physically implement each circuit of a genetic
programming run.

Known as rapidly reconfigurable fieldprogrammable gate arrays, these chips consist of
thousands of identical cells, each of which can perform numerous different logical functions,
depending on how it is programmed. Sets of memory bits in the "basement" of the chip
customize each cell so that it performs a particular logical function. Other configuration bits
program interconnection routes on the chip, permitting many different ways of connecting the
cells to one another and to the chip’s input and output pins. The "personality" of the chip (its
logical functions and interconnections) can be changed dynamically in nanoseconds merely
by changing its configuration bits.

These rapidly reconfigurable chips are sold by about a dozen companies, but they are
primarily of use for digital circuits. Commercially available analog chips are extremely limited
in their abilities. We used a reconfigurable digital chip to create a sorting network with fewer
steps than the originally patented version.

Run Times

NATURAL EVOLUTION has had billions of years of "run time" to produce its wonders.
Artificial genetic programming would not be of much use if it took as long. A genetic
programming run typically spawns a population of tens or hundreds of thousands of
individuals that evolve over dozens or hundreds of generations. A weeklong run on a laptop
computer is suffficient to produce half of the human−competitive results listed in the box on
the preceding page; however, all six of the inventions patented after 2000 required more
horsepower than that.

Evolution in nature thrives when organisms are distributed in semi−isolated subpopulations.
The same seems to be true of genetic programming run on a loosely connected network of
computers. Each computer can perform the timeconsuming step of evaluating the fitness of
individuals in its subpopulation. Then, at the end of each generation, a small percentage of
individuals (selected based on fitness) migrates to adjacent computers in the network so that
each semi−isolated subpopulation gets the benefit of the evolutionary improvement that has
occurred elsewhere.

We have built a Beowulf−style computer cluster consisting of 1,000 somewhat outdated
350−megahertz Pentium computers [see "The Do−It−Yourself Supercomputer," by William
W. Hargrove, Forrest M. Hoffman and Thomas Sterling; SCIENTIFIC AMERICAN, August
2001]. For our most time−consuming problems, evaluation of the fitness of a single candidate
individual takes about a minute of computer time. A run involving a population of 100,000
individuals for 100 generations can be completed in about seven days on our cluster.

The 1,000 computers together perform about 350 billion cycles a second. Although this
amount of computer time may, at first blush, sound like a lot, it pales in comparison to the
amount of computation performed by the trillion cells of the human brain (each of which is
thought to have about 10,000 connections and operate at a rate of 1,000 operations a
second).

We expect that 50−gigahertz computers (performing 50 billion cycles a second) will be
commonly available toward the end of this decade, putting the power to evolve patent−worthy
inventions using genetic programming in the hands of anyone owning a moderately priced
desktop workstation. We envision that genetic programming will be regularly used as an
invention machine.

Passing an Intelligence Test

EBSCOhost http://weblinks3.epnet.com/citation.asp?tb=1&_ua=bo+...

5 of 9 02/17/06 14:27

GENETIC PROGRAMMING is now routinely reproducing human inventions, just half a
century after computer pioneer Alan M. Turing predicted that human−competitive machine
intelligence would be achieved in about 50 years. During those 50 years, the two main
academically fashionable approaches taken by researchers striving to vindicate Turing’s
prediction have used logical deduction or databases containing accumulated human
knowledge and expertise (socalled expert systems). Those two approaches roughly
correspond to two broad methods outlined by Turing in 1950. The first (not surprising in light
of Turing’s work in the 1930s on the logical foundations of computing) was the construction of
programs designed to analyze situations and problems logically and to respond accordingly.
The second, which Turing called a cultural search, applied knowledge and expertise gathered
from experts.

The goal of artificial intelligence and machine learning is to get computers to solve problems
from a high−level statement of what needs to be done. Genetic programming is delivering
human−competitive machine intelligence with a minimum of human involvement for each new
problem and without using either logical deduction or a database of human knowledge.

Turing also proposed a famous test for machine intelligence. In one widely used restatement
of the Turing test, a judge receives messages "over a wall" and tries to decide whether the
messages came from a human or a machine. We do not claim that genetic programming has
achieved the kind of general imitation of human cognition associated with the Turing test. But
it has passed a test of creativity and ingenuity that only a relatively small number of humans
pass. The U.S. patent office has been administering this test for more than 200 years.

The patent office receives written descriptions of inventions and then judges whether they are
unobvious to a person having ordinary skill in the relevant field. Whenever an automated
method duplicates a previously patented human−designed invention, the automated method
has passed the patent office’s intelligence test. The fact that the original, human−designed
version satisfied the patent office’s criteria of patent−worthiness means that the
computer−created duplicate would also have satisfied the patent office.

This intelligence test does not deal with inconsequential chitchat or the playing of a game.
When an institution or individual allocates time and money to invent something and to embark
on the time−consuming and expensive process of obtaining a patent, it has made a judgment
that the work is of scientific or practical importance. Moreover, the patent office requires that
the proposed invention be useful. Patented inventions represent nontrivial work by
exceptionally creative humans.

Although some people may be surprised that routine human−competitive machine
intelligence has been achieved with a nondeterministic method and without resorting to either
logic or knowledge, Alan Turing would not be. In his 1950 paper, Turing also identified this
third approach to machine intelligence: "the genetical or evolutionary search by which a
combination of genes is looked for, the criterion being the survival value."

Turing did not specify how to conduct a "genetical or evolutionary search" to achieve machine
intelligence, but he did point out that:

 We cannot expect to find a good childmachine
 at the first attempt. One must experiment with
 teaching one such machine and see how well it
 learns. One can then try another and see if it
 is better or worse. There is an obvious
 connection between this process and evolution,
 by the identifications

 Structure of the child machine
 = Hereditary material
 Changes of the child machine
 = Mutations
 Natural selection
 = Judgment of the experimenter

EBSCOhost http://weblinks3.epnet.com/citation.asp?tb=1&_ua=bo+...

6 of 9 02/17/06 14:27

Genetic programming has in many ways fulfilled the promise of Turing’s third way to achieve
machine intelligence.

MORE TO EXPLORE

Computing Machinery and Intelligence. Alan M. Turing in Mind, Vol. 59, No. 236, pages
433−460; October 1950. Available at www.abelard.org/turpap/turpap.htm by permission of
Oxford University Press.

Genetic Programming: On the Programming of Computers by Means of Natural Selection.
John R. Koza. MIT Press, 1992.

Genetic Programming: The Movie. John R. Koza and James P. Rice. MIT Press, 1992.

Genetic Programming Ill: Darwinian Invention and Problem Solving. John R. Koza, Forrest H
Bennett III, David Andre and Martin A. Keane. Morgan Kaufmann, 1999.

Genetic Programming Ill: Videotape: Human−Competitive Machine Intelligence. John R.
Koza, Forrest H Bennett Ill, David Andre, Martin A. Keane and Scott Brave. Morgan
Kaufmann, 1999.

Genetic Programming IV: Routine Human−Competitive Machine Intelligence. John R. Koza,
Martin A. Keane, Matthew J. Streeter, William Mydlowec, Jessen Yu and Guido Lanza.
Kluwer Academic Publishers [in press].

More information can be obtained from Genetic Programming, Inc.
[www.genetic−programming.com], and the Genetic Programming Conference organization
[www.genetic−programming.org]

More Human−Competitive Creations

AS WELL AS re−creating patented inventions, genetic programming has generated these
results that a human would be proud of.

SOCCER−PLAYING PROGRAM that ranked in the middle of the field of 34 human−written
programs in the RoboCup 1998 competition

REAL−TIME ANALOG CIRCUIT for time−optimal control of a robot

FOUR DIFFERENT ALGORITHMS for identifying transmembrane segments of proteins

DERIVING MOTIFS (highly conserved sequences of amino acids] to identify certain families
of proteins

ALGORITHMS FOR QUANTUM COMPUTERS that in some cases solve problems better
than any previously published result

NAND CIRCUIT for carrying out the NOT AND logical operation on two inputs

ANALOG COMPUTATIONAL CIRCUITS for the square, cube, square root, cube root,
logarithm and Gaussian functions

DIGITAL−TO−ANALOG CONVERTER CIRCUIT

ANALOG−TO−DIGITAL CONVERTER CIRCUIT

Patented Inventions Re−created by Computer

TO DATE, genetic programming has re−created 15 inventions that were previously patented
by the inventors listed here.

EBSCOhost http://weblinks3.epnet.com/citation.asp?tb=1&_ua=bo+...

7 of 9 02/17/06 14:27

Chart to follow with future update.

PHOTO (COLOR)

PHOTO (COLOR)

PHOTO (COLOR)

~~~~~~~~

By John R. Koza; Martin A. Keane and Matthew J. Streeter

JOHN R. KOZA, MARTIN A. KEANE and MATTHEW J. STREETER work closely with one
another studying genetic programming using a home−built, 1,000−Pentium parallel computer. 
Koza received his Ph.D. in computer science from the University of Michigan in 1972. He 
co−founded Scientific Games, Inc., in Atlanta in 1973, where he co−invented the rub−off 
instant lottery ticket used by state lotteries. In 1987 Koza invented genetic programming. He 
is currently consulting professor in the Stanford Biomedical Informatics program in the 
department of medicine and consulting professor in the university’s department of electrical 
engineering. Keane received a Ph.D. in mathematics from Northwestern University in 1969. 
From 1976 to 1986 he was vice president for engineering at Bally Manufacturing Corporation 
in Chicago. He is now chief scientist at Econometrics, Inc., also in Chicago. Streeter received 
a master’s degree from Worcester Polytechnic Institute in 2001. His primary research interest 
is applying genetic programming to problems of real−world scientific or practical importance. 
He works at Genetic Programming, Inc., in Los Altos, Calif., as a systems programmer and 
researcher.

Overview/Darwinian Invention 

• Genetic programming harnesses a computerized version of evolution to create new
inventions. Starting from thousands of randomly generated test objects, the method selects
the better individuals and applies processes such as mutation and sexual recombination to
generate successive generations.

• Over the course of dozens of generations, the population of individuals gradually fulfills the
target criteria to a greater degree. At the end of the run, the best individual is harvested as
the solution to the posed problem.

• In electronics, the technique has reproduced patented inventions, some of which lie at the
forefront of current research and development. Other inventions include antennas, computer
algorithms for recognizing proteins, and general−purpose controllers. Some of these
computer−evolved inventions should themselves be patentable.

• By the end of the decade, we envision that increased computer power will enable genetic
programming to be used as a routine desktop invention machine competing on equal terms
with human inventors.

UNNATURAL SELECTION 

Evolutionary Processes

THREE PROCESSES propagate "organisms" (represented here by colored disks) from one 
generation to the next in a genetic programming run. Some of the better organisms are 
copied unaltered. Others are paired up for sexual reproduction, or crossover, in which parts 
are swapped between the organisms to produce offspring. A small percentage are changed 
randomly by mutation. Organisms not chosen for propagation become extinct. The crossover 



EBSCOhost http://weblinks3.epnet.com/citation.asp?tb=1&_ua=bo+...

8 of 9 02/17/06 14:27

operation is applied more frequently than copying and mutation because of its ability to bring 
together new combinations of favorable properties in individual organisms.

Crossover of Electronics

ACTING ON electronic circuits, the crossover operation takes two circuits and swaps some of 
their components, producing two new circuits.

Crossover versus Mutation

EVOLUTION ACTS like a search in the space of all possible organisms, represented here by 
the plane Crossover searches this space creatively, occasionally combining disparate good 
features, leaping to a new region of organism space where much fitter individuals reside [red 
arrows]. Mutation, in contrast, tends to find the best organism that is "nearby" [green arrows).

PHOTO (COLOR)

PHOTO (COLOR)

PHOTO (COLOR)

EVOLVING A LOW−PASS FILTER 

TO EVOLVE a low−pass filter, which passes low frequencies and blocks high frequencies, 
the genetic program would begin with random circuits [1]. Some would luckily have an 
inductor positioned to impede high frequencies or a capacitor positioned to drain off high 
frequencies. These circuits would combine by crossover [2] to produce rudimentary low−pass 
filter circuits [3]. Further crossovers between these circuits [4] would produce a ladder 
lowpass filter [5]. Mutations [6] would eliminate superfluous resistors and would fine−tune the 
values of the components.

PHOTO (COLOR)

HUMAN VERSUS COMPUTER 

THE TWO CIRCUITS shown below are both cubic signal generators. The upper circuit is a 
patented circuit designed by a human; the green and purple parts of the lower circuit were 
evolved by genetic programming (the other parts are standard input and output stages). The 
evolved circuit performs with better accuracy than the humandesigned one, but how it 
functions is not understood. The evolved circuit is clearly more complicated but also contains 
redundant parts, such as the purple transistor, that contribute nothing to its functioning.

PHOTO (COLOR)

Copyright of Scientific American is the property of Scientific American Inc.. Copyright of
PUBLICATION is the property of PUBLISHER. The copyright in an individual article may be
maintained by the author in certain cases. Content may not be copied or emailed to multiple
sites or posted to a listserv without the copyright holder’s express written permission. 
However, users may print, download, or email articles for individual use.
Source: Scientific American, Feb2003, Vol. 288 Issue 2, p52, 8p
Item: 8877578

 

Top of Page



EBSCOhost http://weblinks3.epnet.com/citation.asp?tb=1&_ua=bo+...

9 of 9 02/17/06 14:27

Formats:   Citation  HTML Full Text  

 23 of 35    Result List | Refine Search     Print  E−mail  

Save  
Folder is empty.

©2006 EBSCO Publishing. Privacy Policy − Terms of Use − Copyright


