
24

Memory Interface Design for 3D Stencil Kernels on a Massively
Parallel Memory System

ZHEMING JIN and JASON D. BAKOS, University of South Carolina, Columbia

Massively parallel memory systems are designed to deliver high bandwidth at relatively low clock speed for
memory-intensive applications implemented on programmable logic. For example, the Convey HC-1 provides
1,024 DRAM banks to each of four FPGAs through a full crossbar, presenting a peak bandwidth of 76.8GB/s
to the user logic. Such highly parallel memory systems suffer from high latency, and their effective bandwidth
is highly sensitive to access ordering. To achieve high performance, the user must use a customized memory
interface that combines scheduling, latency hiding, and data reuse. In this article, we describe the design
of a custom memory interface for 3D stencil kernels on the Convey HC-1 that incorporates these features.
Experimental results show that the proposed memory interface achieves a speedup in runtime of 2.2 for
6-point stencil and 9.5 for 27-point stencil when compared to a naive memory interface.

Categories and Subject Descriptors: C.2.2 [Computer-Communication Networks]: Network Protocols

General Terms: Design, Algorithms, Performance

Additional Key Words and Phrases: Memory latency hiding, memory access scheduling, data reuse, memory
interface, 3D stencil

ACM Reference Format:
Zheming Jin and Jason D. Bakos. 2015. Memory interface design for 3D stencil kernels on a massively
parallel memory system. ACM Trans. Reconfigurable Technol. Syst. 8, 4, Article 24 (September 2015), 23
pages.
DOI: http://dx.doi.org/10.1145/2800788

1. INTRODUCTION

The Convey HC-1 coprocessor contains four user-programmable FPGAs that each have
access to a shared on-board memory. The memory system is composed of a set of eight
off-chip DDR2 DRAM controllers, where each controller is connected to two DIMMs
containing eight DRAM chips with eight banks each. The memory is thus organized as
1,024 banks across 128 DRAM chips across 16 DIMM modules.

To maximize bandwidth for nonconsecutive access patterns, each memory controller
(MC), controlling one-eighth of the memory space, contains a dynamic out-of-order
scheduler for each of its 16 DRAM chips. Each scheduler attempts to select requests to
nonbusy banks (often ahead of memory accesses made earlier) and groups reads and
writes into bursts to minimize state changes.

The crossbar and scheduler buffering together impose a latency of 256 to 512 cycles to
every memory request. As such, memory-bound kernels must explicitly support latency
hiding to maintain high throughput. Specifically, the user logic must be able to support

This material is based upon work supported by the National Science Foundation under grant 0844951.
Authors’ address: Z. Jin and J. D. Bakos, Department of Computer Science and Engineering, University of
South Carolina; emails: jinz@email.sc.edu, jbakos@cse.sc.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2015 ACM 1936-7406/2015/09-ART24 $15.00
DOI: http://dx.doi.org/10.1145/2800788

ACM Transactions on Reconfigurable Technology and Systems, Vol. 8, No. 4, Article 24, Publication date: September 2015.

http://dx.doi.org/10.1145/2800788
http://dx.doi.org/10.1145/2800788

24:2 Z. Jin and J. D. Bakos

Fig. 1. Memory architecture of the Convey HC-1.

512 outstanding memory requests. Even then, the MCs will stall whenever a scheduler
buffer becomes full, which occurs often during periods of bank contention.

When designing fully custom kernel pipelines, the memory interface should be op-
timized for the kernel, so it is crucial to develop best practices for interface design.
In this article, we use 3D stencils—a common memory-bound scientific kernel—as a
benchmark to explore how interface parameters affect various performance factors.

We propose three metrics with which to evaluate interface designs. For memory
latency hiding, we use interface efficiency—the percentage of execution cycles in which
the memory interface performs a memory access as opposed to being stalled due to its
own internal dependencies. For example, a double buffer may need to wait for a buffer
to fill before it can swap, even after making all of its requests. Using our interface
design, we are able to achieve nearly 100% interface efficiency.

For scheduling, we use DRAM controller efficiency—the proportion of cycles in which
the interface is ready and able to access memory and is not stalled by the MC due
to bank contention. We improve DRAM controller efficiency from 69% to 74% for the
6-point 3D stencil and from 52% to 72% for the 27-point 3D stencil as compared to an
unscheduled implementation.

For data reuse, we use data reuse rate—the ratio of the number of reused memory
requests to the total number of memory requests. We are able to achieve a reuse rate
of 0.6 and 0.9 for the 6- and 27-point 3D stencil, respectively.

We evaluate the designs on the Convey HC-1, although this approach would be
beneficial for any platform with a similar memory system. Compared to the baseline
memory interface designs, we are able to achieve average speedup of 2.2 for the 6-point
3D stencil and 9.5 for the 27-point 3D stencil.

The rest of the article is organized as follows. Sections 2 and 3 introduce the back-
ground and related work. Section 4 describes the memory interface designs. Section 5
shows the experimental results of memory interface designs, and Section 6 concludes
the article.

2. BACKGROUND

2.1. Convey HC-1

The Convey HC-1 is a high-performance reconfigurable computer containing an FPGA-
based coprocessor attached to a host motherboard through a socket-based front-side
bus interface.

As shown in Figure 1, the coprocessor board contains four user-programmable Virtex-
5 LX 330 FPGAs called application engines (AEs). The coprocessor board also contains
eight discrete MCs, each of which is implemented on its own Virtex-5 LX 110 FPGA.
The memory space of the coprocessor board is physically partitioned into eight equal-
size address spaces, and each space is accessible only from one of the eight MCs. Each

ACM Transactions on Reconfigurable Technology and Systems, Vol. 8, No. 4, Article 24, Publication date: September 2015.

Memory Interface Design for 3D Stencil Kernels on a Massively Parallel Memory System 24:3

AE is connected to all eight MCs through a crossbar switch that is instanced on each
MC.

The interface between each user-programmable FPGA and each MC allows up to two
independent 64-bit memory transactions (read or write) per cycle on a 150MHz clock,
giving a peak theoretical bandwidth of 2.4GB/s between each AE-to-MC interface, or
19.2GB/s per user-programmable FPGA, or 76.8GB/s aggregate bisection bandwidth
[Convey 2012].

Memory addresses are virtual and mapped to 4MB pages. Each MC contains a
translation look-aside buffer (TLB) to cache the page table. Within each 4MB page,
the memory address is divided into the following physical fields:

—Bits 21:20 (2 bits): DRAM row
—Bits 19:13 (7 bits): DRAM column
—Bits 12:10 (3 bits): DRAM bank
—Bit 9 (1 bit): DIMM selector
—Bits 8:6 (3 bits): MC selector
—Bits 5:3 (3 bits): DRAM selector (eight DRAMs per DIMM)
—Bits 2:0 (3 bits): Always 000, as accesses are aligned on 8-byte boundary

Each of the eight MCs is connected to two DIMMs selected by bit 9. Both DIMMs con-
tain eight DRAM chips (i.e., eight 8-bit busses), and each DRAM chip has eight banks
that can be accessed independently by the MC. Memory addresses are interleaved
across the MCs as well as across the banks within the DIMMs attached to each MC.
This ensures that sequential accesses will be spread across all 16 DIMMs, maximiz-
ing concurrency and bandwidth. Each of the MCs attempts to reduce the performance
impact of nonconsecutive accesses by scheduling incoming memory requests to each of
the banks on its DIMMs, routing requests to nonbusy banks, and grouping reads and
writes into bursts to minimize bus turns. As a result, memory accesses are performed
in a different order in which they were requested by the programmable logic. In prac-
tice, the achieved bandwidth ranges from 2% to 93% of the peak bandwidth depending
on access orders. In an exhaustive test, we found that only 18% of all possible access
patterns that access all of the unique addresses within a page achieve greater than
50% of peak bandwidth, and more than half of the patterns resulted in less than 20%
of peak bandwidth [Jin and Bakos 2013].

2.2. Memory Access Ordering

As described previously, the Convey HC-1’s FPGA-based MCs include a proprietary,
out-of-order dynamic memory scheduler. This scheduling is performed in the opaque
MCs that are not user programmable. Despite the presence of a dynamic scheduler,
the effective bandwidth still depends on the memory access pattern provided by the
programmable logic. Thus, our proposed interface introduces an additional layer of
static memory access scheduling from the perspective of the programmable logic.

Figure 2 depicts the various memory access orderings that occur within this design.
The left outer box represents the user-programmable logic, whereas the right outer box
represents nonprogrammable entities in the HC-1’s onboard memory system, composed
of DRAMs and nonprogrammable logic (including buffers and schedulers).

The kernel’s memory interface, designed by the user, performs memory requests us-
ing the access order A. In general, this ordering should be optimized for the memory
system as opposed to the kernel pipeline. In other words, although the kernel pipeline
expects inputs to arrive in the order C that corresponds to the structural arrangement
of the kernel’s functional units, it can request the data in another order that seeks
to minimize nonconsecutive DRAM accesses. For example, if the kernel is adding two
vectors, the computational logic may expect inputs to arrive as interleaved pairs of

ACM Transactions on Reconfigurable Technology and Systems, Vol. 8, No. 4, Article 24, Publication date: September 2015.

24:4 Z. Jin and J. D. Bakos

Fig. 2. Memory access orderings on the Convey HC-1.

Fig. 3. The 6-point and 27-point 3D stencils.

elements from each of the two vectors (order C). This ordering would require a strided
access pattern, so the programmable logic may group requests from consecutive ele-
ments from each vector into a block (order A).

The kernel’s memory interface passes these requests to the HC-1’s off-chip MC, which
will dynamically schedule the requests and thus generate a new, indeterminate access
order B. The memory data is returned to the programmable logic in this same order.

Convey’s Design Kit includes an optional memory reorder buffer IP block that ensures
data returned from the memory is delivered to the programmable logic in the same
order it was originally requested (changes the order from B to A). Generally, this
module is integrated into the user memory interface. The kernel’s memory interface
must buffer and reorder this data again so that it can present the input data to the
kernel pipeline in the order that it expects—order C.

Since both Convey’s reorder buffer and our proposed scheduler exist within the block
labeled “Memory Controller Interface,” this block changes order from B to C (B to A,
then A to C).

2.3. Stencil Computation

As shown in Figure 3, a stencil—a commonly used operation in scientific codes—reads
N input points to calculate one output point. In this article, we choose a 6-point and
27-point stencil computation as representative kernels:

—6-point 3D stencil: Each point (element) in the output block is updated by the six
neighbors offset by 1 on each direction. Each point is a 64-bit word. The six neighbors
are accumulated to generate the output point, so there are five additions for each
point.

—27-point 3D stencil: Each point computation involves all points in a 3 × 3 × 3 cube
surrounding the center output point. The 27 64-bit points are accumulated to gener-
ate the output point, so there are 26 additions for each point.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 8, No. 4, Article 24, Publication date: September 2015.

Memory Interface Design for 3D Stencil Kernels on a Massively Parallel Memory System 24:5

We assume that the stencil computation of each output point is independent of every
other output points and can thus be computed in any order.

2.4. Performance Measurement

When implemented on an FPGA, stencil computations that have sufficiently low op-
erations per byte are memory bound, in which their performance is determined by
achieved memory bandwidth, as shown in Equation (1).

execution time = (size of data transacted)/(achieved memory bandwidth) (1)

The achieved memory bandwidth is determined by the peak bandwidth (memory
clock speed multiplied by memory width) and the memory efficiency, as shown in
Equation (2).

achieved memory bandwidth = (peak memory bandwidth) ∗ (memory efficiency) (2)

2.4.1. Memory Efficiency. Memory efficiency is determined by the ratio, as shown in
Equation (3), where rc is the number of memory read cycles, wc is the number of write
cycles, and ec is the observed number of execution cycles.

memory efficiency = (rc + wc)/ec (3)

This efficiency metric characterizes the relative impact of the number of cycles in
which the programmable logic does not access memory. These idle cycles (ic) can be
expressed as the difference in execution cycles and the memory reference cycles, as
shown in Equation (4).

ic = ec − (rc + wc) (4)

There are two factors that determine the number of idle cycles. The first factor is the
number of stall cycles (sc), in which the memory interface in the programmable logic
must temporarily cease making memory requests after receiving a stall request from
Convey’s memory scheduler. These stall requests occur when the scheduler buffers
become full due to bank contention.

The second factor is interface idle cycles (icc), which are caused by inefficiency in
the memory interface of the programmable logic. The cause of these is specific to the
memory interface design.

ic = sc + icc (5)

Because stall cycles and interface idle cycles are caused by different aspects of
the memory interface design, we define two efficiency metrics that characterize them
separately.

The first is interface efficiency, shown in Equation (6). Interface efficiency character-
izes the memory interface’s ability to sustain memory requests despite long memory
latencies. For example, in a typical double buffer, the interface will seek to fill one side
of the buffer while flushing the other side. It will experience idle cycles from the time it
requests all words until all requests return (since the buffer cannot be switched until
all requested words arrive).

interface efficiency = (rc + wc)/(rc + wc + icc) (6)

The second is DRAM controller efficiency, shown in Equation (7). DRAM controller
efficiency characterizes how effectively the latency of requests to DRAM banks is hidden
with requests to other banks.

DRAM controller efficiency = (rc + wc)/(rc + wc + sc) (7)

ACM Transactions on Reconfigurable Technology and Systems, Vol. 8, No. 4, Article 24, Publication date: September 2015.

24:6 Z. Jin and J. D. Bakos

2.4.2. Reuse Rate. The total amount of data transacted with off-chip memory depends
on access locality and how effectively the data is cached. The relationship between the
amount of data transacted and the total amount of input and output data required is
related using memory reuse rate, shown in Equation (8).

data transacted = (input and output data) ∗ (1 − (reuse rate)) (8)

To measure data reuse, reuse rate is computed as the ratio of the number of reused
memory requests to all memory accesses.

reuse rate = M2/M1, (9)

where M1 is the total number of memory references and M2 is the number of memory
references that are reused.

2.4.3. Performance. Each of these three metrics—interface efficiency, DRAM controller
efficiency, and reuse rate—has a direct relationship with execution time. As such,
improving any of these metrics will lead to a corresponding kernel speedup.

3. RELATED WORK

3.1. Convey HC-1 Memory System

Augustin et al. [2011] explored the challenges in designing efficient 3D stencils for
the Convey HC-1. Using a 3D 7-point stencil for solving the Laplace equation on grids
of different sizes, they compared the peak floating-point performance on the Convey
HC-1 with a two-way 2.53GHz Intel Nehalem processor. They showed that the stencil
performance on the Convey HC-1 is lower on smaller grids due to the lack of caching.

Cong et al. [2011b] demonstrated that the Convey HC-1 suffers from low DRAM
efficiency for memory-bound kernels having a complex access patterns. In this case,
the authors achieved only 30% memory efficiency on both the HC-1 and a GPU.

3.2. Optimizing Memory Performance for 3D Stencils

He et al. [2004, 2005, 2006] developed a series of FPGA-based 2D and 3D stencils for
the FDTD simulation required for seismic imaging. These designs exploit data reuse
by sending grid values from the input cache to a set of cascaded FIFOs, where each
FIFO buffers 2D pages. This work emphasized the trade-off between reuse and on-chip
memory bandwidth.

Datta et al. [2008] explored double-precision 3D single-point stencil computations
on multicores by developing numerous optimization strategies and an autotuning en-
vironment. To hide memory latency, they employed hardware prefetching, software
prefetching, DMA, and multithreading. They used circular buffers to reduce cache
conflict misses for both read and write planes.

3.3. DRAM Scheduling

DRAM scheduling received much attention in the early 2000s as a result of DARPA
investment in advanced multicore architectures. In this work, the scheduling was
usually performed dynamically since tasks are loosely synchronized across cores. For
example, Dally’s group at Stanford developed a dynamic DRAM bank and row schedul-
ing technique for streaming applications to maximize effective memory bandwidth
[Rixner et al. 2000]. Fang et al. [2009] developed a core-aware memory access sched-
uler that prioritizes consecutive accesses to the same row or bank to minimize DRAM
row misses and thus reduce memory latency. Ahn et al. [2009] used a similar approach
targeting DRAM ranks in a technique called rank subsetting. Liu et al. [2008] devel-
oped a page hit aware write buffer (PHA-WB) for the purpose of reducing DRAM power
consumption without affecting performance.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 8, No. 4, Article 24, Publication date: September 2015.

Memory Interface Design for 3D Stencil Kernels on a Massively Parallel Memory System 24:7

Static scheduling techniques on CPUs, on the other hand, often rely on instruction
scheduling (e.g., software pipelining) and associating each array entry with specific
time slots that can then be scheduled for specific DRAM banks. The arrays are then
allocated to banks to minimize conflicts. Lyuh and Kim [2004] used this technique for
the purpose of DRAM power management. Their scheduler allocates each array such
that during execution the standby time for each bank is maximized, considering the
overhead time required to switch banks from active to standby mode. Chang and Lin
[2000] previously developed a similar technique of array-bank allocation but targeted
memory latency.

3.4. Data Reuse

The design of specialized on-chip memories to maximize data reuse is often explored
in the context of compiler-generated management of program-controlled scratchpads
[Wang et al. 2012; Banakar et al. 2002; Panda et al. 1997; Kandemir et al. 2004;
Issenin et al. 2007; Cong et al. 2011a; Cong et al. 2011d]. One of the main challenges
is that increasing reuse inevitably leads to port contention on the on-chip RAM and
replication is constrained by RAM size. In addition, memory mapping and partitioning
approaches often fail when data reuse is performed in a circular manner to save buffer
size [Tatsumi and Mattausch 1999; Ho and Wilton 2004; Benini et al. 2002; Baradarn
and Diniz 2008; Cong et al. 2011c; Ben-Asher and Rotem 2010].

There have been recent efforts to automatically generate and allocate minimum
size on-chip scratchpads to reuse data and guarantee freedom from bank conflicts
given a specific access pattern extracted from a high-level language kernel [Wang
et al. 2013]. However, this approach does not consider DRAM scheduling (changing
the ordering of outgoing memory accesses to optimize against DRAM topology) or la-
tency hiding (maximizing the number of inflight memory requests) for the purpose of
decreasing DRAM control and interface stalls. In other words, our proposed designs
have different objectives. Our buffer duplication design targets DRAM controller ef-
ficiency by minimizing the frequency of nonconsecutive memory access. In this case,
reducing the buffer size is detrimental to DRAM scheduling, as it will increase the
frequency of nonconsecutive memory requests (i.e., decreasing the block size). Our
numerical ordering design sacrifices the size of contiguous block sizes to achieve
data reuse, but it still achieves a trade-off between DRAM controller efficiency and
reuse.

4. MEMORY INTERFACE DESIGNS

4.1. Memory Access Scheduling with No Data Reuse

As described in Sections 2.1 and 2.2, the effectiveness of Convey’s dynamic DRAM
scheduler depends on the memory access pattern provided by the programmable logic.
Each of the eight DRAM controllers is connected to 128 DRAM banks. The sched-
ulers attempt to achieve high bandwidth under any arbitrary nonconsecutive access
pattern by scheduling pending requests out of order to nonbusy banks and grouping
sets of reads and writes to minimize bus turns. However, access patterns that ex-
hibit higher bank conflict rates will eventually lead to the scheduler queue holding too
many outstanding requests and become full, at which point the scheduler stalls the
programmable logic, throttling the request rate and reducing effective bandwidth.

The rate at which this throttling behavior occurs can be reduced if the memory
access pattern is prescheduled before being presented to Convey’s DRAM scheduler. In
other words, our proposed interface introduces an additional layer of memory access
scheduling from the perspective of the computational logic.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 8, No. 4, Article 24, Publication date: September 2015.

24:8 Z. Jin and J. D. Bakos

Fig. 4. Block diagram of the 6-point 3D stencil for each PE.

To demonstrate the impact of this prescheduling, we present two access orders—loop
order and array order—as two memory access orders in the baseline memory interface
designs.

Loop order refers to a conceptual memory access order in which each element from
each of the input and output arrays is referenced as if the kernel is being executed in
software with no compiler optimization on a single thread on an in-order processor. In
other words, loop order is the order that data would be accessed in a naive pseudocode
description of the kernel’s algorithm. Stated yet another way, loop order is the ordering
implied by the abstract high-level code.

For example, for a kernel that adds two vectors C = A + B, loop order would describe
the case when each element from each of the two input vectors and output vector
(e.g., A[i], B[i], and C[i]) are accessed in an element-wise interleaved fashion without
considering any cache blocking or loop tiling behavior. Loop order will naively perform
nonconsecutive accesses within each loop iteration. For example, in the 6- and 27-point
stencils, each iteration has to access 6 and 27 elements from the memory to compute
an output element, respectively.

Array order, on the other hand, uses on-chip buffering to reduce the frequency at
which nonconsecutive addresses are referenced by the kernel by prefetching a block of
consecutive addresses from each referenced array. When processing a multidimensional
array, the kernel will buffer data along the major dimension. Array order also leads to
access patterns containing nonconsecutive addresses, but S times less frequently than
loop order, where S equals the size of the buffer.

Figure 4 shows the design of a processing element for the 6-point 3D stencil. In
this design, a FIFO is instanced for each stencil point (element from input array).
The FIFOs allow the stencil points to be requested from memory using an arbitrary
access pattern (request order), which is determined by the address generator. This
access pattern could be loop order if each of the stencil points for each output point
is requested in consecutive cycles. Alternatively, the access order can be optimized to
balance the requests across DRAM banks and/or maximize the number of accesses per
DRAM row. In either case, the FIFOs are used to reconcile the difference between the
order in which inputs are requested from memory (received from memory) and the
order in which they are expected by the kernel logic (pipeline), such as by delivering
all stencil input points for each output in parallel in a single clock cycle.

The address generator (which is essentially a DMA engine) produces the memory
addresses in either loop order (in which S = 1) or array order (for an arbitrary S
limited by the FIFO depth). In loop order, the six inputs needed to compute each
output element are requested consecutively within its group. When each input arrives,

ACM Transactions on Reconfigurable Technology and Systems, Vol. 8, No. 4, Article 24, Publication date: September 2015.

Memory Interface Design for 3D Stencil Kernels on a Massively Parallel Memory System 24:9

Fig. 5. A 5 × 5 × 4 block with four 5 × 5 planes with elements numbered numerically.

it is stored in the FIFO corresponding to its stencil point. In array order, a block of
S elements from consecutive addresses is requested, and each block of S elements is
stored in a single FIFO. No FIFOs are read until no FIFOs are empty.

When only using one of the HC-1’s FPGAs (and thus being constrained to only 25% of
the available memory bandwidth), the DRAM controller efficiency is 67% for loop order
and 90% for the array order with a sufficiently high value of S. Using additional FPGAs
would produce additional demand for the DRAM banks and further reduce efficiency.

4.2. Memory Access Scheduling with Data Reuse

To combine memory latency hiding, memory access scheduling, and data reuse, we
propose numerical order—a memory access order that emphasizes consecutive memory
address access while taking advantage of the stencil’s static access pattern to reuse
words already received from memory. Numerical ordering does this by associating
buffered input elements with a local address.

Figure 5 illustrates numerical order by showing how a subblock of 5 × 5 × 4 input
elements from the stencil input space are conceptualized as four 2D planes (P0, P1,
P2, and P3). Each element in the planes is numbered numerically starting from 0 in
P0 and ending at 99 in P3. The points are used as inputs and are inclusive of the halo
region. As such, plane P1 has nine output points corresponding to the locations at 31,
32, 33, 36, 37, 38, 41, 42, and 43, and plane P2 has nine output points (56, 57, 58, 61,
62, 63, 66, 67, and 68). Since each output element is accumulated by N neighbors offset
by 1 on each direction in the stencil computation, the 6-point stencil computation of an
output point in P1 requires the neighboring elements in P0, P1, and P2, whereas the
computation of an output point in P2 requires the neighboring elements in P1, P2, and
P3. For example, the output element corresponding to location 31 in P1 is a function of
elements at locations 6 (P0), 26 (P1), 30 (P1), 32 (P1), 36 (P1), and 56 (P2).

4.2.1. DRAM Latency Hiding in Numerical Ordering. As described earlier, our 6-point stencil
design contains six input FIFOs corresponding to each of the stencil points and—
depending on the address generator—can use loop or array order when reading input
points. Each FIFO receives the appropriate data with the FIFO select control signal.
The control signal specifies into which of the six FIFOs the requested element is to
be stored. When the address generator requests the elements numerically, it is not
feasible to decode the location of each element to know in which FIFO the element is
to be stored. However, if all requested elements are stored in the same on-chip buffer

ACM Transactions on Reconfigurable Technology and Systems, Vol. 8, No. 4, Article 24, Publication date: September 2015.

24:10 Z. Jin and J. D. Bakos

Fig. 6. Block diagram of the proposed 3D 6-point stencil for each PE.

with a single read port, it would take six cycles to read six elements for computing an
output element.

To hide memory latency, we duplicate the buffer six times for the 6-point stencil so
that each buffer receives the same data from the MC interface. As such, the kernel
can read six elements from the buffers in one cycle, as the case in the FIFO-based
design. Each buffer must be designed as a modified FIFO, where words are always
enqueued onto the tail but words can be read from any location. Once the buffer is
full, the tail pointer wraps around and entries in the memory are replaced. We refer
to this behavior as a rotation buffer (RTB). In other words, unlike a FIFO, the data in
the reorder buffer is still available after reading as long as it is not overwritten. This
behavior allows entries in the buffer to be reused as long as possible until they need to
be replaced due to lack of capacity.

Figure 6 shows the block diagram of the design. Input elements are enqueued into
the RTBs in numerical order. When reading each group of six elements, we must know
their addresses in each of the six RTBs. The address of each element is specified by the
numerical order of each element in a block.

For example, referring to Figure 5, to compute the output element corresponding to
location 31, the six RTBs are accessed at addresses 6, 26, 30, 32, 36, and 56, respectively.
Observe that if address 31 of the output point is assumed to be the reference address,
then the differences between the reference address and the addresses of six neighbors
are –25, –5, –1, 1, 5, and 25.

For an N-point stencil, we take advantage of the static nature of the address dif-
ferences to simplify the implementation of read address generation. As long as the
location of an output element and the size of the plane are known, the addresses of the
N neighbors can be calculated using the relative addresses.

4.2.2. DRAM Scheduling in Numerical Ordering. When reading each plane to store in the
RTBs, there is an address stride from the end of a row to the start of the next row within
each plane. For example, in Figure 5, elements in plane P0 at location 4 and location
5 are not stored consecutively in DRAM. Thus, the number of consecutive accesses is
limited by the width of the plane, which is generally a smaller number than the block
size S used in array order. Therefore, we expect DRAM efficiency for numerical order to
be less than that of array order. This represents a trade-off between DRAM controller
efficiency and data reuse rate.

4.2.3. Data Reuse in Numerical Ordering. In the memory interface designs with loop and
array order, the address generator always requests six input elements for each output
element, and there is no data reuse. Thus, computing the block of 3 × 3 × 2 outputs

ACM Transactions on Reconfigurable Technology and Systems, Vol. 8, No. 4, Article 24, Publication date: September 2015.

Memory Interface Design for 3D Stencil Kernels on a Massively Parallel Memory System 24:11

that corresponds to each block of 5 × 5 × 4 inputs requires 108 (3 × 3 × 2 × 6) requests.
In numerical order, the address generator will request all elements in the 5 × 5 × 4
block for computing 18 output elements in planes P1 and P2. In this case, the number
of requested elements is 100 (5 × 5 × 4) elements.

Since the size of each RTB is limited, it has to be rotationally updated with the new
data. The update is based on the knowledge of regular access patterns of a block in
the stencil space. As the buffers always store data in numerical order, the old data in
a buffer can be updated with new data when all elements for computing all output
elements in a plane have been read by the kernel. For example, after all elements in P0
for computing all output elements in P1 have been read from the buffers, all elements
in P0 in the buffers can be replaced safely. Since the RTBs are written and read in
parallel, synchronization must be enforced to ensure that no elements are replaced
that still need to be read.

Assume a block size of four 5 × 5 planes. The RTBs require at least 25 cycles to
store each of the four input planes. The kernel requires 9 cycles to process each of the
constituent two planes. Control logic ensures that the kernel does not begin processing
each output plane until its three dependent input planes have been loaded into the
RTBs.

RTB loading and kernel processing are pipelined; the kernel will be processing with
planes P0 through P2 in parallel to P3 being loaded. As such, to avoid replacing data
in the RTBs that is still needed, the buffers must have sufficient capacity to hold at
least four planes.

The maximum size of each buffer is limited by the available memory resources
on the target FPGA. Assuming the Virtex-5 LX330 FPGA on the Convey HC-1, and
considering 16 PEs per FPGA and six RTBs and one output FIFO per PE, the maximum
size of each buffer is 512 × 64, whereas the size of 64-bit output FIFO is 2,048 for a
6-point stencil and 1,024 for a 27-point stencil. The size of the buffer enables us to
evaluate the performance impact of a relatively large plane.

4.2.4. Proposed 27-Point Stencil Kernel Design. For larger stencils, such as the 27-point
stencil, it is not feasible to instantiate 27 RTBs. Instead, we use 9 shared RTBs that
require three cycles to read 27 elements into the kernel.

For a relatively large 10 × 10 × 4 block, each plane (P1 or P2) has 64 output elements.
It takes 100 (10 × 10) cycles for RTBs to be loaded with each plane. On the other hand,
since three cycles are required to read 27 input elements, the kernel requires 192
(64 × 3) cycles for each plane (e.g., P1). Since RTB write is faster than RTB read, RTB
overflow would eventually occur. If RTB read time can be reduced below 100, then the
overflow can be prevented. This can be accomplished by allowing the kernel to read all
27 points in each cycle and adding an additional layer of buffering between the RTBs
and kernel.

Figure 7 shows a 3 × 8 × 3 block composed of eight planes. The output element
O1 is computed by reading nine input elements of the first plane, followed by nine
inputs in the second plane, and then nine inputs in the third plane. When the second
or third plane is read from RTBs and delivered to the kernel for computing the first
output element O1, it is also used for computing the second output element O2. Thus,
it requires 8 cycles to read all input elements for six output elements as compared to
18 cycles. For a 10 × 10 × 4 block, using this technique, the RTB read time is reduced
from 192 cycles to 80 cycles for each plane.

4.3. Data Reuse Analysis of 3D Stencils

Our benchmark 6-point stencil is described in pseudocode in Figure 8. As shown in line
4, six references to the array A are located in the innermost loop. The references are

ACM Transactions on Reconfigurable Technology and Systems, Vol. 8, No. 4, Article 24, Publication date: September 2015.

24:12 Z. Jin and J. D. Bakos

Fig. 7. Stencil computation of six output elements in a 27-point 3D stencil.

Fig. 8. The 6-point 3D stencil loop kernel.

R0(A[i-1, j, k]), R1(A[i+1, j, k]), R2(A[i, j-1, k]), R3(A[i, j+1, k]), R4(A[i, j, k-1]), and
R5(A[i, j, k+1]). An array element accessed by one reference in an iteration may be
accessed again by other references in other iterations. For example, the array element
accessed by the reference R3 in iteration (i, j+1, k) can be reused by the reference R2
in iteration (i, j+2, k).

4.3.1. Ideal Reuse Rate. To evaluate the ideal reuse rate of the stencil kernel assuming
a limited buffer capacity, we evaluate the kernel’s access pattern against an idealized
cache, which has one-word blocks, is fully associative, and has a perfect replacement
policy that achieves minimum miss rate. During operation, a block will only be evicted
if it is never to be reused. In our experiments, the cache is always large enough that
this guarantee can be enforced. For this kernel, this ideal replacement policy can be
realized using FIFO ordering. In other words, when the cache cannot hold a new
memory reference due to a conflict, the oldest reference is evicted for storing the new
reference.

We use this cache model as a means to analyze the best possible data reuse rate for
different sizes of on-chip buffers and stencil space. When using this cache model, we
assume that words are referenced by the kernel logic using loop order and that the
loops and addressing match those from Figure 8.

We calculate reuse rate by counting the total number of reused memory references
and dividing by the total number of memory references without data reuse. The reuse
rate of the fully associative cache can be computed using Equation (10).

Reuse rate of the cache model = total reused references
(D − 2) × (D − 2) × (I − 2) × P

(10)

ACM Transactions on Reconfigurable Technology and Systems, Vol. 8, No. 4, Article 24, Publication date: September 2015.

Memory Interface Design for 3D Stencil Kernels on a Massively Parallel Memory System 24:13

Table I. Relationship between Buffer Size and Reuse Rate

Reuse Rate (6-point stencil) Reuse Rate (27-point stencil)
Buffer Size Plane Size Numerical Fully Associative Numerical Fully Associative
(Bytes) D×D Ordering Cache Ordering Cache

512 4×4 0.33 0.50 0.85 0.85
1K 5×5 0.53 0.61 0.90 0.90
2K 8×8 0.62 0.72 0.92 0.93
4K 11×11 0.75 0.76 0.94 0.94
8K 16×16 0.78 0.79 0.95 0.95
16K 22×22 0.79 0.80 0.96 0.96
32K 32×32 0.81 0.81 0.96 0.96
64K 45×45 0.82 0.82 0.96 0.96

Note: The input set has a size of D × D × I for 6- and 27-point stencils. Buffer is assumed
to behave as a fully associative cache having one-element blocks and FIFO replacement policy.
I = 512.

where I is the depth of the input space, P is the number of stencil points, and D is the
plane size, which is sized as a function of the buffer size to guarantee that four planes

can fit in the buffer, D = 2

√
buffer size

word size×4 .

4.3.2. Actual Reuse Rate. For numerical ordering, comparing with the number of mem-
ory references without data reuse, we can compute the actual reuse rate using Equa-
tion (11). D × D × I is the number of memory references in the numerical order.

Reuse rate of the numerical ordering = 1 − D × D × I
(D − 2) × (D − 2) × (I − 2) × P

(11)

Table I compares the reuse rates of 6- and 27-point stencils using the numerical
ordering and the cache for the input set size D × D × I.

The results of the cache model are optimal, as each cache can hold four D×D planes
for stencil computation initially, and it always evicts the oldest data that will not be
used in the future when new data needs to be loaded into the cache. In the 6-point
stencil, the reuse rate of the numerical ordering is more than 10% lower than that of
the cache model when the buffer size is smaller than 4K. As the buffer size further
increases, the reuse rates are almost the same. For a small buffer that corresponds to
a small plane size, the number of referenced input data in the numerical ordering that
is not used for the stencil computation decreases the reuse rate. According to Equation
(10), this effect gradually reduces as the buffer size increases. In the 27-point stencil,
however, the reuse rates of the numerical ordering are very close to those of the cache
model regardless of the buffer size, because all referenced input data is used for the
27-point stencil computation.

On the other hand, when I increases from 4 to 512, the reuse rate increases for
both numerical ordering and cache model. For each I, the reuse rate of the numerical
ordering will gradually reach that of the cache model when the plane size and buffer
size increase.

5. EXPERIMENTAL RESULTS

In this section, we present and discuss the experimental results of the 6-point and
27-point 3D stencils using 64 PEs across four FPGAs on the Convey HC-1.

5.1. Performance Impact of the Loop and Array Orders (No Reuse)

We evaluate the performance of 3D stencils with the loop and array orders using a 3D
space of 512 × 512 × 512. The workload is divided along one of I, J, and K dimensions.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 8, No. 4, Article 24, Publication date: September 2015.

24:14 Z. Jin and J. D. Bakos

Fig. 9. Partitions along the J (left) or I (right) dimensions in 3D stencil space.

Fig. 10. DRAM controller efficiency versus block sizes in the 6-point 3D stencil.

5.1.1. The 6-Point Stencil. Figure 9 illustrates the workload partitions of stencil space
along the J dimension (left) and I dimension (right). For the J-dimension partition,
each PE is assigned a chunk of size 512 × 8 × 512 (k = 512, j = 8, I = 512) except PE63,
which is assigned a chunk of size 512 × 6 × 512. For the I-dimension partition, each
PE is assigned a chunk of size 512 × 512 × 8 except PE63, which is assigned a chunk
of size 512 × 512 × 6. We assume that the stencil computation for each PE is based on
the algorithm shown in Figure 8, where the innermost loop index is k and the outmost
loop index is i.

Figure 10 shows the DRAM controller efficiency results of the 6-point stencil when
the stencil space is partitioned along I, J, and K dimensions. As mentioned before, loop
order corresponds to a block size of 1, whereas the array order has parameterized block
sizes. For each partitioning, we use loop order and array order when accessing input
elements from DRAM.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 8, No. 4, Article 24, Publication date: September 2015.

Memory Interface Design for 3D Stencil Kernels on a Massively Parallel Memory System 24:15

Fig. 11. Runtime vs. block sizes in the 6-point 3D stencil.

Figure 11 compares the average runtime in million cycles of all 16 PEs in an AE
for the three partitions in the 6-point stencil. The minimum runtime is approximately
24.3 million cycles with a block size of 446, which represents a 1.15 speedup over the
baseline design for the 6-point stencil.

The interface efficiency is nearly 100% regardless of how the stencil space is parti-
tioned and the block sizes.

5.1.2. The 27-Point Stencil. We apply the same partitions to the 27-point stencil space,
and results are shown in Figures 12 and 13. As with the 6-point stencil, the interface
efficiency is nearly 100% for each partition.

As shown in Figure 12, DRAM controller efficiency of the K-dimension partition
is approximately 67% for larger block sizes. DRAM controller efficiency of the I- and
J-dimension partition increases to 72% until memory is exhausted at a block size of 27.

Figure 13 compares the runtime in million cycles of the three partitions in the 27-
point stencil. The runtime of I-dimension partition is about 1% to 4% higher than the
runtime of the J-dimension partition. The minimum runtime is about 104.5 million
cycles when the block size is 27 using J-dimension partitioning, corresponding to a
speedup of 1.60 as compared to using a block size of 1 using I-dimension partitioning.

5.1.3. Discussion. The 3D arrays are stored in DRAM using K-major ordering, meaning
that reading data along the K dimension while keeping I and J constant will result in
reading consecutive words from DRAM.

Regardless of which dimension is used for partitioning, each PE will still read data
into its FIFOs along the K dimension (i.e., using array ordering). The partitioning
strategy affects how many consecutives elements can be read into the FIFOs.

The partitioning strategy determines the K-dimension depth of the subset of data
assigned to each PE. In K-dimension partitioning, each PE is assigned a block having
a depth of 512/64 in the K dimension. In I- and J-dimension partitioning, each PE
is assigned a block having a depth of 512 in the K dimension. For this reason, I/J
partitioning always performs best for the 6-point stencil.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 8, No. 4, Article 24, Publication date: September 2015.

24:16 Z. Jin and J. D. Bakos

Fig. 12. DRAM controller efficiency versus block sizes in the 27-point 3D stencil.

Fig. 13. Runtime versus block sizes in the 27-point 3D stencil.

Due to resource constraints, the 27-point stencil has smaller FIFOs and is limited to
smaller buffer sizes (block sizes of 1 to 27, as compared to 1 to 500 for the 6-point stencil).
Only larger block sizes (>17), allow the 27-point stencil design to take advantage of
the longer runs in the K dimension offered by I/J partitioning.

5.2. Performance Impact of Numerical Order

We evaluate the performance of proposed memory interface designs for both stencils
using the numerical ordering by a slightly larger 3D space of 514 × 514 × 512. We

ACM Transactions on Reconfigurable Technology and Systems, Vol. 8, No. 4, Article 24, Publication date: September 2015.

Memory Interface Design for 3D Stencil Kernels on a Massively Parallel Memory System 24:17

Fig. 14. Block partitions along the J and I dimensions in 3D stencil space.

adjust the stencil space from 512 × 512 × 512 to 514 × 514 × 512 so that each of 64
PEs can request a block composed of a number of 10 × 10 planes of elements without
introducing load imbalance in the j or k dimension of the block.

As shown in Figure 14, we also divide the stencil space along I, J, or K dimension for
workload assignment to 64 PEs. For the I-dimension partitions, each PE is assigned
a chunk of size 514 × 514 × 10 except PE63, which is assigned a chunk of size 514 ×
514 × 8. Each chunk is further divided into blocks. The size of each block (e.g., t0) is j ×
k × i, where j = k = 10. For each PE (e.g., PE0), it requests a block of elements in the
order from block t0, through block t63, to block t64 until all blocks have been accessed
in the chunk. The size of a block in the i dimension is a parameter that correlates
with the data reuse. The larger the value of the parameter, the fewer the number of
blocks that are accessed in the chunk, increasing the reuse rate. We choose the value
of i such that the number of planes that contain the output points in the block is
integer divisible by the number of planes that contain the output points in the chunk.
In our experiment, the values of i are 4, 5, 7, 8, 32, 53, 87, 104, 172, 257, and 512 for
the J- and K-dimension partitions, whereas they are 4, 6, and 10 for the I-dimension
partition.

The proposed design achieves almost 100% interface efficiency for the three parti-
tions. The reuse rate, as shown in Figure 15, increases from 0.41 to 0.63 for the J-
and K-dimension partitions when the i dimension of the block increases from 4 to 512.
For the I-dimension partition, the reuse rate increases from 0.41 to 0.58 when the i
dimension of the block increases from 4 to 10.

As shown in Figure 16, although DRAM controller efficiency results are similar for
the three partitions, the K-dimension partition yields slightly higher efficiency than
the J- or I-dimension partition when the i dimension of the block is valid for the
three partitions. In addition, small i dimensions of the block have more impact on the
efficiency than large i dimensions of the block. When the i dimension of the block is
greater than 32, the efficiency stays approximately at 66%.

Figure 17 shows that when the i dimension of the block increases from 4 to 512, the
runtime decreases approximately from 18 million cycles to 11 million cycles. However,
the runtime is almost the same when the i dimension of the block is greater than 32
for the J- and K-dimension partitions. On the other hand, the runtime results of the
K-dimension partition are slightly lower than those of J- or I-dimension partition for
each i dimension of the block.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 8, No. 4, Article 24, Publication date: September 2015.

24:18 Z. Jin and J. D. Bakos

Fig. 15. Reuse rates of the proposed memory interface for the 6-point 3D stencil.

Fig. 16. DRAM controller efficiency of the proposed memory interface for the 6-point 3D stencil.

To evaluate the impact of reuse, we define the ideal speedup as the ratio of the number
of memory accesses without data reuse to the number of memory accesses with data
reuse. Note the total number of memory requests without data reuse is 510 × 510 ×
8 × 7. For each i dimension of the block, the actual speedup is calculated by the ratio
of the lowest runtime when the block size is 446 in the I-dimension partition to the
corresponding runtime in Figure 17.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 8, No. 4, Article 24, Publication date: September 2015.

Memory Interface Design for 3D Stencil Kernels on a Massively Parallel Memory System 24:19

Fig. 17. Runtime of the proposed memory interface for the 6-point 3D stencil.

Table II. Comparison of the Ideal and Actual Speedup in the
Proposed Memory Interface for the 6-Point 3D Stencil

Ideal Actual Actual Speedup vs.
i Dimension Speedup Speedup Ideal Speedup

4 1.69 1.41 83.48
5 1.93 1.57 80.92
7 2.19 1.73 79.03
8 2.26 1.76 77.99

32 2.61 2.12 80.91
53 2.66 2.14 80.35
87 2.68 2.16 80.46
104 2.69 2.18 81.06
172 2.70 2.19 80.96
257 2.71 2.21 81.56
512 2.71 2.21 81.58%

Table II compares the ideal and best actual speedup of 6-point stencil. With the
increase of i value, the ideal speedup increases from 1.7 to 2.7, whereas the actual
speedup increases from 1.4 to 2.2. The actual speedup achieves on average 80.76% of
the ideal speedup.

Figure 18 compares DRAM controller efficiency results of the proposed 6-point 3D
stencil design using the numerical order with the best DRAM controller efficiency using
the array order. The best DRAM controller efficiency is 74%, as described in Section 5.1.
Since DRAM controller efficiency results across all i dimensions of the block are close,
we average the DRAM efficiency results in Figure 16. As shown in Figure 18, the
averaged DRAM controller efficiency of the K-dimension partition is about 11% lower
than the best.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 8, No. 4, Article 24, Publication date: September 2015.

24:20 Z. Jin and J. D. Bakos

Fig. 18. Comparison of DRAM controller efficiency results for the 6-point 3D stencil.

Table III. Comparison of the Ideal and Actual Speedup in the
Proposed Memory Interface for the 27-Point 3D Stencil

Ideal Actual Actual Speedup vs.
i Dimension Speedup Speedup Ideal Speedup

4 6.76 6.00 88.73
5 7.74 6.75 87.17
7 8.75 7.44 85.00
8 9.05 7.65 84.57
32 10.46 9.13 87.28
53 10.63 9.18 86.40
87 10.73 9.25 86.20
104 10.76 9.31 86.59
172 10.81 9.36 86.57
257 10.83 9.46 87.29
512 10.86 9.48 87.26%

The interface and DRAM controller efficiency results of the 27-point stencil design
are similar to those of the 6-point stencil design, as the access patterns of the numerical
order are the same. Because the results of the K-dimension partition are best in the
proposed 6-point stencil design, we choose the same partition and compare the results
with the best results in Section 5.1.

Table III compares the ideal and actual speedup of the proposed 27-point stencil
design across all i dimensions. As defined before, the ideal speedup is the ratio of the
number of memory accesses without data reuse to the number of memory accesses with
data reuse for each PE. The total number of memory requests without data reuse is
510 × 510 × 8× 28. For each i dimension of the block, the actual speedup is calculated
by the ratio of the lowest runtime when the block size is 27 in the I-dimension partition
to the corresponding runtime in Figure 17. With the increase of i value, the ideal
speedup increases from 6.76 to 10.86, whereas the actual speedup increases from 6 to
9.48. The actual speedup achieves on average 86.64% of the ideal speedup.

As described in Section 5.1, the best DRAM controller efficiency for the 27-point
stencil is 72% when the block size is 27. The averaged DRAM controller efficiency of
the K-dimension partition is 65.8%, which is about 8.6% lower than the best, although
the reuse rate is 0.9.

5.3. Resource Utilization

Table IV summarizes the resource utilization of the 6-point and 27-point stencils
with the loop, array, and numerical orders when the stencil space is divided along
the K dimension. All designs are compiled using the Xilinx ISE 14.4 with the same

ACM Transactions on Reconfigurable Technology and Systems, Vol. 8, No. 4, Article 24, Publication date: September 2015.

Memory Interface Design for 3D Stencil Kernels on a Massively Parallel Memory System 24:21

Table IV. Resource Utilization of the 6-Point and 27-Point 3D Stencils

6-Point Stencil 27-Point Stencil
Resource Loop (%) Array (%) Numerical (%) Loop (%) Array (%) Numerical (%)

Slice 83 84 81 98 98 88
Slice register 57 58 53 72 73 58

Slice LUT 47 48 48 78 80 62
BRAM 80 80 80 97 97 86

constraints and settings for synthesis, map, place, and route. The resource utilization
results of dividing the space along the other two dimensions are not listed, as they
are approximately equal to those shown. As shown in the table, the proposed design
with the numerical order is more resource efficient in terms of the number of slices,
slice registers, slice LUTs, and block RAMs (BRAMs). Note that DSP48E macros are
not used, as all arithmetic operations are implemented with slice LUTs. The 27-point
stencil design with the loop or array order utilizes 98% of total FPGA slices due to the
large number of 64-bit adders and the FSM controller in the address generator. For the
6-point stencil, the BRAM utilization is 80% for the three orderings. For the 27-point
stencil, the BRAM utilization is 97% for the loop and array orderings, and 86% for the
numerical ordering.

6. CONCLUSIONS

This article presents a set of custom memory interface designs on an FPGA-based plat-
form for 3D stencil kernels. The target platform—the Convey HC-1—is a multi-FPGA
platform whose memory system performs dynamic access scheduling but presents the
programmable logic with three critical challenges: (1) its memory system does not
perform caching or prefetching, (2) its memory performance depends on the access
order given by the programmable logic, and (3) its DRAM latency is high and must
be explicitly hidden in the programmable logic. To reconcile these problems and maxi-
mize overall memory performance, the interface of each kernel should provide explicit
support for latency hiding, memory access scheduling, and data reuse.

To hide memory latency, we use address generation and large FIFO- and rotation-
based buffers. For memory access scheduling, we propose three memory access orders—
loop order, array order, and numerical order—to evaluate the effect of access scheduling
on memory performance. Data reuse is realized by each PE reading 3D blocks composed
of a set of planes. To combine memory latency hiding, memory access ordering, and data
reuse, we develop custom circular buffering techniques, custom address generators, and
kernel implementations for both stencils.

Our experimental results reveal a complex trade-off in the space of data reuse and
scheduling. Using million output stencil points per second (MP/s) to measure through-
put, we obtain 818MP/s and 190MP/s for the 6- and 27-point stencils with the array
order and 1,823MP/s for both stencils with the numerical order. Taking into account
DRAM controller efficiency and interface efficiency, array order achieves maximum
effective memory bandwidth of 56.8GB/s and 55.3GB/s for the 6- and 27-point sten-
cils, respectively, whereas numerical order achieves maximum effective bandwidth of
50.7GB/s. Compared to the loop and array orders with no data reuse, the reuse rate
ranges from 0.33 to 0.82 and from 0.85 to 0.96 for the 6- and 27-point 3D stencils,
respectively, for the numerical order. Although the number of consecutive accesses can
improve the DRAM controller efficiency, on-chip memory constraints limit the number
of consecutive accesses that can be achieved in the array and numerical orders. Despite
this, we carefully adjust the sizes of the stencil space, FIFO, and RTB to achieve best
performance results under the resource constraints.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 8, No. 4, Article 24, Publication date: September 2015.

24:22 Z. Jin and J. D. Bakos

REFERENCES

J. H. Ahn, N. P. Jouppi, C. J. Kozyrakis Leverich, and R. S. Schreiber. 2009. Future scaling of processor-
memory interfaces. In Proceedings of the Conference on High Performance Computing Networking, Stor-
age, and Analysis (SC’09). Article No. 42.

W. Augustin, J. Weiss, and V. Heuveline. 2011. Convey HC-1 Hybrid Core Computer-The Potential of FPGAs
in numerical simulation. In Proceedings of the Second International Workshop on New Frontiers in
High-Performance and Hardware-Aware Computing (HipHaC’11). San Antonio, Texas, USA.

R. Banakar, S. Steinke, and B. Lee. 2002. Scratchpad memory design alternative for cache on-chip memory
in embedded systems. In Proceedings of the 10th International Symposium on Hardware/Software
Codesign (CODES’02). 73–78.

N. Baradaran and P. C. Diniz. 2008. A compiler approach to managing storage and memory bandwidth in
configurable architectures. ACM Transactions on Design Automation of Electronic Systems 13, 4, Article
No. 61.

Y. Ben-Asher and N. Rotem. 2010. Automatic memory partitioning: Increasing memory parallelism via
data structure partitioning. In Proceedings of the 2010 IEEE/ACM/IFIP International Conference on
Hardware/Software Codesign and System Synthesis (CODES+ISSS). 155–162.

L. Benini, L. Macchiarulo, A. Macii, and M. Poncino. 2002. Layout-driven memory synthesis for embed-
ded systems-on-chip. IEEE Transactions on Very Large Scale Integration (VLSI) Systems 10, 2, 96–
105.

H. K. Chang and Y. L. Lin. 2000. Array allocation taking into account SDRAM characteristics. In Proceedings
of the Asia and South Pacific Design Automation Conference (ASP-DAC’00). 497–502.

J. Cong, H. Huang, C. Liu, and Y. Zou. 2011a. A reuse-aware prefetching scheme for scratchpad memory. In
Proceedings of the 48th Design Automation Conference (DAC’11). 960–965.

J. Cong, M. Huang, and Y. Zou. 2011b. 3D recursive Gaussian IIR on GPU and FPGAs: A case study for
accelerating bandwidth-bounded applications. In Proceedings of the 9th IEEE Symposium on Application
Specific Processors. 201.

J. Cong, W. Jiang, B. Liu, and Y. Zou. 2011c. Automatic memory partitioning and scheduling for throughput
and power optimization. ACM Transactions on Design Automation of Electronic Systems 16, 2, Article
No. 15.

J. Cong, P. Zhang, and Y. Zou. 2011d. Combined loop transformation and hierarchy allocation in data
reuse optimization. In Proceedings of the 2011 International Conference on Computer-Aided Design
(ICCAD’11). 185–192.

Convey Corporation. 2012. Convey Personality Development Kit Reference Manual. Retrieved August 24,
2015, from http://www.conveysupport.com/alldocs/ConveyPDKReferenceManual.pdf.

K. Datta, M. Murphy, V. Volkov, S. Williams, J. Carter, L. Oliker, D. Patterson, J. Shalf, and K. Yelick.
2008. Stencil computation optimization and auto-tuning on state-of-the-art multicore architectures. In
Proceedings of the 2008 ACM/IEEE Conference on Supercomputing. IEEE, Los Alamitos, CA, 1–12.

Z. Fang, X. H. Sun, Y. Chen, and S. Byna. 2009. Core-aware memory access scheduling schemes. In
Proceedings of the IEEE International Symposium on Parallel and Distributed Processing (IPDPS’09).
1–12.

C. He, M. Lu, and C. Sun. 2004. Accelerating seismic migration using FPGA-based coprocessor platform. In
Proceedings of the 12th Annual IEEE Symposium on Field-Programmable Custom Computing Machines
(FCCM’04). IEEE, Los Alamitos, CA, 207–216.

C. He, G. Qin, M. Lu, and W. Zhao. 2006. An efficient implementation of high-accuracy finite difference
computing engine on FPGAs. In Proceedings of the International Conference on Application-Specific
Systems, Architectures, and Processors (ASAP’06). IEEE, Los Alamitos, CA, 95–98.

C. He, W. Zhao, and M. Lu. 2005. Time domain numerical simulation for transient waves on reconfigurable
coprocessor platform. In Proceedings of the 13th Annual IEEE Symposium on Field-Programmable
Custom Computing Machines. IEEE, Los Alamitos, CA, 127–136.

W. K. C. Ho and S. J. E. Wilton. 2004. Logical-to-physical memory mapping for FPGAs with dual-port
embedded arrays. In Field Programmable Logic and Applications. Lecture Notes in Computer Science,
Vol. 1673. Springer, 111–123.

I. Issenin, E. Brockmeyer, M. Miranda, and N. Dutt. 2007. DRDU: A data reuse analysis technique for efficient
scratch-pad memory management. ACM Transactions on Design Automation of Electronic Systems 12,
2, Article No. 15.

Z. Jin and J. D. Bakos. 2013. Memory access scheduling on the Convey HC-1. In Proceedings of the 21st IEEE
International Symposium on Field-Programmable Custom Computing Machines. 237.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 8, No. 4, Article 24, Publication date: September 2015.

Memory Interface Design for 3D Stencil Kernels on a Massively Parallel Memory System 24:23

M. Kandemir, J. Ramanujam, M. J. Irwin, N. Vijaykrishnan, I. Kadayif, and A. Parikh. 2004. A compiler-based
approach for dynamically managing scratch-pad memories in embedded systems. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems 23, 2, 243–260.

S. Liu, S. O. Memik, Y. Zhang, and G. Memik. 2008. A power and temperature aware DRAM architecture. In
Proceedings of the Design Automation Conference (DAC’08).

C. G. Lyuh and T. Kim. 2004. Memory access scheduling and binding considering energy minimization in
multi-bank memory systems. In Proceedings of the Design Automation Conference (DAC’04).

P. R. Panda, N. D. Dutt, and A. Nicolau. 1997. Efficient utilization of scratch-pad memory in embed-
ded processor applications. In Proceedings of the 1997 European Conference on Design and Test
(EDTC’97). 7.

S. Rixner, W. J. Dally, U. J. Kapasi, P. Mattson, and J. D. Owens. 2008. Memory access scheduling. In
Proceedings of the 27th Annual International Symposium on Computer Architecture (ISCA’00). 128–138.

Y. Tatsumi and H. Mattausch. 1999. Fast quadratic increase of multiport-storage-cell area with port number.
Electronics Letters 35, 25, 2185–2187.

Y. Wang, P. Li, P. Zhang, C. Zhang, and J. Cong. 2013. Memory partitioning for multidimensional arrays in
high-level synthesis. In Proceedings of the 50th Annual Design Automation Conference (DAC’13). ACM,
New York, NY, Article No. 12.

Y. Wang, P. Zhang, X. Cheng, and J. Cong. 2012. An integrated and automated memory optimization flow for
FPGA behavioral synthesis.” In Proceedings of the 2012 17th Asia and South Pacific Design Automation
Conference (ASP-DAC’12). 257–262.

Received November 2014; revised May 2015; accepted June 2015

ACM Transactions on Reconfigurable Technology and Systems, Vol. 8, No. 4, Article 24, Publication date: September 2015.

