Microprocessors and Microsystems 120 (2026) 105223

Contents lists available at ScienceDirect

EMBEDDED
HARDWARE

DESIGN

Microprocessors and Microsystems

journal homepage: www.elsevier.com/locate/micpro

Check for

A runtime-adaptive transformer neural network accelerator on FPGAs™ | updaed

Ehsan Kabir 2®-*, Jason D. Bakos"®, David Andrews 2, Miaoqing Huang ?

2 Department of Electrical Engineering and Computer Science, University of Arkansas, Fayetteville, AR, USA
b Department of Computer Science and Engineering, University of South Carolina, Columbia, SC, USA

ARTICLE INFO ABSTRACT

Keywords: Transformer neural networks (TNN) excel in natural language processing (NLP), machine translation, and com-

FPGA puter vision (CV) without relying on recurrent or convolutional layers. However, they have high computational

Transformer and memory demands, particularly on resource constrained devices like FPGAs. Moreover, transformer models
gnemllo“ " vary in processing time across applications, requiring custom models with specific parameters. Designing
eural networks . L X X .
Encoder custom accelerators for each model is complex and time-intensive. Some custom accelerators exist with

no runtime adaptability, and they often rely on sparse matrices to reduce latency. However, hardware
designs become more challenging due to the need for application-specific sparsity patterns. This paper
introduces ADAPTOR, a runtime-adaptive accelerator for dense matrix computations in transformer encoders
and decoders on FPGAs. ADAPTOR enhances the utilization of processing elements and on-chip memory,
enhancing parallelism and reducing latency. It incorporates efficient matrix tiling to distribute resources across
FPGA platforms and is fully quantized for computational efficiency and portability. Evaluations on Xilinx Alveo
U55C data center cards and embedded platforms like VC707 and ZCU102 show that our design is 1.2x and
2.87x more power efficient than the NVIDIA K80 GPU and the i7-8700K CPU respectively. Additionally, it
achieves a speedup of 1.7 to 2.25x compared to some state-of-the-art FPGA-based accelerators.

High-level synthesis
Natural language processing
Hardware accelerators

1. Introduction MHA layers [16]. MHA and FFN also occupy most of the on chip
storage units [17-19]. Therefore, it is essential to prioritize efficient
hardware deployment on resource-constrained devices. FPGAs have
gained widespread use for accelerating DNNs due to their high level of
parallelism, high energy efficiency, and low latency [20,21]. Recently,
some works have successfully built FPGA based custom hardware ac-
celerators for transformers [13,18,22]. Application-specific integrated

circuits (ASIC)-based accelerators also exist [23].

Transformer neural networks (TNN) have shown great performance
in natural language processing (NLP) [1], machine translation [2],
computer vision [3], and other fields in recent years. While recurrent
neural network (RNN) [4] and long short-term memory (LSTM) [5]
models run sequential computation tasks during both training and
inference, transformer facilitates high levels of computation parallelism
throughout both processes using an attention mechanism. Thus, TNN

is becoming a potential alternative to CNN, RNN, and LSTM [6,7].
There are many transformer models, such as full transformers con-
taining both encoder and decoder [8], BERT [9,10], ALBERT [11],
structBERT [12], and others. These models contain different numbers
of encoder and decoder stack [8] for different applications. A single
encoder will often require a latency on the order of 100s of puS [13].
Around 38% to 64% of this time is spent in the multihead attention
(MHA) mechanism depending on the number of tokens in the input
sequence [14,15], and the rest of the time is spent on feed forward
network (FFN). Unfortunately, general-purpose platforms like GPUs
and CPUs often suffer from low computational efficiency, underuti-
lized memory bandwidth, and substantial compilation overheads for

Lu et al. [22] accelerated the attention mechanism and feedfor-
ward network separately, but did not implement the full transformer
encoder. Ye et al. [24] focused on accelerating only the attention
mechanism using a reconfigurable systolic array for the transformer.
Similarly, Zhang et al. [25] concentrated on accelerating the attention
layer through hardware—software co-design. In contrast, ADAPTOR is
developed to support the entire transformer neural network (TNN).
Some other works accelerate the full transformer networks but their
logic circuits go through the time-consuming synthesis steps for differ-
ent models or they perform poorly on the same model with different
configurations [26]. These approaches lack the generality to support

* This material is based upon work supported by the National Science Foundation, United States under Grant No. 1956071.

* Corresponding author.

E-mail addresses: kabir40ehsan@gmail.com, ekabir@tamut.edu (E. Kabir), jbakos@cse.sc.edu (J.D. Bakos), dandrews@uark.edu (D. Andrews),

mghuang@uark.edu (M. Huang).

https://doi.org/10.1016/j.micpro.2025.105223

Received 11 July 2025; Received in revised form 30 October 2025; Accepted 4 November 2025

Available online 17 November 2025

0141-9331/© 2025 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

nec-nd/4.0/).

https://www.elsevier.com/locate/micpro
https://www.elsevier.com/locate/micpro
https://orcid.org/0009-0009-3335-9419
https://orcid.org/0000-0002-0821-6258
mailto:kabir40ehsan@gmail.com
mailto:ekabir@tamut.edu
mailto:jbakos@cse.sc.edu
mailto:dandrews@uark.edu
mailto:mqhuang@uark.edu
https://doi.org/10.1016/j.micpro.2025.105223
https://doi.org/10.1016/j.micpro.2025.105223
http://crossmark.crossref.org/dialog/?doi=10.1016/j.micpro.2025.105223&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

E. Kabir et al.

diverse variants, whereas ADAPTOR eliminates the need for repeated
synthesis across models.

As transformer variants continue to evolve with differing param-
eters, designing a generic and efficient accelerator that can be cus-
tomized to the structural characteristics of these variants becomes in-
creasingly valuable. Thus, a versatile accelerator is needed to efficiently
handle dense matrix computations across various TNN applications,
and ADAPTOR is designed to fulfill this role. Digital signal process-
ing (DSP) resources are capable of high-speed computation at higher
frequencies. Proper utilization of them depends on the implementation
method. For example, most accelerators [13,27-29] used high-level
synthesis (HLS) tools, while some used hardware description language
(HDL) [30-32] for design. While HLS requires less implementation
time compared to HDL, writing efficient HLS code to use parallel
DSPs for optimal performance is challenging [33]. To address this,
ADAPTOR employs optimized HLS coding techniques. Additional chal-
lenges include storing the vast number of TNN parameters in the
on-chip memories of FPGAs, which typically have a size of SMB for
low-end devices such as the ZCU104 and 35MB for high-end devices
such as the Alveo U200 [34] and executing the extensive number of
multiplication and accumulation (MAC) operations required by TNNs
on the DSPs, with Ultrascale+ FPGAs offering approximately 9024
DSPs. Therefore, input matrices must be partitioned into tiles. However,
developing an optimal partitioning scheme that aligns well with the
architecture presents a significant challenge, one that has been carefully
addressed in the design of ADAPTOR. The data access and computation
patterns differ across various blocks within the transformer, which also
prevents acceleration. To overcome this, ADAPTOR assigns dedicated
hardware modules to each block, enabling more effective design and
optimization. The full source code' to reproduce the presented results
or improve the design.

In summary, this work makes the following contributions:

« A novel accelerator architecture for a complete transformer that
maximizes DSP and LUT utilization to enhance parallel processing
and achieve low latency, supported by an analytical model for
pre-execution estimates of resource use and latency.

« An efficient tiling strategy for weight matrices in both the multi-
head attention layer and the feedforward neural network layer,
enabling the deployment of the accelerator to any FPGA platform
for most TNN models.

o A modular design approach implemented using parameterized
HLS codes to accommodate varying computation and data access
patterns, as well as to allow design-time modification of different
TNN components.

« A runtime adaptive feature allows software-driven parameter ad-
justments to run different models without hardware re-synthesis.

2. Related work

Various custom and partially adaptive FPGA accelerators have been
developed for TNNs. Peng et al. [13,27] introduced a coherent sequence
length-adaptive algorithm-hardware co-design for Transformer acceler-
ation and explored column-balanced block-wise pruning. Qi et al. [19,
34] proposed an acceleration framework combining balanced model
compression at the algorithm level with hardware-level FPGA optimiza-
tion. Chen et al. [35] developed an analytical model for evaluating
spatial TNN accelerators, considering FPGA compute and memory re-
sources, identifying optimal parallelization and buffering strategies,
and providing reusable HLS kernels. Similarly, we developed an analyt-
ical model to estimate the latency and resource utilization of ADAPTOR
and designed it modularly, with each module implemented as an HLS
function for easy optimization and reuse. Qin et al. [36] designed a TNN

1 https://github.com/Kabir-Ehsan/Transformer_on_FPGA.

Microprocessors and Microsystems 120 (2026) 105223

accelerator with separate attention and linear kernels for long input
sequences, applying tiling only to the attention layer, whereas our de-
sign applies unique tiling strategies to both attention and linear layers.
Both architectures incorporate analytical models. The energy-efficient
FTRANS framework [18] employed an improved block-circulant matrix
method for algorithm-level sparsity, alongside a dedicated accelerator
designed for this approach. Most of these architectures target specific
TNNs and sparsity patterns, lacking runtime flexibility to reconfigure
the computing structure for different applications. In contrast, ADAP-
TOR can be programmed from software for any dense TNN model.
FlexRun [37] identified key NLP model components, implemented them
on a state-of-the-art FPGA accelerator, performed design space explo-
ration to determine the optimal architecture for a given NLP model, and
enabled automatic reconfiguration based on the results. FET-OPU [38]
presented an overlay architecture for general TNN acceleration featur-
ing a DSP-packed Matrix Multiplication Unit (MMU) with a FIFO-based
data caching mechanism. FlightLLM [16] introduced a configurable
sparse DSP chain for handling diverse sparsity patterns efficiently, an
always-on-chip decode scheme for improved memory bandwidth with
mixed-precision support, and a length-adaptive compilation method
to minimize instruction storage overhead for large language models.
TRAC [39] focused on dedicated hardware generation, integrating
code generation into the compilation process to create parameterized
and synthesized modules for specific Transformer configurations-unlike
fixed, though parameterizable, overlays. EFA-Trans [31] supports both
dense and sparse computation patterns but requires hardware resynthe-
sis to switch between them. Moreover, none of these works examined
optimal tile sizes or DSP utilization for maximum parallelism as done
in ADAPTOR.

3. Background
3.1. Transformer architecture

There are several building blocks in transformers as shown in Fig.
1(a). An input sequence of tokens is converted into embeddings. The
positional encoder enables the model to consider the order of tokens
in a sequence by adding positional information to the embeddings. It
generates vectors that give context according to the word’s position
in a sentence. Then the vectors are linearly transformed into three
tensors: Q (queries), K (keys), and V (values) by multiplying the em-
bedding matrix with three weight matrices. The encoder block handles
these tensors, transforming them into a higher-level representation
that encapsulates crucial information. This process ensures the proper
capture of features and contextual relationships within the input se-
quence. The encoder architecture comprises two main sub-layers: (1)
the self-attention mechanism, and (2) the position-wise feed-forward
network. The self-attention mechanism enables the model to assess
different segments of an input sequence simultaneously. It captures
long-range relationships by measuring attention scores and utilizing
multi-head projections for various input representations. Thus, it can
learn complex patterns, dependencies, and relationships effectively.
The position-wise feed-forward network (FFN), which is equivalent to
a multilayer perceptron (MLP), applies linear transformations to every
position independently in the input sequence. In this network, two
linear transformations are executed. They mainly contain matrix—vector
multiplication. The first linear transformation has activation functions
such as the Rectified Linear Unit (ReLU) or Gaussian Error Linear Unit
(GeLU) but the second one does not have these. Furthermore, each sub-
layer includes a residual connection combined with layer normalization
(LN). This reduces the vanishing gradient problem during training.
Residual addition and LN layers are inserted after each MHA and
FFN. It mainly includes the addition of matrix elements and nonlinear
functions. The decoder block illustrated in Fig. 1(a) is responsible for
generating the output sequence based on the encoded representations
supplied by the encoder. Like the encoder, the decoder also consists of a

https://github.com/Kabir-Ehsan/Transformer_on_FPGA

E. Kabir et al.

Output 4—[Softmax }1—[Feed Forward}

?

Decoder-N
Feed Forward I
|
Encoder-N Decoder-01
| Layer Norm
| }7
1
Encoder-01 Feed Forward
Layer Norm Layer Norm
L P—
Feed Forward Encoder—pecoder
17 Attention
| S——
iy o Layer Norm
— RN
Multihead Attention Multihead Attention
A 'y
~N
I
. Position . Position
Emberdmg ot Embedding e
Input Target

(a) Complete architecture.

Microprocessors and Microsystems 120 (2026) 105223

Multihead
Attention Layer

Concatenate
— 1 Z = Softmax (Q—KT>V
Mask Attention Score %= Ta

W

/

~

Query Key Value|

[[
[[

| |
‘ K=X*Wy ‘ V=X*Wy,

f f
Input (X)

Input (X)

Input (X)

(b) Multihead attention layer.

Fig. 1. Transformer neural network.

stack of N identical layers. Each layer within the decoder contains three
sub-layers. They are: (1) the Masked Attention Mechanism, resembling
the encoder’s self-attention, and it includes a masking feature that
restricts the output’s dependency on known preceding outputs; and (2)
an attention layer that directs its focus to the encoder’s output, enabling
the decoder to emphasize relevant sections of the input sequence for
each output element and (3) a position-wise feed-forward network.

The self-attention mechanism in transformers allows each position
in the sequence to attend to all other positions, enabling the model
to consider global context easily. Each attention head is composed of
three linear layers and a scaled dot-product attention function. The
parameter 4 — or number of heads - is equal to 8 in the Transformer
base model or 16 in the Transformer big model. As illustrated in Fig.
1(b), the scaled dot product attention in each head is a crucial part
of the multihead attention layer. The attention weights are computed
by performing the dot product of the query and key vectors and
subsequently scaling it down by the square root of the dimension of
the key vectors. This scaling is essential to prevent the dot products
from becoming excessively large, which contributes to the stabilization
of gradients during the training process. Subsequently, the scaled dot
products undergo the softmax function, resulting in the computation of
attention weights. These weights are then used to perform a weighted
sum of the value vectors. The ultimate output is the projection of the
concatenated sequences from all heads.

The output of MHA can be represented as Egs. (1) & (2). The input
sequence X is linearly mapped into Q,, K;, V; matrices using weights and
biases. The parameter d, = d,, . /h is the dimension of Q; and K;.
d oqer 1S @ hyperparameter called embedding dimension, and # is the
number of heads.

. QK]
Attention(Q;, K;, V;) = softmax _d V; (€8}
Vi

Q;=XxW,+B, Ki=Xx W,+B, V,=XxW,+B, ®)

FFN(X) =Layer_Norm(X + ReLU(X X W, + b)) X W, + by) (3)

Layer Norm(X) =y (u> +p (€)]
Vol+e

The FFN comprises a LN operation, residual addition, a ReLU ac-
tivation, and two linear sublayers, as described in Eq. (3), where Wy,
W, are weights and b;, b, are biases. The operations for layer nor-
malization, softmax, GELU and RELU activation functions are described
in Egs. (4), (5), (6), and (7) respectively, where X is the input vector
(for a particular position in the sequence), u is the mean of X, ¢ is
the variance of X, y and p are learnable parameters, and ¢ is a small
constant.

X)= =2 5

so ftmax(J) = m 5)

GELU(x)=xP(X <x)=xX %[1 +erf(X/V(2)] (6)
{0, X<0

RELU(X) = (2]
X, X>0

3.2. High Level Synthesis design

High-Level Synthesis (HLS) allows designers to describe circuit func-
tionality at a higher level of abstraction than that of hardware descrip-
tion language. HLS tools translate high-level code, typically written
in languages like C, C++, or OpenCL, into Register-Transfer Level
(RTL) code suitable for FPGA implementation. This approach offers
several advantages, including faster development cycles and simpli-
fied design modifications, as designers can use familiar programming
languages to describe the hardware. Moreover, HLS enables efficient
design space exploration, allowing different architectures to be evalu-
ated without extensive hardware design expertise, leading to the rapid

E. Kabir et al.

QKVpy

QKpy

[tnput BRAM-1 (X))

-

Weight BRAM-1
(WQl / Wi/ Wyy)

PE_QKV,

Q, Buffer
K, Buffer

PE QK,

QK, Buffer

Microprocessors and Microsystems 120 (2026) 105223

SV

PM

—'| V, Buffer

PE SV,

m

g

[tnput BRAM-2 (X,)

-

Weight BRAM-2
W/ Wia/ Wy)

PE_QKV,

—'| Q, Buffer |—>

PE_QK,

_’I V, Buffer |

QK, Buffer
SoftMax

PE_SV,,

g

| Input BRAM-t (X,)

F—

Weight BRAM-t
Wor/ Wi/ Wy)

>

PE_QKV,

Q, Buffer

PE_QK,

QK. Buffer

+—| K, Buffer
—'l V, Buffer |

PE_SV,,

SN

Fig. 2. Attention module of ADAPTOR.

100§ UOHUANRY

creation of optimized accelerators optimized for power, performance,
and area [40]. However, HLS does come with challenges, such as ensur-
ing that the generated RTL meets the specified constraints. The success
of the synthesized hardware is largely dependent on the robustness of
the HLS tools and the expertise of the designer.

4. ADAPTOR’s architecture

The core of the ADAPTOR is designed in C language on Vitis
high-level synthesis (HLS) 2022.2.1 tool. C simulation confirms the
algorithm’s correctness, while C/RTL co-simulation validates the func-
tionality of the synthesized hardware. This section describes the HLS
design technique that generates an optimized architecture utilizing
most of the LUTs and DSPs in the processing modules, ensuring high
parallelism of computation. There are loading units, computing mod-
ules, and activation function units in the overall architecture, which are
described below. Figs. 2 and 3 represent two main computing modules
of ADAPTOR.

4.1. Attention module

The overall architecture designed to accelerate the attention mech-
anism is illustrated in Fig. 2. It consists of three principal processing
modules (PMs), denoted as QKV ps, OK ppy, and SV py,, according to
the specific operations they perform. Each of these modules begins op-
eration only after the previous module has completed its computations.
This strict sequential execution ensures that all data dependencies are
respected and simplifies control logic. The number of module instances
corresponds to the number of attention heads (4). Within each module,
computation is carried out by an array of processing elements (PEs),
where each PE incorporates a DSP48 unit responsible for multiplica-
tion and accumulation (MAC) operations. The organization of the PE
arrays varies across modules, as their computational demands and data
access patterns differ. To accommodate these differences, the modules
are implemented as separate functions in high-level synthesis (HLS),
thereby enabling targeted optimization of the corresponding register-
transfer level (RTL) components. Parallel data access is supported by
distributing input activations and weights across multiple BRAMs and
LUTRAMSs.

Each PE operates independently, equipped with its own local mem-
ory, control logic, and computational resources. The weight matrices
associated with the generation of queries W), keys (W), and values
(W,) are stored as two-dimensional arrays of dimension

(% XTSyu A), where TSy, 4 denotes the tile size of the atten-

tion module. This tiling strategy partitions the larger weight matrices
into sub-matrices, thereby facilitating efficient parallelization. The
interplay between the number of heads, tiling parameters, and the

HLS array partitioning directives determines how these arrays are
mapped onto multiple two-port BRAMs. Since BRAM ports are limited,
careful partitioning and scheduling of data transfers ensure that all
operands required concurrently by the DSP units are accessible without
contention. The intermediate Q, K, and V matrices, each of size

SLx dth’e’ where SL denotes the sequence length, are buffered
locally to support subsequent stages of computation.

4.1.1. QKVpy, module

The QKV p,, module is responsible for generating the query, key,
and value matrices. It incorporates dedicated BRAMs for the weights
Wo, Wk, Wy) and for the input activations (X;), which provide
parallel data access to the DSP units within the processing element (PE)
array. To accommodate on-chip memory constraints, the weight and
input arrays are divided into subarrays using a tiling strategy, ensuring
that the data can be efficiently mapped onto BRAMs or LUTRAMs. The
number of times the QKV p,, module is invoked is determined by the
tiling factor, resulting in a total of T‘ig’ﬂ iterations. At each iteration,

MHA . P .
the buffers for Wy, W, W), and X; are populated with distinct tiles
of data, after which computation is initiated within the PEs.

During these operations, the corresponding bias terms for the Q,
K, and V matrices are fetched from off-chip memory into registers in
parallel with the primary computations of the QKV p,, module. These
biases are subsequently integrated into the generated matrices, thereby
completing the linear transformations. The computational flow of this
module is summarized in Algorithm 9 of Appendix, where pipelining
of the outer loop facilitates full unrolling of the innermost loop. This
design yields an array of % PEs, thereby maximizing throughput
while maintaining an efficient mapping of resources.

4.1.2. QKpy; module

The QK p,, module carries out the matrix-matrix multiplication
between the Q and K matrices. Since these matrices are relatively
small in dimension, tiling is not required. The computational flow
is summarized in Algorithm 11 of Appendix, where full unrolling of
the innermost loop produces 4%%¢! processing elements (PEs). Within
this module, the O and K matrices are buffered to enable parallel
access by the DSP units. In addition to the multiplication operations,
the division specified in Eq. (1) is also performed within this module
using LUT resources. To avoid excessive LUT utilization, the degree of
parallelism for this operation is deliberately constrained. The output
of this module is the intermediate attention weight matrix .S, which
is stored in either BRAMs or registers depending on availability and
access requirements. These weights are subsequently passed to the non-
linear softmax function, implemented in HLS using LUTs and flip-flops,
to complete the attention score computation.

E. Kabir et al.

Microprocessors and Microsystems 120 (2026) 105223

FFN1,,, LN FFN2
Score BRAM-1 (SV1)— - Mean | —{ LNI1Buffer |—
PEI_FFN1— B - PEl FFN2—»| &
Weight BRAM -1 - 5 Weight BRAM-1 =
(W1 FFN1) tas| p b5y (W1 FFN2) E&
= —— Variance &= 5
=
Score BRAM-2 (SV,) 2 f —| LNIBuffer | =
vy . ~—
Weight BRAM-2 PE2 FFN1—| £/ Normalization| | B.| [Weight BRAM2| | PE2 FFNI— £
(W2 FFN1) o = (W2 FFN2) =}
= S ; ‘ =~
E Element Wise Z E
= Multiplication = / [
Score BRAM-n (SVn) & Addition 5[LN1 Buffer % >
Weight BRAM- n PEn_FFN1 —) s , Weight BRAM-n| | PER_FFNIi— — —
Weights & Bias (Wn FFN2)
(Wn FFN1) Buffer
o p— —
FFN3 S LN
—» > |FFN2BRAM-1 |- —
- PE1_FFN2—) .
5] Weight BRAM-1 3=
Ci=y .] S~
E (W1 FFN2) CE ‘Variance &‘é’
=
—| 5 [~ [FFN2BRAM2 g l A
= - =
8 Weight BRAM-| PE2_FFN1—) 8 —> Normalization =
= (W2 FFN2) 2 8
E = Element Wise zZ
P i F= || Multiplication —/—=
— — | FFN2 BRAM-n |+ & Addition
n PEn_FFN1 —)
We‘g(}\‘,{,f??%')“ - Weights & Bias
Buffer

Fig. 3. Feedforward network module of ADAPTOR.

4.1.3. SVpy module

The normalized attention weight matrix (S), obtained from the
softmax operation, is supplied to the SV p,, module, where it is com-
bined with the value (V) matrix through matrix-matrix multiplication.
As described in Algorithm 12 of Appendix, the innermost loop is
fully unrolled, enabling S L processing elements to operate in parallel.
The resulting output, referred to as the attention score, represents a
weighted aggregation of the value vectors and constitutes the final
contribution of the attention mechanism to the subsequent layers.

4.2. Feedforward network module

The architecture developed to accelerate the feedforward network
(FFN) module is depicted in Fig. 3. Three distinct RTL modules
FFNlpy, FFN2p,., and FFN3p,, are implemented to support vari-
ations of the FFN across different architectural configurations. They
are executed sequentially to respect the inherent data dependencies.
Each module begins processing only after the preceding module has
fully completed its computation. In high-level synthesis (HLS), these
modules are described as separate functions, each defined by input
and output arrays of different dimensions, which are subsequently
mapped onto BRAMs or LUTRAMs during synthesis. Since the computa-
tional workload differs across the modules, each function is optimized
independently, resulting in varying numbers of processing elements
depending on the unrolling factor applied to the innermost loop. The
weights of the FFN are stored in a two-dimensional array (W,) of

dmatle[4deatlel 3 3 3
—model —_model where T n il ize in
TSeer X Tseen) ere T'Sppy denotes the tile size

FFN. This tiling strategy partitions the weight matrices into smaller
blocks, facilitating parallel access and efficient memory utilization.
Among the three RTL modules, both FFNI1p,, and FFN3p, are
followed by layer normalization (LN), ensuring stabilized activations
before passing results to subsequent stages.

dimensions (

4.2.1. FFNl1py module

The FFN1p, module performs the initial linear transformation
on the attention scores, serving as the first stage of the feedforward
network. To accommodate on-chip memory constraints, the arrays used
by the processing elements (PEs) are tiled along both dimensions. Con-
sequently, the module is invoked T'Sppy X T'Sppy times to complete
the transformation. As outlined in Algorithm 14 of Appendix, pipelining
of the second loop enables full unrolling of the innermost loop (line
7), producing TSy PEs in total. This corresponds to Nmofd";%
parallel computational units.

4.2.2. FF N2py; module

Building upon the normalized outputs of FFN1p,,, the FFN2p,,
module performs the second linear transformation, expanding the in-
termediate representation. Similar to FFN1p,,, arrays are tiled along
both dimensions, though this module requires 4 X T'Sppny X TSppn
accesses due to the increased dimensionality of the operation. The
computational flow is summarized in Algorithm 15 of Appendix, where
pipelining again enables full unrolling of the innermost loop (line 7).

. . . dodel .
This results in TSppy PEs, corresponding to e Ties FFN UDits of

parallelism, consistent with the structural design of the first module.

4.2.3. FFN3py module

The FFN3p,, module applies the final linear transformation to the
normalized outputs of FFN2p,,, projecting them back to the original
model dimension. As with the preceding modules, arrays are tiled along
both dimensions, requiring 4 X T Sppy X T Sppy iterations to complete
the computation. Algorithm 10 of Appendix describes the workflow,
where pipelining and full loop unrolling (line 7) yield 4 X TSy PEs.

. AXd yodel . : : . s
This 'corresponds 10 Norof Tiles FFN® reflecting the higher dimensionality
of this stage.

E. Kabir et al.
4.3. Load weights unit

Three dedicated Load Weights units are employed to manage the
transfer of parameters from external memory to on-chip buffers. The
first unit supplies weights to the weight memories of the attention
heads (Fig. 2), while the second serves the feedforward network
(Fig. 3). A third unit is responsible for loading the weights associated
with the layer normalization modules. This separation ensures that
weight data can be delivered efficiently to each functional block in
accordance with its computational demands. For the attention module,
weights are represented in HLS as two-dimensional arrays of dimension

d,

(%""’ XTSyua), where TS, ; 4+ denotes the tile size applied to parti-

tion the larger matrices into sub-matrices. After synthesis, these arrays
are mapped onto dual-port BRAMs or LUTRAMs, and are populated
iteratively with tile-specific data transferred from external memory
at each iteration. In the feedforward network, the weight arrays are

defined with dimensions (T.Sppy X4 X T'Sppy). Here, TSppy corre-

Embedding Dimension
No. of Tiles.FFN

These weights are therefore partitioned

sponds to the tiling parameter, defined as , while 4 x

TSy cquals ik pnenton
along both row and column dimensions, requiring iterative loading
across tiles. As in the attention module, they are synthesized as dual-
port BRAMs or LUTRAMs. The weights for layer normalization are
comparatively simple, represented as one-dimensional arrays of length
doqer- As Mo tiling is required in this case, the entire weight set is
transferred in a single step and subsequently synthesized into dual-port
BRAMs or LUTRAMs. The complete procedure for weight loading is
outlined in Algorithm 1 of Appendix.

4.4. Load inputs unit

Input data are transferred from external memory into dedicated in-
put BRAMs, which are implemented in HLS as dual-port,
two-dimensional arrays of size (SL X d,,.4), Where SL denotes the
sequence length. These BRAMs are reused across encoder and decoder
layers, allowing each layer to access the outputs of the previous layer
as inputs for subsequent computations. Three distinct Load_inputs units
manage the data movement to accommodate differences in compu-
tation, tiling, and array dimensions across modules. The first unit
populates the intermediate input BRAMs of each attention head (Fig.
2) using Algorithm 2 of Appendix. These BRAMs are represented as
two-dimensional arrays of size (SL X TSy p4), where tiling is applied
along the column dimension. Consequently, data are loaded iteratively
Td_;",;—"li times to supply all columns to the processing elements.

The second unit transfers data to the Score BRAMs of the FFN1p,,
module (Fig. 3), defined as two-dimensional arrays of size
(SLXTSppy), using Algorithm 3. The third unit supplies data to the
LN1 buffers of the FFN2p,, module (Fig. 3), represented as arrays
of size (SLX4xTSppy) and loaded according to Algorithm 4 of
Appendix. The separation of load units ensures efficient handling of the
differing computational demands, tile sizes, and array shapes across the
attention and feedforward network modules.

4.5. Load biases unit

Bias parameters are stored in registers due to their relatively small
size, enabling low-latency access during computation. Three dedicated
Load bias units manage the transfer of biases from external memory
to the corresponding registers. The first unit supplies biases to the
registers of each attention head in accordance with Algorithm 5. The
same procedure, as described in Algorithm 6 of Appendix, is used to
load biases for the feedforward network and the layer normalization
modules. In HLS, biases are represented as one-dimensional arrays,
and the application of a complete array partition pragma maps these
arrays directly to registers. Since tiling is unnecessary for these small
vectors, each array is loaded in a single transfer, providing all bias
values simultaneously.

Microprocessors and Microsystems 120 (2026) 105223
4.6. Activation unit

The activation functions employed within the transformer architec-
ture are implemented at this stage. Commonly used functions include
ReLU, GeLU, and softmax, each defined according to its mathematical
formulation. After synthesis, these functions are realized using LUTs
to support efficient hardware computation. While the implementations
of ReLU and GeLU are straightforward, the softmax function involves
more complex operations; therefore, only its implementation is detailed
in Algorithm 7 of Appendix.

4.7. Layer Normalization unit

The Layer Normalization (LN) unit computes the mean and variance
of the outputs from both the attention and feedforward network layers,
following Eq. (4). These statistics are then used to normalize the
outputs, which are subsequently scaled by learned weights and shifted
by biases in an element-wise manner. Notably, the outputs of FFN1p,,
and FFN3p,, are processed through the LN unit prior to subsequent
stages, as illustrated in Fig. 3. The corresponding HLS implementation
is provided in Algorithm 8 of Appendix.

4.8. Bias add unit

Three dedicated Bias_add units are employed to incorporate biases
into the query (Q), key (K), and value () matrices, as well as into the
outputs of the three feedforward network modules. Separate units are
necessary because the corresponding HLS functions operate on arrays
of differing dimensions, producing outputs with distinct shapes. One
of the units associated with the feedforward networks additionally
integrates the ReLU activation function. The operations performed by
these units are detailed in Algorithms 16, 17, and 13 of Appendix.

5. System design and optimizations

The overall system design for deploying ADAPTOR across multiple
FPGA platforms is presented in Fig. 4. Experiments were conducted on
three representative devices: the VC707 (Virtex-7 xc7vx485tffg1761-
2), ZCU102 (Zynq UltraScale+ xczu9eg-ffvb1156-2-e MPSoC), and the
Alveo U55C (UltraScale+ xcu55c-fsvh2892-2L-e). While the VC707
and ZCU102 boards integrate on-board DDR3 DRAM, the Alveo U55C
employs high-bandwidth memory (HBM), offering significantly greater
throughput for memory-intensive workloads.

Design parameters such as the number of attention heads, embed-
ding dimension, hidden dimension, sequence length, and the number of
encoder and decoder layers can be reconfigured at runtime, up to their
maximum supported values, via a MicroBlaze softcore processor using
the AXI4-Lite interface. These parameters are stored in a set of registers
within ADAPTOR to specify the topology of the TNN during runtime
from the software. The registers are described in Table 1, along with
the corresponding parameters they store. The system architecture was
implemented using the Vivado 2022.1.2 design suite. The accelerator
itself is encapsulated in a custom IP block generated from high-level
synthesis (HLS) and integrated into the larger system. All toolflows
from Xilinx-AMD were executed on a host workstation equipped with
an Intel(R) Xeon(R) Gold 6130 CPU (2.10 GHz, 32 cores) and 192 GB of
RAM. Data movement between the accelerator and external memory is
managed through AXI4 master interfaces [41]. Depending on workload
demand, the accelerator fetches inputs and weights directly from off-
chip HBM or DRAM when instructed by the accelerator controller.
Control signals are delivered from the processor to the accelerator via
an AXI-Lite slave interface. Additionally, the processor facilitates data
transfers between external memory and on-chip BRAMs, while also
issuing configuration and synchronization signals to the accelerator.

The boards were connected to the host system through either a USB-
JTAG interface or PCle 3.0 x 4 link. Although the system includes a

E. Kabir et al.

3
>

HOST PC (—‘

[PCIEATAG-USB INTERFACE |¢—>

I
% ADAPTOR IP =3
= __4

Fig. 4. Complete system design.

=

PROCESSING SYSTEM
(MicroBlaze)
AIOWHIN

AIMANVE HOIH

HOVAIHLNI
YILSVIN-IXV
-

(AOVAYALINI HLITIXY) SNd VIVA

(oze[gOI01N)
WALSAS DNISSHO0Yd

ONTROL BUS (AXI-LITE INTERFAC

§
<

Table 1
Configuration registers of the ADAPTOR.

Register name

Description/Stored parameter

Sequence
Heads
Layers_enc
Layers_dec

Sequence length of inputs
Number of attention heads
Number of encoders
Number of decoders

Embeddings Dimension of the embedding layer
Hidden Dimension of the intermediate layers
Out Number of outputs

DMA/Bridge Subsystem for PCle IP [42], PCle-based communication
was not utilized in this work. Performance measurements were con-
ducted using the AXI-TIMER [43], which recorded end-to-end latency
between the initiation and completion signals of the custom IP. Final
results were communicated back to the host via the UARTLite inter-
face [44], with outputs displayed on the terminal connected through
the JTAG interface [45].

The software interface illustrated in Fig. 5 is designed to communi-
cate the programmable parameters mentioned above to the accelerator.
To support this, TNN models are trained using the PyTorch framework,
with the trained models stored as ‘pth’ files. In our experiments, we
utilized publicly available pre-trained models from Hugging Face [46],
trained on a Tesla V100 GPU. The software stack processes these files
through a Python interpreter, which extracts the relevant parameter
values. While these values vary across applications, the accelerator
itself does not require re-synthesis for each case. Instead, only a subset
of variables within the software must be reassigned to reflect the new
configuration. The software, implemented in C++ using the Xilinx SDK
and executed on the embedded processor, is summarized in Algorithm
18 of Appendix. Based on the extracted parameters, the processor
generates the necessary instructions and control signals to configure the
accelerator, thereby enabling selective activation of different hardware
components.

The software control overhead varies depending on the execution
environment and task complexity. Loading a PyTorch model in Jupyter
Notebook typically takes less than 2 s for small models and 5 to 20 s
for large transformer models. Running a Python script, which primarily
generates the C code executed in Vitis IDE, generally completes within
a few seconds, depending on script complexity and hardware resources.
In Vitis IDE, compiling and running the generated C program on
the ARM processor (with the bitstream already programmed) requires
about 5 to 30 s for compilation and 1 to 5 s to download and execute
the ELF file; rerunning a prebuilt ELF takes less than 2 s before exe-
cution begins. The FPGA hardware kernels, already synthesized in the
bitstream, execute directly with negligible control overhead, and their
performance has been reported and compared in the results section.

Microprocessors and Microsystems 120 (2026) 105223

Transformer models are inherently large, leading to significant de-
mands on both on-chip memory and computational resources. To ad-
dress these challenges, we adopt a tiling strategy that enables efficient
utilization of available hardware resources while maintaining manage-
able compilation times. Tiling facilitates the effective partitioning of
arrays by the HLS tool, which in turn allows loop pipelining and un-
rolling to reduce computational latency. The proposed tiling approach
for multi-head attention (MHA) is illustrated in Fig. 6(a).

In the attention module, the weight matrices are partitioned into
tiles, enabling partial data loading from off-chip memory into BRAMs.
Tiling is applied along the second dimension (the columns of the
matrix), since the first dimension (the rows) is already reduced by
the number of attention heads. Consequently, the weight matrices are

loaded T”;’"""e’ times. Similarly, the input buffers for each attention
MHA

head are defined as two-dimensional arrays of size (SL X TSy g4)s
and tiling is applied along the column dimension. The buffers are

d

replenished 2% times, with one tile being processed at each iter-
A

Smu

ation. During each iteration, the PEs compute results on the loaded
tile, store intermediate results in buffers, and accumulate these with
the outputs from previous iterations. The final output is thus obtained
as the cumulative sum across all tiles. The feedforward networks (FFNs)
following the attention layer are the most computationally demanding
components of the encoder. Their weight matrices are represented
as two-dimensional arrays of size (T'Sppy) X (4 X T'Sppy) and are
tiled along both dimensions (rows and columns). Iterative loading is
performed using two nested loops, one for each tiling dimension. As a

result, the first FFN module is reused (: ;"”‘“’)2 times, since both loops
FFN
d,

T&””“’ times. The second and third FFN modules are reused
FN

iterate

(%) times due to their larger dimensions. The tiling strategy for
the FFN is summarized in Fig. 6(b), where intermediate results are first
accumulated along the columns and subsequently along the rows to
produce the final outputs across all tiles.

The tile size must be fixed before synthesis, since changing it would
require re-synthesizing the hardware. Fig. 7(a) and (b) show how differ-
ent choices of TSy, ;4 and T'Sgpy affect both system frequency (MHz)
and latency (normalized to the minimum value). In these experiments,
the number of tiles in MHA (T‘g"h‘;ﬁ) was varied between 6 and 48,

while the FFN tile count (;gﬂ) ranged from 2 to 6. The results
FFN

highlight that using 24 tiles for MHA together with 6 tiles for FFN yields
the best overall performance, reaching the highest frequency of 200
MHz and the lowest latency.

6. Theoretical model

The primary parameters influencing both resource utilization and
performance in ADAPTOR include the tile size, or equivalently the
number of tiles, in the attention module and the feedforward network,
as well as the number of attention heads, sequence length, embedding
dimension, hidden dimension, and the number of encoder and decoder
layers, assuming a fixed bit width. The utilization of DSPs is largely
determined by the degree of parallelism in multiplication operations,
with the highest demand observed in the QKV p;, OK pps, SV ppy, and
FFN modules. In contrast, BRAM utilization depends on the number
of arrays required for intermediate data storage, the synthesis modes
assigned to these memories, and the partitioning strategies specified
through HLS pragmas.

To guide design-space exploration, we developed an analytical
model that captures the relationship between these architectural
parameters and the resulting latency and resource consumption.
This model enables designers to predict performance and utilization
outcomes, thereby facilitating informed parameter selection prior to
full hardware synthesis.

E. Kabir et al.

Pytorch Model Send Interpreter

Generate

Microprocessors and Microsystems 120 (2026) 105223

(-pth file)
TNN_model.pth

(Python code)

Value of Send Software
Reconfigurable Development Kit
Parameters (Xilinx SDK)

count_er =0
start_index = 0
foriin range(len(a)):
j = a.find(sub_string[0], start_index)
if (j 1= -1):
start_index = j+1
count_er+=1
print ("Total Encoders are: ", count_er)

sub_string = [EncoderLayer’, ‘DecoderlLayer, ‘'mha’, 'ff, 'linear’, ‘linear2’]

Total Encoders are: 12

Total Decoders are: 12

Total Heads are: 12

Hidden Dimension: 768
Feedforward Dimension: 3072

Generate

Instructions &

Software Software (C/C++)
Development Kit Running in
(Xilinx SDK) Processor

Send

Control Signals

Fig. 5. Programming procedures with software.

6.1. Model for DSP utilization

Eq. (8) gives an estimate for DSP consumption. It was derived from
all the loops described in the functions that generate RTL modules for
OKV pys, OK ppss SV pyy, and FEN.

dmodel +h X <dm;del +SL>

No. of DSPs=3xhx —model __
0-0f DSPs=3Xhx g VA

(8)

dmodel
Tile no. FFN

The design follows a modular approach, with each module imple-
mented as a function containing loops. The latency of a module depends
on the time taken by its loops, which is affected by loop pipelining
and unrolling directives. For nested loops, the second-to-last loop is
pipelined, while the innermost loop is fully unrolled. The outermost
loop is not modified with pragmas to avoid overly complex pipeline
depth and high resource usage. The latency of a pipelined loop (PLL)
can be calculated using Eq. (9). If a pipelined loop is inside another
loop, the total latency (TL) is given by Eq. (10). Here, the loop trip
count (TC) is the number of iterations, and the initiation interval (II)
is the time between the start of two consecutive iterations. Pipeline
depth is the time needed to complete one iteration, depending on the
sequential and parallel operations within it. Different modules can have
different pipeline depths (PD). Latency is measured in clock cycles (cc).

+6X + dodel

Pipelined_Loop_Latency = Pipeline_Depth + Initiation_Interval

9
X (Trip_Count — 1) ®
Total_Latency = Pipelined_Loop_Latency X Outer_Loop_Trip_Count (10)

Egs. (9) & (10) are generalized equations for measuring latency, the
variables of which differ for different modules of ADAPTOR as shown
in the following equations (see [47]).

6.2. Latency model for attention module

LI =[(d,pge1 — 1) X1+ PD_L]|XSL (11)
d

LBA=(%‘M -1)x1+PD_L 12)

d
LWA= [(%"e’ —1)x1+PD LIxSL a3)
d_model

LIA= [(—%% __ _|yx1+ PD_L]1xSL 14

CFite o, prma — DX 1+ PDLIX a4

where, PD_L is Pipeline_Depth_Load that includes the time required
to establish communication with HBM using AXI master interface
(7 cc), read address location (1 cc), load (1 cc), and store (1 cc)
data from and to that address, and convert floating point data to
fixed point (3 cc) for tasks such as loading all inputs (LI), as well

as loading inputs (LIA), biases (LBA) and weights (LWA) for each
attention head. Pipeline_Depth_ MHA (PD_MHA) equals (T‘g"n‘;";/A)
plus the time required to load, multiply (2 cc), add (1 cc), and store
for computing self-attention (SA) in QKVp,, module (Eq. (15)).
Pipeline_Depth_Bias_Add (PD_BA) includes latency associated with
loading, adding, and storing operations in bias addition (BA) tasks (Eq.
(16)). Pipeline_Depth_Score (PD_S) equals (d’”‘}'lﬂ), the time required to
compute the score (S) in QK p,, module (Eq. (17)). Pipeline_Depth_SV
(PD_SV) equals Sequence_Length in the computation of SV within the
SVpy module (Eq. (18)). Eq. (19) estimates time for softmax (SM)
calculation, which includes exponentiation (4 cc) and division (14 cc).
It starts after the QK p,, module is finished.

SA=(d'm;del ~1)x1+PD_MHA]x SL (15)
BA = [(d-m;l’de’ —1)x 1+ PD_BA]X SL (16)
Score(S) = [(SL—1)x 1+ PD_S]x SL a7
sy = (4medel 1y 14 D SVIx SL 18)

SM =[(SL—-1)X 1+ Load + Store] X SL+ [(SL —1)X 1 + Load
+ Store + add + exponentiation] X SL+ [(SL — 1) x 2 (19)
+ Load + Store + divide] X SL

6.3. Latency model for FFN1 module

LIF] = (=m0 _ | |4 PD LFFN1]xSL 20
Tile no. FFN
d_model d_model
IWFl=[(——m— -1 1+ PD_L —_—
[(Tile no. FFN)1+ LIx Tile no. FFN e
LBF1 = (d_model — 1) X1+ PD_L 22)
d_model
FFNl=[(——————-1)xX1+ PD_FFNI1]xSL
[(Tile no. FFN) + - I 23)
BAF1 = [(d_model —1)X 1+ PD_BA] X SL (24)

where, Load_Inputs_ FFN1 (LIF1) unit loads tiled outputs from
the attention module into the input buffer of the FFN1 module.
Load_W eights_F FN1 (LWF1) unit loads partial weights from off-chip
memory to the weight buffer of the FFN1 module according to
TSppy- Pipeline_Depth FFN1 (PD_FFN1) equals (7—“22<__) plus
the time required to perform load, add, and store operations in the
FFN1 module. Pipeline_Depth_Load_FFN1 (PD_LFFN1) is the time
required to load, add, and store in the loading units. FFN1 is the
computation time of FFN1p,, module. Load_Biases_ FFN (LBF1)

E. Kabir et al.

loads biases to registers from off-chip memory while FFN1p,,
operates. Bias_Addition_.FFN1 (BAF1) adds biases to the outputs of
FFN1py,.

6.4. Model for BRAM utilization

Eq. (25) gives an estimate for BRAM consumption. It was derived
from all the arrays declared in HLS with true dual-port BRAM pragmas.

10X SL X d,, 4. X Bit_w
No.of BRAMs = +SL
BRAM_wXx BRAM _d
SL X Bit_w
BRAM _w X BRAM _d >
SLXd,, 40 X Bit_w
BRAM _w X BRAM _d)
hxX SLXd,.u. X Bit_w
BRAM _w X BRAM d
dppoder X Bit_w
BRAM _w X BRAM_d)
SLXTile noo MHA X Bit_.w
BRAM _w X BRAM _d
+ Tile no. MHA X h X max
<0. 5. SL X Bit_w) 25)
BRAM _w X BRAM _d
8xd2 X Bitw
+ Tile no. FFN X BRAM _w X BRAM _d
+ Tile no. MHA X h
dpodger X Bit_w
BRAM _w X BRAM _d)

X max <0.5,

+ max <0.5,

+ max <0.5,

X

X max (0.5,

+ dmvdel
Tile no. FFN
SL X Bit_.w raxd
BRAM _wx BRAM d model
SL X Bit_w
BRAM _w X BRAM _d)

Here, BRAM_d is the depth of BRAMs, which indicates the number of
storage locations (or entries) within a BRAM block. Each location holds
a fixed number of bits, defined by the width of BRAM (BRAM_w), and
both parameters can vary depending on the platform. Bit_w is the bit
precision of the data being stored. BRAM_w = 36 and BRAM_d = 1024
for most FPGAs. Each term in the equation corresponds to an array
declared in the HLS code. For instance, the first term represents the
number of BRAMs synthesized for 10 arrays of size SLx d,,,4.;- The max
function in the second term accounts for cases where an array may not
fully utilize the 18 kb width of a synthesized BRAM, but at least one
18 kb BRAM will still be allocated. The factor 0.5 is used because the
total BRAM count is calculated based on 36 kb BRAMs.

X max (0.5,

X max (0.5,

6.5. Latency model for LN module

LW N = (d_model —1)x 1+ PD_L (26)
LBN = (d_model —1)x 1+ PD_L 27)
RC =[(d_model —1)x 1+ PD_BA]x SL (28)

Layer Norm =[(d_model — 1) X2 + Load + Add + Store]
X SL+ [(d_model —1) X2+ Load + multiply
+ add + store] X SL + [(d_model — 1) X 1 + Load
+ Square + multiply + add + Store (29)
+ divide + float_to_fixed_conversion] X SL
+ [(d_model — 1) X 1 + Load + add
+ Store] X SL

Microprocessors and Microsystems 120 (2026) 105223

where, Load Weights_.LN (LWN) unit loads weights from off-chip
memory to the weight buffer of the LN module. Load_Biases_LN
(LBN) loads biases to registers from off-chip memory. RC
represents the operations of the residual connection in LN module.
float _to_fixed_conversion in the LN module takes 3 cc.

6.6. Latency model for FFN2 module

d
LIF2 = [(model

T e =X 1+ PD_LFFN2]x SL (30)

LWF2 = [(% —1)x1+PD_L]x —moder (31)
Tile no. FFN Tile no. FFN

LBF2=(d,, ;- 1)x1+PD_L (32)

FFN2= [(M —1)x1+4 PD_FFN2]x SL (33)
Tile no. FFN -

BAF2 = [(4X dyoqe — D)X 1 + PD_BA]X SL (34)

where, Load_Inputs_. FFN2 (LIF2) unit loads tiled outputs from
the FFN1 module into the input buffer of the FFN2 module.
Load_W eights_F F N2 (LWF2) unit loads partial weights from off-chip
memory to the weight buffer of the FFN2 module according to 7Sy y -
Pipeline_Depth_FFN?2 equals (%) plus the time required
to perform load, add, and store operations in the FFN2 module.
Pipeline_Depth_Load_FF N2 (PD_LFFN2) is the time required to load,
add, and store in the loading units. FFN2 is the computation time of
FFN2p,, module. Load_Biases_F F N2 (LBF2) loads biases to registers
from off-chip memory while FFN2p,, operates. Bias_Addition_.FFN?2
(BAF2) adds biases to the outputs of FFN2p,,.

6.7. Latency model for FFN3 module

LIF3= [(M —1)x1+ PD_LFFN3]x SL (35)
Tile no. FFN -
4xd d
LWF3 = [(———model__ _ 1y 14+ PD L]x ——model
[(Tile no. FFN) -Ll Tile no. FFN (36)
LBF3 = (dyoge — 1)x 1+ PD_L 37
FFN3 = [(—Jmodel 1y | 4 pD FFN3|x SL (38)
Tile no. FFN -
BAF3 = [(d, 4y — 1) X1+ PD_BA] X SL (39)

where, Load_Inputs_. FFN3 (LIF3) unit loads tiled outputs from
the FFN2 module into the input buffer of the FFN3 module.
Load Weights_ FFN3 (LWF3) unit loads partial weights from off-
chip memory to the weight buffer of the FFN3 module according
to TSppy. Pipeline_Depth_ FFN3 equals (%) plus the time
required to perform load, add, and store operations in the FFN3
module. Pipeline_Depth_Load_FFN3 is the time required to load,
add, and store in the loading units. FFN3 is the computation time of
FFN3p, module. Load_Biases_F F N3 (LBF3) loads biases to registers
from off-chip memory while FFN3p,, operates. Bias_Addition_FFN3
(BAF3) adds biases to the outputs of FFN3p,,.

7. Evaluation and results

ADAPTOR supports software-level programmability, allowing mod-
ification of key design parameters at runtime. These parameters include
the embedding dimension (d,,,,.), number of attention heads (h),
number of encoder layers (N), and sequence length (SL). Initially, these
parameters were configured with fixed values of 768, 12, 12, and 64,
respectively, based on a BERT variant [10], which is a widely used

E. Kabir et al.

Load inputs into the
input BRAM

Load values of each tile into the weight BRAM

X[)[)
Xl(]

X01

Xoz]
X
X1

X12

r' Tile 1 ‘ Computation Output of 15t Tile
Xoo Xo1 Xoz] i Woo [XooWoo + Xo1Wio + XOZWZO]
X0 X X Wig || X1oWoo + X11W1o + X12Wao
g
21 Iteration: Computation with _21‘11“&
! Tile 2 i Computation Output of 2" Tile
Xoo Xo1 Xoz] Wor i [Xoon + Xo1 W1 +X02Wz1]
X H I: >
Xio X Kol 7i| Wiy] XioWor + X11 Wiy + X2 Wy
T

n'" lteration: Computation with n' Tile

Computation Output of n® Tile
XooWon + Xo1Win + Xo2Wan
X10Won + X11Win + X1, Won

XOO XOl
X10 X11

KXoz]
X1z

Final Matrix = Output for 1%t tile + Output for 2" tile +
(a) Tiling technique in MHA.

+ Output for n' tile

[

Microprocessors and Microsystems 120 (2026) 105223

Load inputs into the input BRAM

Load values of each tile into the weight BRAM

/} Tile in column

Tile in row Q/

\QTMe in column

e
3 Tile in row

21 teration: Computanon with 2" Tile

Tile - 02, Column

1t Iteration: Computation with 15t Tile
Tie-01, Column 1’

[XOO XOl] X [Woo] =>[Xo0Woo + Xo1 Wiol [XOZ XOS] X [Wao] =>[XoaWag + Xo3Wsol

i[Xlo Xi1] % [Woo] =>[X10Woo + X131 Wil

Output Column = Output for 1t tile + Output for 2" tile + ...+ Output for nt" tile in column

4t |teration: Computation with 2" Tile

Tie-01,Row) " Tie-02, Row
l[Xlo Xy x [Wao] ':>[X10qu + X11Wsol

31 Iteration: Computation with 1%t Tile

Output Row = Output for 15t tile + Output for 2 tile + ...+ Output for n*" tile in Row

(b) Tiling technique in FFN.

Fig. 6. Tiling technique.

(a) Frequency vs tiles

2701 v No. oftiles in FFN =2
® No. of'tiles in FFN =4
,@240‘ % No. of tiles in FFN = 6
L 210
\% * * * *
> 1801 ° ° °
Q °
3 150/
= *
g °
= 120
v v v v v
901
60
6 12 18 24 30 36 42 48

Number of Tiles in MHA

(b) Latency vs tiles

2.0
[] No. of tiles in FFN =2
_ 1.8 + No. of tiles in FFN = 4
B 1.6/ # No. oftiles in FFN = 6
N N]
= L] = = *
S 1.44
*

=l
a1.2
g *
1.0 . . .
208 +
- 0.6 ¢ ¢

0.4 12 24 36 48

Number of Tiles in MHA

Fig. 7. Choosing the optimum tile size.

transformer model for natural language processing, and the available
FPGA resources. In contrast, the tile sizes are fixed at synthesis and
cannot be modified at runtime. Consequently, synthesis was performed
with fixed tile sizes of TSy, = 64 and T'Sppy = 128. This design
approach is a key contribution that gives ADAPTOR the ability to retain
a single, resource-constrained synthesis configuration while enabling
runtime configurability of core transformer parameters so that it can
support diverse transformer neural network models without requiring
re-synthesis.

Fig. 8(a) presents the effect of varying the number of attention
heads on system frequency and normalized latency, where latency
accounts for computation time assuming overlap with data loading.
While increasing the number of attention heads generally improves
parallelism and reduces latency, the system frequency decreases beyond
a certain threshold, leading to higher latency. Optimal performance
is observed with 6-10 attention heads. Fig. 8(b) illustrates the cor-
responding increase in DSP and LUT utilization, showing that higher
resource usage contributes to reduced system frequency. These results

10

provide a quantitative analysis of the trade-off between parallelism and
hardware timing constraints, identify an optimal design point for FPGA-
based transformers, and characterize the impact of resource utilization
on latency and frequency. Furthermore, the evaluation methodology
accounts for overlapped data loading and computation, offering a
realistic performance assessment for hardware accelerators.

Fig. 9 illustrates the effect of varying tile sizes (T'Sy; 4> TSrrn)
on the utilization of DSP, LUT, and BRAM. Since processing modules
rely on DSPs for multiplication—accumulation (MAC) operations, DSPs
represent the most widely used resource and can reach saturation
before BRAMs, rendering accelerator computation bound. Increasing
the tile sizes for both the attention and feedforward modules results in
higher DSP utilization, which enables greater parallelism and reduces
latency until the system frequency begins to decline. This analysis is
the characterization of resource-performance trade-offs, showing that
tile size selection directly determines when the accelerator becomes
computation-bound or frequency-limited, thus guiding optimal design
choices for FPGA-based transformer implementations.

E. Kabir et al.

2401 —¥— Frequency (MHz) vs Heads 1.6
—— Latency (Normalized) vs Heads
220} 14
) 8
L =
= 200 12 &
' 1)
2 180F g
] 1.0 >
g 2
2 160 2
= 0.8 5
140
0.6
| I I | I I
1200 2 4 6 8 10 12 14

Number of Attention Heads
(a) Variation of performance with number of attention heads.

Microprocessors and Microsystems 120 (2026) 105223

70 70
—¥— DSPs vs Heads

60 —— LUTs vs Heads 60
S <
SN WS
g £
= =
<
S a0t 40 .8
5 5
S I e =
A —

20 20

! ! !

=3

0 2 4 6 8 lIO 1‘2 141 0
Number of Attention Heads

(b) Variation of resources with number of attention heads.

Fig. 8. Performance and resource utilization vs. attention heads.

Effect of Tile Size Combinations on Utilization

I [UTs
100+ BRAMs 36k
g 82% EEE DSPs
=75 70%
g 65% 65%
= 55%
5 501 44% 45% 0 42% 35%
41% 9 40% 40%, 38¢
° 34% g
SN - ' 30%
251 o o
0 i

TSMHA =64 TSMHA =64 TSMHA =
TSFFN =384 TSFFN =192 TSFFN =128 TSFFN =384 TSFFN =192 TSFFN =128

64 TSmpa =128 TSypa = 128 TSypa = 128

Fig. 9. Utilization vs. tile size.

Fig. 10 compares the power consumption (in watts) and power
efficiency (throughput per watt, GOPS/W) for various models across
different CPUs, GPUs, and our FPGA accelerator. Data for different
models and platforms were obtained from cited literature, and we used
them to compare the performance of ADAPTOR on the U55C platform
for the same models. Since ADAPTOR is synthesized only once, and
power is measured using Vivado’s power estimation tool post-synthesis,
the total dynamic power consumption remains constant for all models.
The JETSON TX2 GPU [18] achieves the highest power efficiency for
the BERT model, mainly due to the sparse architecture of the algorithm,
and also has the lowest overall power consumption. The RTX K5000
GPU [48] is 1.5x more power efficient than ADAPTOR for the BERT
model, due to compression techniques, but consumes 10x more power.
The i7-8700K CPU is the least power-efficient for BERT [48]. ADAP-
TOR is 1.2x and 2.87x more power efficient than the NVIDIA K80
GPU and i7-8700K CPU, respectively, when running BERT, according
to FQ-BERT [49]. A custom encoder with four encoding layers was run
on an i5-4460 CPU and an RTX 3060 GPU [31], both of which were
5.1x and 1.63x less power efficient than ADAPTOR while also being
more power-hungry. Fang et al. [50] executed a shallow transformer
on an 19-9900X CPU, JETSON NANO GPU, RTX 2080, and RTX 3090
GPUs. Although the JETSON NANO GPU consumed 1.56x less power
than ADAPTOR, the other devices used 14-30x more power. However,
ADAPTOR is 3.7%, 1.28%, 4.4%, and 1.67x more power efficient than
all of them.

Fig. 11 illustrates that ADAPTOR can be deployed on any platform,
regardless of the size of the TNN model or available resources, by
adjusting the T'S),y4 and TSppy parameters in HLS during design
time. The figure presents results for a custom TNN encoder with an
embedding dimension of 200, 3 attention heads, 2 encoder layers,
and a sequence length of 64. On the Alveo U55C, the tile sizes can
be maximized (TS, 4 = 200, TSpry = 200) due to the abundance

11

of resources, resulting in lower latency. For the ZCU102 board, the
tile sizes were reduced to 25 and 50 respectively, to fit the model
within its resource constraints, nearly consuming 100% of the DSPs
and LUTs and increasing the latency. On the VC707 board, TSy p4
and T'Sppy Were set to 50 each, as it has slightly more resources than
the ZCU102. However, latency increased as fewer DSPs were utilized,
and LUT consumption almost reached its limit.

Fig. 12 presents the roofline model of ADAPTOR, highlighting its
peak performance and memory bandwidth limits. The Memory Bound
(blue dashed line) indicates the maximum achievable performance
based on the memory bandwidth, which is 103,000 GB/s. Data points
to the left of this line are constrained by memory bandwidth. The
Compute Bound (red line) represents the peak performance determined
by the FPGA’s computational resources, capped at 53 GOP/s. Points
below this line indicate underutilization of computational resources.
All data points (green, yellow, and purple) fall within the compute
and memory-bound regions, meaning none fully utilize the accelerator’s
available resources. The yellow square, representing the BERT model
with TSy g4 = 64 and TSppy = 192, achieves the highest perfor-
mance, being closest to the compute bound. In contrast, the purple star,
corresponding to the shallow transformer model with TS, ;4 = 64 and
TSrpy = 128, exhibits the highest operational intensity but the lowest
performance.

Eq. (40) below is used to calculate memory bandwidth (BW), where
no. of BRAMs = 340, BRAM’s width = 36 KB, no. of LUTRAMs =
129101, LUTRAM’s Width = 32 KB. Our previous work [51] calculated
latency and throughput data (53 GOP/s).

Memory Bandwidth =(No. of BRAMsx BRAM's Width
+ No.of LUTRAM s (40)
x LUTRAM's Width) x Frequency

E. Kabir et al.

Microprocessors and Microsystems 120 (2026) 105223

Power Consumption for Different Models on Different Platforms

39
37 HE Power (W)
360 . 350 36
I Power Efficiency (GOPS/W) 3
320 3~
3 0 2
< 280 &
= 27 3
=]
g 240 4 2
£ 5
2 200 2t 2
g 18 5
O 160 2
g 1o 15 A
2120
& S 3
80 [
6
40
3
0 JETSON i7-8700K NVIDIA i7-8700K RTX UssC 15-4460 RTX US5C i9-9900X JETSON RTX 2080 RTX ussC
TX2GPU CPU K80GPU CPU K5000 GPU FPGA CPU 3060 GPU FPGA CPU NANO GPU GPU 3090 GPU FPGA
BERT BERT BERT BERT] BERT Custom Custom Custom Shallow Shallow Shallow Shallow Shallow
FTRANS FQ-BERT FQ-BERT HPTA HPTA ADAPTOR Encoder Encoder Encoder TRANS. TRANS. TRANS. TRANS. TRANS.
[18] [45] [45] [44] [44] EFA EFA ADAPTOR Fang Fang Fang Fang ADAPTOR
31 31 [46] [46] [46] [46]
Fig. 10. Cross platform comparison of power consumption.
Table 2
Comparison with FPGA accelerators.
Accelerator DSP LUT GOPS Power (GOPS/DSP) (GOPS/LUT) GOPS/ Method Sparsity
W) %1000 %1000 Power
Network #1 Shallow transformer
Qi et al. [19] 3572 (52%) 485k (41%) 14 - 3.92 0.03 - 80%
Qi et al. [34] 5040 (74%) 908k (76%) 12 - 2.38 0.013 - HLS 86%
ADAPTOR 3612 (40%) 391k (30%) 27 11.8 7.47 0.069 2.28 0%
Network #2 Custom transformer encoder
Qi et al. [34] 4145 (60%) 937k (79%) 75.94 - 18 0.08 - HLS 0%
ADAPTOR 3612 (40%) 391k (30%) 132 11.8 37 0.34 11 ?
Network #3 BERT
Tzanos et al. [52] 5861 (85%) 910k (77%) 65.7 - 11.2 0.07 - - 0%
TRAC [39] 1379 (80%) 126k (55%) 128 - 93 1.01 - - -
ADAPTOR 3612 (40%) 391k (30%) 40 11.8 11 0.10 3.39 HLS 0%
120 Placement of ADAPTOR on Different Platforms 70 Roofline Model for ADAPTOR on FPGA
1
DSPs —=— Latency (ms) 24 651
o, 11
100 LUTs 99.8% 99% o450, 21 6011
5511 Compute Bound (53 GOP/s)
18 @ 501!
g 80 2 = i
S 15 E O 45 !
E 559, ; % 40} @ BERT (TSmua = 48, TSy = 128)
z 00 46% 2870 128 8354l - BERT (TSwpa = 64, TSeey = 192)
=) 3 S 304 X * Shallow (TSmua = 64, TSrey = 128)
N 38% 9 B ECCLE8 ® 4
40 5070 — £ 257 =
Ba0f ES
20 6 15 i g §
3 104 =<
0 >
UssC ZCU102 VC707 0
TSmpa = 200 TS =25 TSmua =50 0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
TSken = 200 TSeen = 50 TSeen = 50 Operational Intensity (KOP/Byte)

Fig. 11. Testing portability feature.

Table 2 compares the performance of our accelerator, ADAPTOR,
with other FPGA-based accelerators. Each of these accelerators is opti-
mized for specific TNN models, with some designed for sparse com-
putations. TRAC [39] is the only one that automatically generates
accelerator code based on the target FPGA and TNN architecture. Since
ADAPTOR was synthesized once with fixed hardware resources and bit
width, and implemented on a dense model without sparsity, we eval-
uated throughput (GOPS), power consumption, normalized throughput
(GOPS per DSP or GOPS per LUT), and power efficiency (GOPS per
watt) for a fair comparison. ADAPTOR achieved 1.9x and 2.25x higher
GOPS compared to the accelerators by Qi et al. in [19,34], respectively,
for a shallow transformer. Its normalized throughput was also higher,

12

Fig. 12. Peak performance and peak memory bandwidth.

indicating more efficient DSP and LUT usage without relying on prun-
ing, whereas Qi et al. employed block balanced pruning and block row
storage. Qi et al.’s four-layer transformer encoder [34] was 1.7x slower
and 2x less resource-efficient than ADAPTOR even with hierarchical
pruning. TRAC [39] consumed fewer DSPs and LUTs but reported 3.2x
higher GOPS and 8.4x higher GOPS/DSP. None of these accelerators
incorporated tiling or partitioning schemes to support large models
such as BERT, which our design explicitly addresses. Tzanos et al. [52]
applied tiling and used more resources, achieving 1.6x higher speed
with GOPS/DSP comparable to ADAPTOR.

Although ADAPTOR utilizes over 3000 DSPs at 200 MHz, the
measured throughput is significantly lower than the theoretical peak
of 1200 GOPS. This underutilization arises from several factors: (i)

E. Kabir et al.

Microprocessors and Microsystems 120 (2026) 105223

100
901 DSP (% utilization)
GOP/s
804
‘i,a 701 70%
£ o 65%
5%
a g 601
=8 509 o, 45
§-§ 401 39% 40% 40 e 32
%0 o 35% 36 30
n 1
E A 30 28
] 201
104
TSmHa =48 TSmHa =48 TSmHa = 64 TSmua = 64 TSmua =128 TSmHa =128
TSkrn =128 TSern =192 TSkrn =128 TSkrn =192 TSkrn =128 TSkrn =192
Fig. 13. Effect of DSP on GOP/s for various tile size combinations.
Table 3
Validation of experimental and analytical results.
Method Sequence Embedding Number Tile Tile DSPs BRAMs Frequency Latency (ms)
length dimension of size size 18k (MHz) Attention Load FFN
heads MHA FFN module weights unit module
(8A) (LWA) (FFN1)
Analytical 3784 2375 0.052 0.037 0.082
Experimental 64 768 8 64 128 3612 2246 0.053 0.038 0.084
Analytical 3784 2375 200 0.103 0.037 0.165
Experimental 128 768 8 64 128 3612 2246 0.106 0.038 0.168
Analytical 3784 2375 0.042 0.025 0.055
Experimental 64 512 8 64 128 3612 2246 0.043 0.026 0.056
Analytical 6272 2955 0.11 0.1 0.18
Experimental 64 768 8 128 192 6317 1693 135 0.11 0.1 0.23

sequential execution of certain submodules (e.g., OKVpy, OKppy,
SVpuys> FFN1py, FEFN2py,, FFN3p,, softmax, layer normalization
etc.) that prevents simultaneous activation of all functional modules,
and (ii) control dependencies that limit pipelining across nested loops.
As a result, a portion of the available DSPs remain idle at different
stages of execution, reducing overall efficiency. Fig. 13 illustrates how
GOPS scales with DSP consumption as the tile sizes of the MHA and
FFN layers increase. While larger tiles increase DSP utilization and
improve throughput, the system frequency drops beyond certain tile
sizes (Fig. 7), leading to diminishing returns and even a reduction of
GOPS to 30 and 32 for 65% and 70% DSP utilization, respectively. This
analysis highlights the fundamental trade-off between resource utiliza-
tion, frequency, and achievable throughput in FPGA-based transformer
accelerators.

Table 3 presents a comparison between the experimental results of
ADAPTOR and the theoretical predictions derived in Section 6. For
clarity, only a subset of design configurations is reported, focusing on
the computation time of the attention and feedforward modules as
well as the loading time of the attention module. Latency is primarily
influenced by parameters such as sequence length, embedding dimen-
sion, and number of attention heads. The measured latency closely
aligned with the theoretical estimates, with an average deviation of
only 1.8%. Resource utilization remained stable across configurations
with fixed tile sizes, whereas variations in tile size led to corresponding
changes in both analytical and experimental values. The deviations
were relatively small for DSPs (0.71-4.7%), but larger for BRAMs
(5.7%-74%), particularly at larger tile sizes. The latter discrepancy
arises because LUTRAMs were increasingly used in place of BRAMs to
sustain higher operating frequency, thereby reducing the accuracy of
BRAM utilization estimates.

13

8. Conclusion

In this article, we present a runtime-adaptive FPGA-based accelera-
tor for the encoder and decoder layers of transformer neural networks
(TNN), designed using a high-level synthesis (HLS) tool. The archi-
tecture leverages FPGA parallelism as well as the inherent parallel
nature of TNNs. We demonstrated its deployment on various FPGA
platforms, including Alveo U55C, VC707, and ZCU102, highlighting
how resources like DSPs and LUTs can be effectively utilized to max-
imize parallelism and minimize latency in HLS designs. The accel-
erator is software-programmable, enabling adaptability to different
topologies without requiring new code generation or re-synthesis. We
implemented an efficient tiling technique and data-loading method for
weight matrices, ensuring portability and resource-efficient execution
across different TNN models. Experimental results indicate that our
design outperforms certain CPUs and GPUs in terms of dynamic power
consumption and power efficiency, despite no algorithmic optimiza-
tions. Moreover, it achieved a 1.7 to 2.25x speedup over leading
FPGA-based accelerators. An analytical model was also developed to
validate the experimental findings.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

This material is based upon work supported by the National Science
Foundation, United States under Grant No. 1956071.

E. Kabir et al.

Appendix. Supplementary materials

Algorithm 1 Load Weights for MHA

1:
2
3
4:
5:
6
7
8

9:

for (i=1;i <=

Embedding Dimension .
Number of Heads °
#pragma HLS pipeline off

for (j=1;j <=Tiles.in MHA;j=j+1)do
#pragma HLS pipeline II = 1
Wolillj] < weights_Qlindex];
Wilillj] < weights_K[index];
Wy lillj] < weights_V[index];
index < index + 1;
end for

i=i+1)do

10: end for

Algorithm 2 Load Inputs for MHA

1: for (i = 1;i <= sequence_length;i =i+ 1) do

2: #pragma HLS pipeline off

3 for (j =1;j <=Tiles.in MHA;j=j+1) do
4 #pragma HLS pipeline II = 1

5: X, [i1[j] « input_token[index];

6: X,[illj] « input_token[index];
22RO ;

8 Xnlillj] < input_token[index];

9: index « index + 1,
10: end for
11: end for

Algorithm 3 Load Inputs for FFN1

1: for (i = 1;i <= sequence_length;i =i+ 1 do

2: #pragma HLS pipeline off

3 for (j=1;j <TSppn:j=j+1)do
4 #pragma HLS pipeline II = 1

5: k « (index) * (factor);

6: X, [i1[j] < outputs_M H A[il[k + jI;
7 X, [i1lj] < outputs_M H A[il[k + j];
8. ettt ;

o: X N1 < outputs_M H A[il[k + j1;
10: index « index + 1;
11: end for
12: end for

Algorithm 4 Load Inputs for FFN2 & FFN3

1: for (i = 1;i <= sequence_length;i =i+ 1 do

2: #pragma HLS pipeline off

3 for (j=1;j <TSppn:j=j+1)do
4 #pragma HLS pipeline II = 1

5: k < (index) = (factor);

6: X [i1[j] < outputs_F F N2[i][k + j];
7 X, [i1[j] < outputs_FFN2[i][k + j];
81 et eenes ;

9: X nlillj] < outputs_F FN2[il[k + j];
10: index « index + 1;
11: end for
12: end for

Microprocessors and Microsystems 120 (2026) 105223

Algorithm 5 Load Biases for MHA

for i=1;i <=

Embedding Dimension .
Number of Heads ’

i=i+1)do

#pragma HLS pipeline IT = 1
bq[i] « bias_Qlindex];

b,li] < bias_V[index];

index « index + 1;
end for

1:
2
3:
4: b, li] < bias_K[index];
5
6.
7:

Algorithm 6 Load Biases for FFN & Layer Norm.

1: for (i = 1;i <= Embedding Dimension;i =i+ 1) do
2: #pragma HLS pipeline II = 1

3: brpnlil < bias_port[index];
4: index < index + 1;
5: end for

Algorithm 9 Q, K, V Calculation

1: for (i = 1;i <= Sequence Length;i =i+ 1) do
2: #pragma HLS pipeline off

3: S, <0

4 Sy« 0

5: S, <0

6 for (k=1:k <= 2k +) do

7: #pragma HLS pipeline II = 1

8: for (j=1;j <= 24 j 4 4) do
SMH

9: Sq <—Sq+X[i][j]><WQ[k][j];

10: Sy« S+ XU X Wi KL

11: S, < S, + X[x Wy [kl

12: end for

13: Olillk] < Olillk] + Sg3

14: K[il[k] < K[il[k] + S};

15: VV0illk] < V[illk] + S,;

16: end for
17: end for

Algorithm 10 FFN3 Calculation

1: for (i = 1;i <= Sequence Length;i =i+ 1) do
2: #pragma HLS pipeline off

Embedding Dimension

3 m < index X Tiles in FFN

4 for (j=1;j <= —‘mid__:j+4)do

5: #pragma HLS pipeline II = 1

6: sum < 0

7: for (k = 11k <= —Xmadel _ k4 1) do
8: sum « sum + inputs[i][k] X weights[k][j];
9: end for
10: output[i][m] < output[i][j] + sum;
11: m<«— m+1;
12: end for
13: end for

14

E. Kabir et al. Microprocessors and Microsystems 120 (2026) 105223

Algorithm 7 Softmax

Max Value: Exponential: Normalization:
for i=1;i<=SL;i++) do for (i=1;i<=SL;i++) do for (i=1;i<=SL;i++) do
#pragma HLS pipeline off #pragma HLS pipeline off #pragma HLS pipeline off
for (j=1;j<=SL;j++) do for (j=1;j<=SL;j++) do for (j=1;j<=SL;j++) do
#pragma HLS pipeline II = 1 #pragma HLS pipeline II = 1
if x[i][j] > maxV alue then x[i1[j] < exp(x[il[j]— #pragma HLS pipeline
maxV alue < x[i][j] maxV alue) nm=1
end if sum <« sum + x[i][j] x[i][j] « %
end for end for end for
end for end for end for
Algorithm 8 Layer Normalization
Mean: Variance:
1: for (i=1;i <= SL;i++) do 1: for (i=1;i <= SL;i++) do
2 #pragma HLS pipeline off 2 #pragma HLS pipeline off
3 for (j =1;j <=d,40:j ++) do 3 for (j = 1;j <=d,p4.:J ++) do
4 #pragma HLS pipeline II = 1 4 #pragma HLS pipeline II = 1
5: mli] < m[i] + inputs[i][j] 5: vli] < vli] + (inputs[il[j] — m[i])?
6 end for 6 end for
7 mli] < m[i]/ Embedding_Dimension; 7 mli] < m[i]/ Embedding_Dimension;
8: end for 8: end for
L. Final Output:
Normalization: 1: for (i = 1;i <= SL;i ++) do
L for (1= 1;i <= SL; l_+ +? do 2 #pragma HLS pipeline off
2 #pragma HLS pipeline off L .
‘)) 3 for (j = 1;j <=d, 403 j ++) do
3 for G=1,j <= d”“’d‘i’ ot +) do 4 #pragma HLS pipeline I = 1
4 #pragma HLS pipeline II = 1
. Ginputsliljl—mli] 5: outputs[il[j] « gammalj] X norm,, [i][j]1+;
5: normg,,;[i1[j] < W 6: betalj];
6 end for 7 end for
7: end for 8: end for
Algorithm 11 Q x KT Calculation Algorithm 13 Bias add unit 3
1: for i=1;i<=SL;i=i+1)do 1: for (i = 1;i <= Sequence Length;i+ +) do
2: #pragma HLS pipeline off 2: #pragma HLS pipeline off
3: for (j=1;j<=SL;j=j+1)do 3 for (j = 1;j <= Hidden Dimension; j + +) do
4: #pragma HLS pipeline II = 1 4 #pragma HLS pipeline II = 1
5: S0 5 FF,,[illj] < FF,,lil[j]+ biasppy1jl;
6: for (k = 13k <= %20k 4 +) do 6: FF,,lil[j] < relu(FF,,[il[j]);
7: S <« S+ Olillk] X K[j1[k]; 7 end for
8: end for 8: end for
9: slil[j] < S/Embedding_Dimension;
10: end for
11: end for Algorithm 14 FFN1 Calculation

1: for (i = 1;i <= Sequence Length;i =i+ 1) do

2: #pragma HLS pipeline off
Embedding Dimension

Algorithm 12 S x V' Calculation

° : : - - 3: m « index X T”c‘}m FEN

1: Or(l=1,l<=SL,l‘=l-‘I-l) o 4: for(j=1;j<=m»sm;%;j++)do

2: #pragma HLS 1::11pf/lme off 5: #pragma HLS pipeline I = 1

3: for (j = 1;j <= =224; j + +) do 6: sum < 0

4: #pragma HLS pipeline II = 1 7: for (k= 1;K <= —3meded__. 14 4y do

5 -0 . ’ Tiles in FFN ’ . .

: vv 8: sum < sum + inputs[i][k] X weights[k][j];

6: for (k=1;k<=SL;k=k+1) do 9: end for

7: vv < vv + S[k]I X VK] 10: output[il[m] < output[il[j] + sum;

8: end for 11: m—m+1;

9: SVIillj] < vu; 12: end for
10: end for 13: end for
11: end for

15

E. Kabir et al.

Algorithm 15 FFN2 Calculation

1:
2:

© ® NP AW

10:
11:
12:
13:

for (i = 1;i <= Sequence Length;i+ +) do
#pragma HLS pipeline off
Hidden Dimension
T[Ies4ind FFN
P i e— Xdmodel .
for j=1;j <= Tiles in FFN ;j++do
#pragma HLS pipeline IT = 1
sum < 0
_1- _ dyodel .
for (k=1;k <= T FFN,k ++) do
sum < sum + inputs[i][k] X weights[k][j];
end for
output(i][m] < output[i][j] + sum;
me—m+1;
end for
end for

m < index X

Algorithm 16 Bias add unit 1

1:
2:

© ® NI h W

for (i = 1;i <= Sequence Length;i =i+ 1) do
#pragma HLS pipeline off
for (k = 1;k <= el f 4 +) do
#pragma HLS pipeline IT = 1
Olillk] < QOlillk] + bias,[k];
K[il[k] < K[il[k] + bias,[k];
VV0illk] < Villk] + bias,[k];
end for
end for

Algorithm 17 Bias add unit 2

1: for (i = 1;i < Sequence Length;i + +) do
2: #pragma HLS pipeline off
3 for (j = 1;j < Embedding Dimension; j + +) do
4: #pragma HLS pipeline IT = 1
5 FF,,[illj] < FF,,lilj]+ biasprnil;
6 end for
7: end for
Data availability

I have shared the link of my code in the manuscript.

References

[1]

[2]

[3]

[4]

A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever, et al., Language
models are unsupervised multitask learners, OpenAI Blog 1 (8) (2019) 9.

K. Song, K. Wang, H. Yu, Y. Zhang, Z. Huang, W. Luo, X. Duan, M. Zhang,
Alignment-enhanced transformer for constraining NMT with pre-specified trans-
lations, in: AAAI Conference on Artificial Intelligence, 2020, [Online]. Available:
https://api.semanticscholar.org/CorpusID:213842037.

T. Wang, L. Gong, C. Wang, Y. Yang, Y. Gao, X. Zhou, H. Chen, ViA: A novel
vision-transformer accelerator based on FPGA, IEEE Trans. Comput.-Aided Des.
Integr. Circuits Syst. 41 (11) (2022) 4088-4099, [Online]. Available: https:
//ieeexplore.ieee.org/document/9925700/.

K. Cho, B. van Merriénboer, D. Bahdanau, Y. Bengio, On the properties of
neural machine translation: Encoder-decoder approaches, in: D. Wu, M. Carpuat,
X. Carreras, E.M. Vecchi (Eds.), Proceedings of SSST-8, Eighth Workshop on
Syntax, Semantics and Structure in Statistical Translation, Association for Com-
putational Linguistics, Doha, Qatar, 2014, pp. 103-111, [Online]. Available:
https://aclanthology.org/W14-4012.

16

Microprocessors and Microsystems 120 (2026) 105223

Algorithm 18 Software Program

1:

10:

11:

12:
13:
14:
15:
16:
17:
18:
19:
20:

: for i from 0 to no._of_inputs do

Assign the accelerator and other devices with IDs and base
addresses

: Initialize and configure the accelerator and other devices
: Write to the registers of the configurable parameters: Sequence,

Heads, Layers_enc, Layers_dec, Embeddings, Hidden,
Out
> Iterate based on the
number of tiles and layers

Load input axi master interface buffers with data > Same tasks
for all input interfaces

: end for
: for i from O to no._of_weights do

> Iterate based on the
number of tiles and layers

Load weight axi master interface buffers with data
tasks for all weight interfaces

> Same

: end for

for i from 0 to no._of_biases do > Iterate based on the
number of tiles and layers
Load bias axi master interface buffers with data > Same tasks
for all bias interfaces
end for
Write to control register to start the accelerator
Write to control register to start the timer
Record Start time
while accelerator is not done do
Read status register until the accelerator has finished
end while
Record End time
Compute Execution_time < End_time — Start_time;

[5]

[6]

[71

[8]

[91]

[10]

[11]

[12]

[13]

[14]

S. Hochreiter, J. Schmidhuber, Long short-term memory, Neural Comput. 9 (8)
(1997) 1735-1780, [Online]. Available: https://doi.org/10.1162/neco.1997.9.8.
1735.

A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner,
M. Dehghani, M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, N. Houlsby,
An image is worth 16x16 words: Transformers for image recognition at scale,
2020, arXiv abs/2010.11929. [Online]. Available: https://api.semanticscholar.
org/CorpusID:225039882.

J.-B. Cordonnier, A. Loukas, M. Jaggi, On the relationship between self-
attention and convolutional layers, in: International Conference on Learning
Representations, 2020, [Online]. Available: https://openreview.net/forum?id=
HJInC1rKPB.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A.N. Gomez, t.. Kaiser,
I. Polosukhin, Attention is all you need, Adv. Neural Inf. Process. Syst. 30 (2017).
J.J. Lin, R. Nogueira, A. Yates, Pretrained transformers for text ranking: BERT
and beyond, in: Proceedings of the 14th ACM International Conference on Web
Search and Data Mining, 2020, [Online]. Available: https://api.semanticscholar.
org/CorpusID:222310837.

J. Devlin, M.-W. Chang, K. Lee, K. Toutanova, Bert: Pre-training of deep
bidirectional transformers for language understanding, 2018, arXiv preprint
arXiv:1810.04805.

Z. Lan, M. Chen, S. Goodman, K. Gimpel, P. Sharma, R. Soricut, Albert: A lite
bert for self-supervised learning of language representations, 2019, arXiv preprint
arXiv:1909.11942.

W. Wang, B. Bi, M. Yan, C. Wu, Z. Bao, J. Xia, L. Peng, L. Si, Structbert: Incor-
porating language structures into pre-training for deep language understanding,
2019, arXiv preprint arXiv:1908.04577.

H. Peng, S. Huang, S. Chen, B. Li, T. Geng, A. Li, W. Jiang, W. Wen, J. Bi, H. Liu,
C. Ding, A length adaptive algorithm-hardware co-design of transformer on FPGA
through sparse attention and dynamic pipelining, in: Proceedings of the 59th
ACM/IEEE Design Automation Conference, ACM, San Francisco California, 2022,
pp. 1135-1140, [Online]. Available: https://dl.acm.org/doi/10.1145/3489517.
3530585.

T.J. Ham, Y. Lee, S.H. Seo, S. Kim, H. Choi, S.J. Jung, J.W. Lee, ELSA:
Hardware-software co-design for efficient, lightweight self-attention mechanism
in neural networks, in: 2021 ACM/IEEE 48th Annual International Symposium
on Computer Architecture, ISCA, 2021, pp. 692-705, ISSN: 2575-713X.

http://refhub.elsevier.com/S0141-9331(25)00090-0/sb1
http://refhub.elsevier.com/S0141-9331(25)00090-0/sb1
http://refhub.elsevier.com/S0141-9331(25)00090-0/sb1
https://api.semanticscholar.org/CorpusID:213842037
https://ieeexplore.ieee.org/document/9925700/
https://ieeexplore.ieee.org/document/9925700/
https://ieeexplore.ieee.org/document/9925700/
https://aclanthology.org/W14-4012
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
http://arxiv.org/abs/2010.11929
https://api.semanticscholar.org/CorpusID:225039882
https://api.semanticscholar.org/CorpusID:225039882
https://api.semanticscholar.org/CorpusID:225039882
https://openreview.net/forum?id=HJlnC1rKPB
https://openreview.net/forum?id=HJlnC1rKPB
https://openreview.net/forum?id=HJlnC1rKPB
http://refhub.elsevier.com/S0141-9331(25)00090-0/sb8
http://refhub.elsevier.com/S0141-9331(25)00090-0/sb8
http://refhub.elsevier.com/S0141-9331(25)00090-0/sb8
https://api.semanticscholar.org/CorpusID:222310837
https://api.semanticscholar.org/CorpusID:222310837
https://api.semanticscholar.org/CorpusID:222310837
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1909.11942
http://arxiv.org/abs/1908.04577
https://dl.acm.org/doi/10.1145/3489517.3530585
https://dl.acm.org/doi/10.1145/3489517.3530585
https://dl.acm.org/doi/10.1145/3489517.3530585
http://refhub.elsevier.com/S0141-9331(25)00090-0/sb14
http://refhub.elsevier.com/S0141-9331(25)00090-0/sb14
http://refhub.elsevier.com/S0141-9331(25)00090-0/sb14
http://refhub.elsevier.com/S0141-9331(25)00090-0/sb14
http://refhub.elsevier.com/S0141-9331(25)00090-0/sb14
http://refhub.elsevier.com/S0141-9331(25)00090-0/sb14
http://refhub.elsevier.com/S0141-9331(25)00090-0/sb14

E. Kabir et al.

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

P. Rajpurkar, R. Jia, P. Liang, Know what you don’t know: Unanswerable
questions for SQUAD, in: I. Gurevych, Y. Miyao (Eds.), Proceedings of the 56th
Annual Meeting of the Association for Computational Linguistics (Volume 2:
Short Papers), Association for Computational Linguistics, Melbourne, Australia,
2018, pp. 784-789, [Online]. Available: https://aclanthology.org/P18-2124.

S. Zeng, J. Liu, G. Dai, X. Yang, T. Fu, H. Wang, W. Ma, H. Sun, S. Li, Z.
Huang, Y. Dai, J. Li, Z. Wang, R. Zhang, K. Wen, X. Ning, Y. Wang, FlightLLM:
Efficient large language model inference with a complete mapping flow on
FPGAs, in: Proceedings of the 2024 ACM/SIGDA International Symposium on
Field Programmable Gate Arrays, New York, USA, 2024, [Online]. Available:
https://doi.org/10.1145/3626202.3637562.

P. Ganesh, Y. Chen, X. Lou, M.A. Khan, Y. Yang, H. Sajjad, P. Nakov, D. Chen,
M. Winslett, Compressing large-scale transformer-based models: A case study on
bert, Trans. Assoc. Comput. Linguist. 9 (2021) 1061-1080.

B. Li, S. Pandey, H. Fang, Y. Lyv, J. Li, J. Chen, M. Xie, L. Wan, H. Liu,
C. Ding, FTRANS: energy-efficient acceleration of transformers using FPGA, in:
Proceedings of the ACM/IEEE international symposium on low power electronics
and design, ACM, Boston Massachusetts, 2020, pp. 175-180, [Online]. Available:
https://dl.acm.org/doi/10.1145/3370748.3406567.

P. Qi, Y. Song, H. Peng, S. Huang, Q. Zhuge, E.H.-M. Sha, Accommodating
transformer onto FPGA: Coupling the balanced model compression and FPGA-
implementation optimization, in: Proceedings of the 2021 on Great Lakes
Symposium on VLSI, ACM, Virtual Event USA, 2021, pp. 163-168, [Online].
Available: https://dl.acm.org/doi/10.1145/3453688.3461739.

K. Guo, S. Zeng, J. Yu, Y. Wang, H. Yang, [DL] A survey of FPGA-based neural
network inference accelerators, ACM Trans. Reconfigurable Technol. Syst. 12 (1)
(2019) [Online]. Available: https://doi.org/10.1145/3289185.

M. Rognlien, Z. Que, J.G.F. Coutinho, W. Luk, Hardware-aware optimizations
for deep learning inference on edge devices, in: L. Gan, Y. Wang, W. Xue,
T. Chau (Eds.), Applied Reconfigurable Computing. Architectures, Tools, and
Applications, in: Lecture Notes in Computer Science, vol. 13569, Springer Nature
Switzerland, Cham, 2022, pp. 118-133, [Online]. Available: https://link.springer.
com/10.1007/978-3-031-19983-7_9.

S. Lu, M. Wang, S. Liang, J. Lin, Z. Wang, Hardware accelerator for multi-head
attention and position-wise feed-forward in the transformer, in: 2020 IEEE 33rd
International System-on-Chip Conference, SOCC, IEEE, Las Vegas, NV, USA, 2020,
pp. 84-89, [Online]. Available: https://ieeexplore.ieee.org/document/9524802/.
T.J. Ham, S. Jung, S. Kim, Y.H. Oh, Y. Park, Y. Song, J.-H. Park, S. Lee,
K. Park, JW. Lee, D.-K. Jeong, A3: Accelerating attention mechanisms in
neural networks with approximation, in: 2020 IEEE International Symposium on
High Performance Computer Architecture, HPCA, 2020, pp. 328-341, [Online].
Available: https://api.semanticscholar.org/CorpusID:211296403.

W. Ye, X. Zhou, J. Zhou, C. Chen, K. Li, Accelerating attention mechanism
on FPGAs based on efficient reconfigurable systolic array, ACM Trans. Embed.
Comput. Syst. 22 (6) (2023) 1-22, [Online]. Available: https://dl.acm.org/doi/
10.1145/3549937.

X. Zhang, Y. Wu, P. Zhou, X. Tang, J. Hu, Algorithm-hardware Co-design of
attention mechanism on FPGA devices, ACM Trans. Embed. Comput. Syst. 20
(5s) (2021) 1-24, [Online]. Available: https://dl.acm.org/doi/10.1145/3477002.
S. Hur, S. Na, D. Kwon, J. Kim, A. Boutros, E. Nurvitadhi, J. Kim, A fast
and flexible FPGA-based accelerator for natural language processing neural
networks, ACM Trans. Arch. Code Optim. 20 (1) (2023) [Online]. Available:
https://doi.org/10.1145/3564606.

H. Peng, S. Huang, T. Geng, A. Li, W. Jiang, H. Liu, S. Wang, C. Ding,
Accelerating transformer-based deep learning models on FPGAs using column
balanced block pruning, in: 2021 22nd International Symposium on Quality
Electronic Design, ISQED, IEEE, Santa Clara, CA, USA, 2021, pp. 142-148,
[Online]. Available: https://ieeexplore.ieee.org/document/9424344/.

Z. Jiang, D. Yin, E.E. Khoda, V. Loncar, E. Govorkova, E. Moreno, P. Harris,
S. Hauck, S.-C. Hsu, Ultra fast transformers on FPGAs for particle physics
experiments.

F. Wojcicki, Z. Que, A.D. Tapper, W. Luk, Accelerating transformer neural
networks on FPGAs for high energy physics experiments, in: 2022 International
Conference on Field-Programmable Technology, ICFPT, IEEE, Hong Kong, 2022,
pp. 1-8, [Online]. Available: https://ieeexplore.ieee.org/document/9974463/.
Y. Chen, T. Li, X. Chen, Z. Cai, T. Su, High-frequency systolic array-based
transformer accelerator on field programmable gate arrays, Electronics 12 (4)
(2023) 822, [Online]. Available: https://www.mdpi.com/2079-9292/12/4/822.
Number: 4 Publisher: Multidisciplinary Digital Publishing Institute.

X. Yang, T. Su, EFA-trans: Anefficient and flexible acceleration architecture
for transformers, Electronics 11 (21) (2022) 3550, [Online]. Available: https:
//www.mdpi.com/2079-9292/11/21/3550.

Y. Bai, F. University, LTrans-OPU: A low-latency FPGA-based overlay processor
for transformer networks.

17

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

Microprocessors and Microsystems 120 (2026) 105223

E. Kabir, D. Coble, J.N. Satme, A.R. Downey, J.D. Bakos, D. Andrews, M.
Huang, Accelerating LSTM-based high-rate dynamic system models, in: 2023
33rd International Conference on Field-Programmable Logic and Applications,
FPL, 2023, pp. 327-332.

P. Qi, EH.-M. Sha, Q. Zhuge, H. Peng, S. Huang, Z. Kong, Y. Song, B.
Li, Accelerating framework of transformer by hardware design and model
compression co-optimization, in: 2021 IEEE/ACM International Conference on
Computer Aided Design, ICCAD, IEEE, Munich, Germany, 2021, pp. 1-9,
[Online]. Available: https://ieeexplore.ieee.org/document/9643586/.

H. Chen, J. Zhang, Y. Du, S. Xiang, Z. Yue, N. Zhang, Y. Cai, Z. Zhang, Un-
derstanding the potential of FPGA-based spatial acceleration for large language
model inference, ACM Trans. Reconfigurable Technol. Syst. 18 (1) (2025) 1-29,
[Online]. Available: https://dl.acm.org/doi/10.1145/3656177.

Y. Qin, W. Lou, C. Wang, L. Gong, X. Zhou, Enhancing long sequence input
processing in FPGA-based transformer accelerators through attention fusion, in:
Proceedings of the Great Lakes Symposium on VLSI 2024, ACM, Clearwater FL
USA, 2024, pp. 599-603, [Online]. Available: https://dl.acm.org/doi/10.1145/
3649476.3658810.

S. Hur, S. Na, D. Kwon, J. Kim, A. Boutros, E. Nurvitadhi, J. Kim, A fast and
flexible FPGA-based accelerator for natural language processing neural networks,
ACM Trans. Archit. Code Optim. 20 (1) (2023) 1-24, [Online]. Available: https:
//dl.acm.org/doi/10.1145/3564606.

Y. Bai, H. Zhou, K. Zhao, H. Wang, J. Chen, J. Yu, K. Wang, FET-OPU: A flexible
and efficient FPGA-based overlay processor for transformer networks, in: 2023
IEEE/ACM International Conference on Computer Aided Design, ICCAD, IEEE,
San Francisco, CA, USA, 2023, pp. 1-9, [Online]. Available: https://ieeexplore.
ieee.org/document/10323752/.

P. Plagwitz, F. Hannig, J. Teich, TRAC: Compilation-based design of transformer
accelerators for FPGAs, in: 2022 32nd International Conference on Field-
Programmable Logic and Applications, FPL, IEEE, Belfast, United Kingdom,
2022, pp. 17-23, [Online]. Available: https://ieeexplore.ieee.org/document/
10035242/.

H. Ye, C. Hao, J. Cheng, H. Jeong, J. Huang, S. Neuendorffer, D. Chen, ScaleHLS:
A new scalable high-level synthesis framework on multi-level intermediate
representation, 2021, arXiv:2107.11673. [Online]. Available: https://arxiv.org/
abs/2107.11673.

AMD Technical Information Portal — docs.amd.com, https://docs.amd.com/r/en-
US/ug1399-vitis-hls/AXI4-Master-Interface.

Introduction « DMA/Bridge subsystem for PCI express product guide (PG195)
reader « documentation portal. [Online]. Available: https://docs.xilinx.com/r/en-
US/pgl95-pcie-dma.

AMD Technical Information Portal — docs.amd.com, https://docs.amd.com/v/
u/en-US/axi_timer_ds764.

AMD Technical Information Portal — docs.amd.com, https://docs.amd.com/v/
u/en-US/axi_uartlite_ds741.

Programmers
programmers/.

digilent.com, https://digilent.com/shop/fpga-boards/
BERT — huggingface.co, https://huggingface.co/docs/transformers/en/model_
doc/bert.

J. Zhao, L. Feng, S. Sinha, W. Zhang, Y. Liang, B. He, Performance modeling and
directives optimization for high-level synthesis on FPGA, IEEE Trans. Comput.-
Aided Des. Integr. Circuits Syst. 39 (7) (2020) 1428-1441, [Online]. Available:
https://ieeexplore.ieee.org/document/8695879/.

Y. Han, T. University, HPTA: A high performance transformer accelerator based
on FPGA.

Z. Liu, G. Li, J. Cheng, Hardware acceleration of fully quantized BERT for
efficient natural language processing, in: 2021 Design, Automation & Test in
Europe Conference & Exhibition, DATE, IEEE, Grenoble, France, 2021, pp.
513-516, [Online]. Available: https://ieeexplore.ieee.org/document/9474043/.
C. Fang, A. Zhou, Z. Wang, An algorithm-hardware co-optimized framework for
accelerating N:M sparse transformers, IEEE Trans. Very Large Scale Integr. (VLSI)
Syst. 30 (11) (2022) 1573-1586, [Online]. Available: http://arxiv.org/abs/2208.
06118. arXiv:2208.06118 [cs].

E. Kabir, J.D. Bakos, D. Andrews, M. Huang, ProTEA: Programmable transformer
encoder acceleration on FPGA, in: SC24-W: Workshops of the International
Conference for High Performance Computing, Networking, Storage and Analysis,
2024, pp. 521-530.

G. Tzanos, C. Kachris, D. Soudris, Hardware acceleration of transformer networks
using FPGAs, in: 2022 Panhellenic Conference on Electronics & Telecommu-
nications, PACET, IEEE, Tripolis, Greece, 2022, pp. 1-5, [Online]. Available:
https://ieeexplore.ieee.org/document/9976354/.

https://aclanthology.org/P18-2124
https://doi.org/10.1145/3626202.3637562
http://refhub.elsevier.com/S0141-9331(25)00090-0/sb17
http://refhub.elsevier.com/S0141-9331(25)00090-0/sb17
http://refhub.elsevier.com/S0141-9331(25)00090-0/sb17
http://refhub.elsevier.com/S0141-9331(25)00090-0/sb17
http://refhub.elsevier.com/S0141-9331(25)00090-0/sb17
https://dl.acm.org/doi/10.1145/3370748.3406567
https://dl.acm.org/doi/10.1145/3453688.3461739
https://doi.org/10.1145/3289185
https://link.springer.com/10.1007/978-3-031-19983-7_9
https://link.springer.com/10.1007/978-3-031-19983-7_9
https://link.springer.com/10.1007/978-3-031-19983-7_9
https://ieeexplore.ieee.org/document/9524802/
https://api.semanticscholar.org/CorpusID:211296403
https://dl.acm.org/doi/10.1145/3549937
https://dl.acm.org/doi/10.1145/3549937
https://dl.acm.org/doi/10.1145/3549937
https://dl.acm.org/doi/10.1145/3477002
https://doi.org/10.1145/3564606
https://ieeexplore.ieee.org/document/9424344/
https://ieeexplore.ieee.org/document/9974463/
https://www.mdpi.com/2079-9292/12/4/822
https://www.mdpi.com/2079-9292/11/21/3550
https://www.mdpi.com/2079-9292/11/21/3550
https://www.mdpi.com/2079-9292/11/21/3550
http://refhub.elsevier.com/S0141-9331(25)00090-0/sb33
http://refhub.elsevier.com/S0141-9331(25)00090-0/sb33
http://refhub.elsevier.com/S0141-9331(25)00090-0/sb33
http://refhub.elsevier.com/S0141-9331(25)00090-0/sb33
http://refhub.elsevier.com/S0141-9331(25)00090-0/sb33
http://refhub.elsevier.com/S0141-9331(25)00090-0/sb33
http://refhub.elsevier.com/S0141-9331(25)00090-0/sb33
https://ieeexplore.ieee.org/document/9643586/
https://dl.acm.org/doi/10.1145/3656177
https://dl.acm.org/doi/10.1145/3649476.3658810
https://dl.acm.org/doi/10.1145/3649476.3658810
https://dl.acm.org/doi/10.1145/3649476.3658810
https://dl.acm.org/doi/10.1145/3564606
https://dl.acm.org/doi/10.1145/3564606
https://dl.acm.org/doi/10.1145/3564606
https://ieeexplore.ieee.org/document/10323752/
https://ieeexplore.ieee.org/document/10323752/
https://ieeexplore.ieee.org/document/10323752/
https://ieeexplore.ieee.org/document/10035242/
https://ieeexplore.ieee.org/document/10035242/
https://ieeexplore.ieee.org/document/10035242/
http://arxiv.org/abs/2107.11673
https://arxiv.org/abs/2107.11673
https://arxiv.org/abs/2107.11673
https://arxiv.org/abs/2107.11673
https://docs.amd.com/r/en-US/ug1399-vitis-hls/AXI4-Master-Interface
https://docs.amd.com/r/en-US/ug1399-vitis-hls/AXI4-Master-Interface
https://docs.amd.com/r/en-US/ug1399-vitis-hls/AXI4-Master-Interface
https://docs.xilinx.com/r/en-US/pg195-pcie-dma
https://docs.xilinx.com/r/en-US/pg195-pcie-dma
https://docs.xilinx.com/r/en-US/pg195-pcie-dma
https://docs.amd.com/v/u/en-US/axi_timer_ds764
https://docs.amd.com/v/u/en-US/axi_timer_ds764
https://docs.amd.com/v/u/en-US/axi_timer_ds764
https://docs.amd.com/v/u/en-US/axi_uartlite_ds741
https://docs.amd.com/v/u/en-US/axi_uartlite_ds741
https://docs.amd.com/v/u/en-US/axi_uartlite_ds741
https://digilent.com/shop/fpga-boards/programmers/
https://digilent.com/shop/fpga-boards/programmers/
https://digilent.com/shop/fpga-boards/programmers/
https://huggingface.co/docs/transformers/en/model_doc/bert
https://huggingface.co/docs/transformers/en/model_doc/bert
https://huggingface.co/docs/transformers/en/model_doc/bert
https://ieeexplore.ieee.org/document/8695879/
https://ieeexplore.ieee.org/document/9474043/
http://arxiv.org/abs/2208.06118
http://arxiv.org/abs/2208.06118
http://arxiv.org/abs/2208.06118
http://arxiv.org/abs/2208.06118
http://refhub.elsevier.com/S0141-9331(25)00090-0/sb51
http://refhub.elsevier.com/S0141-9331(25)00090-0/sb51
http://refhub.elsevier.com/S0141-9331(25)00090-0/sb51
http://refhub.elsevier.com/S0141-9331(25)00090-0/sb51
http://refhub.elsevier.com/S0141-9331(25)00090-0/sb51
http://refhub.elsevier.com/S0141-9331(25)00090-0/sb51
http://refhub.elsevier.com/S0141-9331(25)00090-0/sb51
https://ieeexplore.ieee.org/document/9976354/

E. Kabir et al.

Dr. Ehsan Kabir has been working as a Lecturer of the
Computer Engineering program at Texas A & M University
Texarkana since August 2025. He has recently completed
his Ph.D. in Computer Engineering at the University of
Arkansas, Fayetteville, where his research focused on devel-
oping machine learning accelerators using FPGA technology.
He received his BSc. in Electrical & Electronics Engineering
in 2016. Over the past five years, through a combination
of research, coursework, and hands-on projects, he has
built strong expertise in FPGAs, embedded systems, machine
learning, RTL and HLS design, and hardware-software co-
design. He is now seeking opportunities to apply these skills
in innovative and impactful ways. His research interests are
reconfigurable computing, embedded systems, and machine
learning.

Dr. Jason D. Bakos is a Professor of Computer Science and
Engineering at the University of South Carolina, Columbia.
His research focuses on high-performance domain-specific
architectures, including those based on reconfigurable,
graphical, many-core, digital signal, automata, and neuro-
morphic processor technology. He is currently serving as
associate editor for ACM Transactions on Reconfigurable
Technology and Systems (TRETS). Dr. Bakos received his
Ph.D. in Computer Science from the University of Pittsburgh
in 2005 and his B.S. in Computer Science from Youngstown
State University in 1999.

18

Microprocessors and Microsystems 120 (2026) 105223

Dr. Miaoging Huang is an associate professor in the
Department of Electrical Engineering and Computer Science
at the University of Arkansas. He received his BS degree
in electronics and information systems from Fudan Uni-
versity, China, in 1998, and the PhD degree in computer
engineering from The George Washington University, in
2009. His research interests are Heterogeneous many-core
architecture, Hardware-oriented security, high-performance
computing, and hardware design.

Dr. David Andrews is a professor of Electrical Engineering
& Computer Science at the University of Arkansas, Fayet-
teville. He joined there as the Mullins Endowed Chair of
Computer Engineering in 2008. His research interests are in
the general area of embedded systems architectures, parallel
and distributed real-time systems, and reconfigurable com-
puting. He received his Ph.D. from Syracuse University in
1992.

	A runtime-adaptive transformer neural network accelerator on FPGAs
	Introduction
	Related Work
	Background
	Transformer Architecture
	High Level Synthesis Design

	ADAPTOR's Architecture
	Attention Module
	QKV PM module
	QK PM module
	SV PM module

	Feedforward Network Module
	FFN1PM module
	FFN2PM module
	FFN3PM module

	Load Weights Unit
	Load Inputs Unit
	Load Biases Unit
	Activation Unit
	Layer Normalization Unit
	Bias Add Unit

	System Design and Optimizations
	Theoretical Model
	Model for DSP utilization
	Latency model for Attention Module
	Latency model for FFN1 Module
	Model for BRAM utilization
	Latency model for LN Module
	Latency model for FFN2 Module
	Latency model for FFN3 Module

	Evaluation and Results
	Conclusion
	Declaration of competing interest
	Acknowledgments
	Appendix. Supplementary Materials
	Data availability
	References

