
A
E
a

b

A

K
F
T
A
N
E
H
N
H

1

i
c
n
m
i
t
i
T
t
s
o
e
A
(
s
n
a
l

m

h
R

Microprocessors and Microsystems 120 (2026) 105223

A
0
n

Contents lists available at ScienceDirect

Microprocessors and Microsystems

journal homepage: www.elsevier.com/locate/micpro

 runtime-adaptive transformer neural network accelerator on FPGAsI

hsan Kabir a ,∗, Jason D. Bakos b , David Andrews a, Miaoqing Huang a
Department of Electrical Engineering and Computer Science, University of Arkansas, Fayetteville, AR, USA
Department of Computer Science and Engineering, University of South Carolina, Columbia, SC, USA

 R T I C L E I N F O

eywords:
PGA
ransformer
ttention
eural networks
ncoder
igh-level synthesis
atural language processing
ardware accelerators

 A B S T R A C T

Transformer neural networks (TNN) excel in natural language processing (NLP), machine translation, and com-
puter vision (CV) without relying on recurrent or convolutional layers. However, they have high computational
and memory demands, particularly on resource constrained devices like FPGAs. Moreover, transformer models
vary in processing time across applications, requiring custom models with specific parameters. Designing
custom accelerators for each model is complex and time-intensive. Some custom accelerators exist with
no runtime adaptability, and they often rely on sparse matrices to reduce latency. However, hardware
designs become more challenging due to the need for application-specific sparsity patterns. This paper
introduces ADAPTOR, a runtime-adaptive accelerator for dense matrix computations in transformer encoders
and decoders on FPGAs. ADAPTOR enhances the utilization of processing elements and on-chip memory,
enhancing parallelism and reducing latency. It incorporates efficient matrix tiling to distribute resources across
FPGA platforms and is fully quantized for computational efficiency and portability. Evaluations on Xilinx Alveo
U55C data center cards and embedded platforms like VC707 and ZCU102 show that our design is 1.2× and
2.87× more power efficient than the NVIDIA K80 GPU and the i7-8700K CPU respectively. Additionally, it
achieves a speedup of 1.7 to 2.25× compared to some state-of-the-art FPGA-based accelerators.
. Introduction

Transformer neural networks (TNN) have shown great performance
n natural language processing (NLP) [1], machine translation [2],
omputer vision [3], and other fields in recent years. While recurrent
eural network (RNN) [4] and long short-term memory (LSTM) [5]
odels run sequential computation tasks during both training and
nference, transformer facilitates high levels of computation parallelism
hroughout both processes using an attention mechanism. Thus, TNN
s becoming a potential alternative to CNN, RNN, and LSTM [6,7].
here are many transformer models, such as full transformers con-
aining both encoder and decoder [8], BERT [9,10], ALBERT [11],
tructBERT [12], and others. These models contain different numbers
f encoder and decoder stack [8] for different applications. A single
ncoder will often require a latency on the order of 100s of μS [13].
round 38% to 64% of this time is spent in the multihead attention
MHA) mechanism depending on the number of tokens in the input
equence [14,15], and the rest of the time is spent on feed forward
etwork (FFN). Unfortunately, general-purpose platforms like GPUs
nd CPUs often suffer from low computational efficiency, underuti-
ized memory bandwidth, and substantial compilation overheads for

I This material is based upon work supported by the National Science Foundation, United States under Grant No. 1956071.
∗ Corresponding author.
E-mail addresses: kabir40ehsan@gmail.com, ekabir@tamut.edu (E. Kabir), jbakos@cse.sc.edu (J.D. Bakos), dandrews@uark.edu (D. Andrews),

qhuang@uark.edu (M. Huang).

MHA layers [16]. MHA and FFN also occupy most of the on chip
storage units [17–19]. Therefore, it is essential to prioritize efficient
hardware deployment on resource-constrained devices. FPGAs have
gained widespread use for accelerating DNNs due to their high level of
parallelism, high energy efficiency, and low latency [20,21]. Recently,
some works have successfully built FPGA based custom hardware ac-
celerators for transformers [13,18,22]. Application-specific integrated
circuits (ASIC)-based accelerators also exist [23].

Lu et al. [22] accelerated the attention mechanism and feedfor-
ward network separately, but did not implement the full transformer
encoder. Ye et al. [24] focused on accelerating only the attention
mechanism using a reconfigurable systolic array for the transformer.
Similarly, Zhang et al. [25] concentrated on accelerating the attention
layer through hardware–software co-design. In contrast, ADAPTOR is
developed to support the entire transformer neural network (TNN).
Some other works accelerate the full transformer networks but their
logic circuits go through the time-consuming synthesis steps for differ-
ent models or they perform poorly on the same model with different
configurations [26]. These approaches lack the generality to support
ttps://doi.org/10.1016/j.micpro.2025.105223
eceived 11 July 2025; Received in revised form 30 October 2025; Accepted 4 No
vailable online 17 November 2025
141-9331/© 2025 The Authors. Published by Elsevier B.V. This is an open access art
c-nd/4.0/).
vember 2025

icle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

https://www.elsevier.com/locate/micpro
https://www.elsevier.com/locate/micpro
https://orcid.org/0009-0009-3335-9419
https://orcid.org/0000-0002-0821-6258
mailto:kabir40ehsan@gmail.com
mailto:ekabir@tamut.edu
mailto:jbakos@cse.sc.edu
mailto:dandrews@uark.edu
mailto:mqhuang@uark.edu
https://doi.org/10.1016/j.micpro.2025.105223
https://doi.org/10.1016/j.micpro.2025.105223
http://crossmark.crossref.org/dialog/?doi=10.1016/j.micpro.2025.105223&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

E. Kabir et al. Microprocessors and Microsystems 120 (2026) 105223
diverse variants, whereas ADAPTOR eliminates the need for repeated
synthesis across models.

As transformer variants continue to evolve with differing param-
eters, designing a generic and efficient accelerator that can be cus-
tomized to the structural characteristics of these variants becomes in-
creasingly valuable. Thus, a versatile accelerator is needed to efficiently
handle dense matrix computations across various TNN applications,
and ADAPTOR is designed to fulfill this role. Digital signal process-
ing (DSP) resources are capable of high-speed computation at higher
frequencies. Proper utilization of them depends on the implementation
method. For example, most accelerators [13,27–29] used high-level
synthesis (HLS) tools, while some used hardware description language
(HDL) [30–32] for design. While HLS requires less implementation
time compared to HDL, writing efficient HLS code to use parallel
DSPs for optimal performance is challenging [33]. To address this,
ADAPTOR employs optimized HLS coding techniques. Additional chal-
lenges include storing the vast number of TNN parameters in the
on-chip memories of FPGAs, which typically have a size of 5MB for
low-end devices such as the ZCU104 and 35MB for high-end devices
such as the Alveo U200 [34] and executing the extensive number of
multiplication and accumulation (MAC) operations required by TNNs
on the DSPs, with Ultrascale+ FPGAs offering approximately 9024
DSPs. Therefore, input matrices must be partitioned into tiles. However,
developing an optimal partitioning scheme that aligns well with the
architecture presents a significant challenge, one that has been carefully
addressed in the design of ADAPTOR. The data access and computation
patterns differ across various blocks within the transformer, which also
prevents acceleration. To overcome this, ADAPTOR assigns dedicated
hardware modules to each block, enabling more effective design and
optimization. The full source code1 to reproduce the presented results
or improve the design.

In summary, this work makes the following contributions:

∙ A novel accelerator architecture for a complete transformer that
maximizes DSP and LUT utilization to enhance parallel processing
and achieve low latency, supported by an analytical model for
pre-execution estimates of resource use and latency.

∙ An efficient tiling strategy for weight matrices in both the multi-
head attention layer and the feedforward neural network layer,
enabling the deployment of the accelerator to any FPGA platform
for most TNN models.

∙ A modular design approach implemented using parameterized
HLS codes to accommodate varying computation and data access
patterns, as well as to allow design-time modification of different
TNN components.

∙ A runtime adaptive feature allows software-driven parameter ad-
justments to run different models without hardware re-synthesis.

2. Related work

Various custom and partially adaptive FPGA accelerators have been
developed for TNNs. Peng et al. [13,27] introduced a coherent sequence
length–adaptive algorithm-hardware co-design for Transformer acceler-
ation and explored column-balanced block-wise pruning. Qi et al. [19,
34] proposed an acceleration framework combining balanced model
compression at the algorithm level with hardware-level FPGA optimiza-
tion. Chen et al. [35] developed an analytical model for evaluating
spatial TNN accelerators, considering FPGA compute and memory re-
sources, identifying optimal parallelization and buffering strategies,
and providing reusable HLS kernels. Similarly, we developed an analyt-
ical model to estimate the latency and resource utilization of ADAPTOR
and designed it modularly, with each module implemented as an HLS
function for easy optimization and reuse. Qin et al. [36] designed a TNN

1 https://github.com/Kabir-Ehsan/Transformer_on_FPGA.
2
accelerator with separate attention and linear kernels for long input
sequences, applying tiling only to the attention layer, whereas our de-
sign applies unique tiling strategies to both attention and linear layers.
Both architectures incorporate analytical models. The energy-efficient
FTRANS framework [18] employed an improved block-circulant matrix
method for algorithm-level sparsity, alongside a dedicated accelerator
designed for this approach. Most of these architectures target specific
TNNs and sparsity patterns, lacking runtime flexibility to reconfigure
the computing structure for different applications. In contrast, ADAP-
TOR can be programmed from software for any dense TNN model.
FlexRun [37] identified key NLP model components, implemented them
on a state-of-the-art FPGA accelerator, performed design space explo-
ration to determine the optimal architecture for a given NLP model, and
enabled automatic reconfiguration based on the results. FET-OPU [38]
presented an overlay architecture for general TNN acceleration featur-
ing a DSP-packed Matrix Multiplication Unit (MMU) with a FIFO-based
data caching mechanism. FlightLLM [16] introduced a configurable
sparse DSP chain for handling diverse sparsity patterns efficiently, an
always-on-chip decode scheme for improved memory bandwidth with
mixed-precision support, and a length-adaptive compilation method
to minimize instruction storage overhead for large language models.
TRAC [39] focused on dedicated hardware generation, integrating
code generation into the compilation process to create parameterized
and synthesized modules for specific Transformer configurations-unlike
fixed, though parameterizable, overlays. EFA-Trans [31] supports both
dense and sparse computation patterns but requires hardware resynthe-
sis to switch between them. Moreover, none of these works examined
optimal tile sizes or DSP utilization for maximum parallelism as done
in ADAPTOR.

3. Background

3.1. Transformer architecture

There are several building blocks in transformers as shown in Fig.
1(a). An input sequence of tokens is converted into embeddings. The
positional encoder enables the model to consider the order of tokens
in a sequence by adding positional information to the embeddings. It
generates vectors that give context according to the word’s position
in a sentence. Then the vectors are linearly transformed into three
tensors: Q (queries), K (keys), and V (values) by multiplying the em-
bedding matrix with three weight matrices. The encoder block handles
these tensors, transforming them into a higher-level representation
that encapsulates crucial information. This process ensures the proper
capture of features and contextual relationships within the input se-
quence. The encoder architecture comprises two main sub-layers: (1)
the self-attention mechanism, and (2) the position-wise feed-forward
network. The self-attention mechanism enables the model to assess
different segments of an input sequence simultaneously. It captures
long-range relationships by measuring attention scores and utilizing
multi-head projections for various input representations. Thus, it can
learn complex patterns, dependencies, and relationships effectively.
The position-wise feed-forward network (FFN), which is equivalent to
a multilayer perceptron (MLP), applies linear transformations to every
position independently in the input sequence. In this network, two
linear transformations are executed. They mainly contain matrix–vector
multiplication. The first linear transformation has activation functions
such as the Rectified Linear Unit (ReLU) or Gaussian Error Linear Unit
(GeLU) but the second one does not have these. Furthermore, each sub-
layer includes a residual connection combined with layer normalization
(LN). This reduces the vanishing gradient problem during training.
Residual addition and LN layers are inserted after each MHA and
FFN. It mainly includes the addition of matrix elements and nonlinear
functions. The decoder block illustrated in Fig. 1(a) is responsible for
generating the output sequence based on the encoded representations
supplied by the encoder. Like the encoder, the decoder also consists of a

https://github.com/Kabir-Ehsan/Transformer_on_FPGA

E. Kabir et al. Microprocessors and Microsystems 120 (2026) 105223

(a) Complete architecture.

(b) Multihead attention layer.

Fig. 1. Transformer neural network.
stack of N identical layers. Each layer within the decoder contains three
sub-layers. They are: (1) the Masked Attention Mechanism, resembling
the encoder’s self-attention, and it includes a masking feature that
restricts the output’s dependency on known preceding outputs; and (2)
an attention layer that directs its focus to the encoder’s output, enabling
the decoder to emphasize relevant sections of the input sequence for
each output element and (3) a position-wise feed-forward network.

The self-attention mechanism in transformers allows each position
in the sequence to attend to all other positions, enabling the model
to consider global context easily. Each attention head is composed of
three linear layers and a scaled dot-product attention function. The
parameter ℎ – or number of heads – is equal to 8 in the Transformer
base model or 16 in the Transformer big model. As illustrated in Fig.
1(b), the scaled dot product attention in each head is a crucial part
of the multihead attention layer. The attention weights are computed
by performing the dot product of the query and key vectors and
subsequently scaling it down by the square root of the dimension of
the key vectors. This scaling is essential to prevent the dot products
from becoming excessively large, which contributes to the stabilization
of gradients during the training process. Subsequently, the scaled dot
products undergo the softmax function, resulting in the computation of
attention weights. These weights are then used to perform a weighted
sum of the value vectors. The ultimate output is the projection of the
concatenated sequences from all heads.

The output of MHA can be represented as Eqs. (1) & (2). The input
sequence X is linearly mapped into 𝑄𝑖, 𝐾𝑖, 𝑉𝑖 matrices using weights and
biases. The parameter 𝑑𝑘 = 𝑑𝑚𝑜𝑑𝑒𝑙∕ℎ is the dimension of 𝑄𝑖 and 𝐾𝑖.
𝑑𝑚𝑜𝑑𝑒𝑙 is a hyperparameter called embedding dimension, and ℎ is the
number of heads.

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄𝑖, 𝐾𝑖, 𝑉𝑖) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥

(

𝑄𝑖𝐾𝑇
𝑖

√

𝑑𝑘

)

𝑉𝑖 (1)

(2)
𝑄𝑖 = 𝑋 ×𝑊𝑞 + 𝐵𝑞 , 𝐾𝑖 = 𝑋 × 𝑊𝑘 + 𝐵𝑘, 𝑉𝑖 = 𝑋 ×𝑊𝑣 + 𝐵𝑣

3
𝐹𝐹𝑁(𝑋) =𝐿𝑎𝑦𝑒𝑟_𝑁𝑜𝑟𝑚(𝑋 + 𝑅𝑒𝐿𝑈 (𝑋 ×𝑊1 + 𝑏1) ×𝑊2 + 𝑏2) (3)

𝐿𝑎𝑦𝑒𝑟_𝑁𝑜𝑟𝑚(𝑋) = 𝛾

(

𝑋 − 𝜇
√

𝜎2 + 𝜖

)

+ 𝛽 (4)

The FFN comprises a LN operation, residual addition, a ReLU ac-
tivation, and two linear sublayers, as described in Eq. (3), where W1,
W2 are weights and b1, b2 are biases. The operations for layer nor-
malization, softmax, GELU and RELU activation functions are described
in Eqs. (4), (5), (6), and (7) respectively, where X is the input vector
(for a particular position in the sequence), 𝜇 is the mean of X, 𝜎2 is
the variance of X, 𝛾 and 𝛽 are learnable parameters, and 𝜖 is a small
constant.

𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑋𝑗) =
𝑒𝑋𝑗

∑

𝑖=1 𝑒𝑋𝑖
(5)

𝐺𝐸𝐿𝑈 (𝑥) = 𝑥𝑃 (𝑋 ≤ 𝑥) = 𝑥 × 1
2
[1 + 𝑒𝑟𝑓 (𝑋∕

√

(2))] (6)

𝑅𝐸𝐿𝑈 (𝑋) =

{

0, 𝑋 < 0
𝑋, 𝑋 ≥ 0

(7)

3.2. High Level Synthesis design

High-Level Synthesis (HLS) allows designers to describe circuit func-
tionality at a higher level of abstraction than that of hardware descrip-
tion language. HLS tools translate high-level code, typically written
in languages like C, C++, or OpenCL, into Register-Transfer Level
(RTL) code suitable for FPGA implementation. This approach offers
several advantages, including faster development cycles and simpli-
fied design modifications, as designers can use familiar programming
languages to describe the hardware. Moreover, HLS enables efficient
design space exploration, allowing different architectures to be evalu-
ated without extensive hardware design expertise, leading to the rapid

E. Kabir et al. Microprocessors and Microsystems 120 (2026) 105223
Fig. 2. Attention module of ADAPTOR.
creation of optimized accelerators optimized for power, performance,
and area [40]. However, HLS does come with challenges, such as ensur-
ing that the generated RTL meets the specified constraints. The success
of the synthesized hardware is largely dependent on the robustness of
the HLS tools and the expertise of the designer.

4. ADAPTOR’s architecture

The core of the ADAPTOR is designed in C language on Vitis
high-level synthesis (HLS) 2022.2.1 tool. C simulation confirms the
algorithm’s correctness, while C/RTL co-simulation validates the func-
tionality of the synthesized hardware. This section describes the HLS
design technique that generates an optimized architecture utilizing
most of the LUTs and DSPs in the processing modules, ensuring high
parallelism of computation. There are loading units, computing mod-
ules, and activation function units in the overall architecture, which are
described below. Figs. 2 and 3 represent two main computing modules
of ADAPTOR.

4.1. Attention module

The overall architecture designed to accelerate the attention mech-
anism is illustrated in Fig. 2. It consists of three principal processing
modules (PMs), denoted as 𝑄𝐾𝑉 𝑃𝑀 , 𝑄𝐾𝑃𝑀 , and 𝑆𝑉 𝑃𝑀 , according to
the specific operations they perform. Each of these modules begins op-
eration only after the previous module has completed its computations.
This strict sequential execution ensures that all data dependencies are
respected and simplifies control logic. The number of module instances
corresponds to the number of attention heads (ℎ). Within each module,
computation is carried out by an array of processing elements (PEs),
where each PE incorporates a DSP48 unit responsible for multiplica-
tion and accumulation (MAC) operations. The organization of the PE
arrays varies across modules, as their computational demands and data
access patterns differ. To accommodate these differences, the modules
are implemented as separate functions in high-level synthesis (HLS),
thereby enabling targeted optimization of the corresponding register-
transfer level (RTL) components. Parallel data access is supported by
distributing input activations and weights across multiple BRAMs and
LUTRAMs.

Each PE operates independently, equipped with its own local mem-
ory, control logic, and computational resources. The weight matrices
associated with the generation of queries (𝑊𝑞), keys (𝑊𝑘), and values
(𝑊𝑣) are stored as two-dimensional arrays of dimension
(

𝑑𝑚𝑜𝑑𝑒𝑙
ℎ × 𝑇𝑆𝑀𝐻𝐴

)

, where 𝑇𝑆𝑀𝐻𝐴 denotes the tile size of the atten-
tion module. This tiling strategy partitions the larger weight matrices
into sub-matrices, thereby facilitating efficient parallelization. The
interplay between the number of heads, tiling parameters, and the
4
HLS array partitioning directives determines how these arrays are
mapped onto multiple two-port BRAMs. Since BRAM ports are limited,
careful partitioning and scheduling of data transfers ensure that all
operands required concurrently by the DSP units are accessible without
contention. The intermediate 𝑄, 𝐾, and 𝑉 matrices, each of size
(

𝑆𝐿 × 𝑑𝑚𝑜𝑑𝑒𝑙
ℎ

)

 where 𝑆𝐿 denotes the sequence length, are buffered
locally to support subsequent stages of computation.

4.1.1. QKVPM module
The 𝑄𝐾𝑉 𝑃𝑀 module is responsible for generating the query, key,

and value matrices. It incorporates dedicated BRAMs for the weights
(𝑊𝑄, 𝑊𝐾 , 𝑊𝑉) and for the input activations (𝑋𝑖), which provide
parallel data access to the DSP units within the processing element (PE)
array. To accommodate on-chip memory constraints, the weight and
input arrays are divided into subarrays using a tiling strategy, ensuring
that the data can be efficiently mapped onto BRAMs or LUTRAMs. The
number of times the 𝑄𝐾𝑉 𝑃𝑀 module is invoked is determined by the
tiling factor, resulting in a total of 𝑑𝑚𝑜𝑑𝑒𝑙

𝑇𝑆𝑀𝐻𝐴
 iterations. At each iteration,

the buffers for 𝑊𝑄, 𝑊𝐾 , 𝑊𝑉 , and 𝑋𝑖 are populated with distinct tiles
of data, after which computation is initiated within the PEs.

During these operations, the corresponding bias terms for the 𝑄,
𝐾, and 𝑉 matrices are fetched from off-chip memory into registers in
parallel with the primary computations of the 𝑄𝐾𝑉 𝑃𝑀 module. These
biases are subsequently integrated into the generated matrices, thereby
completing the linear transformations. The computational flow of this
module is summarized in Algorithm 9 of Appendix, where pipelining
of the outer loop facilitates full unrolling of the innermost loop. This
design yields an array of 𝑑𝑚𝑜𝑑𝑒𝑙

𝑇𝑆𝑀𝐻𝐴
 PEs, thereby maximizing throughput

while maintaining an efficient mapping of resources.

4.1.2. QKPM module
The 𝑄𝐾𝑃𝑀 module carries out the matrix–matrix multiplication

between the 𝑄 and 𝐾 matrices. Since these matrices are relatively
small in dimension, tiling is not required. The computational flow
is summarized in Algorithm 11 of Appendix, where full unrolling of
the innermost loop produces 𝑑𝑚𝑜𝑑𝑒𝑙ℎ processing elements (PEs). Within
this module, the 𝑄 and 𝐾 matrices are buffered to enable parallel
access by the DSP units. In addition to the multiplication operations,
the division specified in Eq. (1) is also performed within this module
using LUT resources. To avoid excessive LUT utilization, the degree of
parallelism for this operation is deliberately constrained. The output
of this module is the intermediate attention weight matrix 𝑆, which
is stored in either BRAMs or registers depending on availability and
access requirements. These weights are subsequently passed to the non-
linear softmax function, implemented in HLS using LUTs and flip-flops,
to complete the attention score computation.

E. Kabir et al. Microprocessors and Microsystems 120 (2026) 105223
Fig. 3. Feedforward network module of ADAPTOR.
4.1.3. SVPM module
The normalized attention weight matrix (𝑆), obtained from the

softmax operation, is supplied to the 𝑆𝑉 𝑃𝑀 module, where it is com-
bined with the value (𝑉) matrix through matrix–matrix multiplication.
As described in Algorithm 12 of Appendix, the innermost loop is
fully unrolled, enabling 𝑆𝐿 processing elements to operate in parallel.
The resulting output, referred to as the attention score, represents a
weighted aggregation of the value vectors and constitutes the final
contribution of the attention mechanism to the subsequent layers.

4.2. Feedforward network module

The architecture developed to accelerate the feedforward network
(FFN) module is depicted in Fig. 3. Three distinct RTL modules
𝐹𝐹𝑁1𝑃𝑀 , 𝐹𝐹𝑁2𝑃𝑀 , and 𝐹𝐹𝑁3𝑃𝑀 are implemented to support vari-
ations of the FFN across different architectural configurations. They
are executed sequentially to respect the inherent data dependencies.
Each module begins processing only after the preceding module has
fully completed its computation. In high-level synthesis (HLS), these
modules are described as separate functions, each defined by input
and output arrays of different dimensions, which are subsequently
mapped onto BRAMs or LUTRAMs during synthesis. Since the computa-
tional workload differs across the modules, each function is optimized
independently, resulting in varying numbers of processing elements
depending on the unrolling factor applied to the innermost loop. The
weights of the FFN are stored in a two-dimensional array (𝑊𝑜) of
dimensions

(

𝑑𝑚𝑜𝑑𝑒𝑙
𝑇𝑆𝐹𝐹𝑁

× 4×𝑑𝑚𝑜𝑑𝑒𝑙
𝑇𝑆𝐹𝐹𝑁

)

, where 𝑇𝑆𝐹𝐹𝑁 denotes the tile size in
FFN. This tiling strategy partitions the weight matrices into smaller
blocks, facilitating parallel access and efficient memory utilization.
Among the three RTL modules, both 𝐹𝐹𝑁1𝑃𝑀 and 𝐹𝐹𝑁3𝑃𝑀 are
followed by layer normalization (LN), ensuring stabilized activations
before passing results to subsequent stages.
5
4.2.1. 𝐹𝐹𝑁1PM module
The 𝐹𝐹𝑁1𝑃𝑀 module performs the initial linear transformation

on the attention scores, serving as the first stage of the feedforward
network. To accommodate on-chip memory constraints, the arrays used
by the processing elements (PEs) are tiled along both dimensions. Con-
sequently, the module is invoked 𝑇𝑆𝐹𝐹𝑁 × 𝑇𝑆𝐹𝐹𝑁 times to complete
the transformation. As outlined in Algorithm 14 of Appendix, pipelining
of the second loop enables full unrolling of the innermost loop (line
7), producing 𝑇𝑆𝐹𝐹𝑁 PEs in total. This corresponds to 𝑑𝑚𝑜𝑑𝑒𝑙

No. of Tiles_𝐹𝐹𝑁
parallel computational units.

4.2.2. 𝐹𝐹𝑁2PM module
Building upon the normalized outputs of 𝐹𝐹𝑁1𝑃𝑀 , the 𝐹𝐹𝑁2𝑃𝑀

module performs the second linear transformation, expanding the in-
termediate representation. Similar to 𝐹𝐹𝑁1𝑃𝑀 , arrays are tiled along
both dimensions, though this module requires 4 × 𝑇𝑆𝐹𝐹𝑁 × 𝑇𝑆𝐹𝐹𝑁
accesses due to the increased dimensionality of the operation. The
computational flow is summarized in Algorithm 15 of Appendix, where
pipelining again enables full unrolling of the innermost loop (line 7).
This results in 𝑇𝑆𝐹𝐹𝑁 PEs, corresponding to 𝑑𝑚𝑜𝑑𝑒𝑙

No. of Tiles_𝐹𝐹𝑁 units of
parallelism, consistent with the structural design of the first module.

4.2.3. 𝐹𝐹𝑁3PM module
The 𝐹𝐹𝑁3𝑃𝑀 module applies the final linear transformation to the

normalized outputs of 𝐹𝐹𝑁2𝑃𝑀 , projecting them back to the original
model dimension. As with the preceding modules, arrays are tiled along
both dimensions, requiring 4 × 𝑇𝑆𝐹𝐹𝑁 × 𝑇𝑆𝐹𝐹𝑁 iterations to complete
the computation. Algorithm 10 of Appendix describes the workflow,
where pipelining and full loop unrolling (line 7) yield 4 × 𝑇𝑆𝐹𝐹𝑁 PEs.
This corresponds to 4×𝑑𝑚𝑜𝑑𝑒𝑙

No. of Tiles_𝐹𝐹𝑁 , reflecting the higher dimensionality
of this stage.

E. Kabir et al. Microprocessors and Microsystems 120 (2026) 105223
4.3. Load weights unit

Three dedicated Load_Weights units are employed to manage the
transfer of parameters from external memory to on-chip buffers. The
first unit supplies weights to the weight memories of the attention
heads (Fig. 2), while the second serves the feedforward network
(Fig. 3). A third unit is responsible for loading the weights associated
with the layer normalization modules. This separation ensures that
weight data can be delivered efficiently to each functional block in
accordance with its computational demands. For the attention module,
weights are represented in HLS as two-dimensional arrays of dimension
(

𝑑𝑚𝑜𝑑𝑒𝑙
ℎ × 𝑇𝑆𝑀𝐻𝐴

)

, where 𝑇𝑆𝑀𝐻𝐴 denotes the tile size applied to parti-
tion the larger matrices into sub-matrices. After synthesis, these arrays
are mapped onto dual-port BRAMs or LUTRAMs, and are populated
iteratively with tile-specific data transferred from external memory
at each iteration. In the feedforward network, the weight arrays are
defined with dimensions (𝑇𝑆𝐹𝐹𝑁 × 4 × 𝑇𝑆𝐹𝐹𝑁

)

. Here, 𝑇𝑆𝐹𝐹𝑁 corre-
sponds to the tiling parameter, defined as Embedding DimensionNo. of Tiles_𝐹𝐹𝑁 , while 4 ×
𝑇𝑆𝐹𝐹𝑁 equals Hidden DimensionNo. of Tiles_𝐹𝐹𝑁 . These weights are therefore partitioned
along both row and column dimensions, requiring iterative loading
across tiles. As in the attention module, they are synthesized as dual-
port BRAMs or LUTRAMs. The weights for layer normalization are
comparatively simple, represented as one-dimensional arrays of length
𝑑𝑚𝑜𝑑𝑒𝑙. As no tiling is required in this case, the entire weight set is
transferred in a single step and subsequently synthesized into dual-port
BRAMs or LUTRAMs. The complete procedure for weight loading is
outlined in Algorithm 1 of Appendix.

4.4. Load inputs unit

Input data are transferred from external memory into dedicated in-
put BRAMs, which are implemented in HLS as dual-port,
two-dimensional arrays of size (𝑆𝐿 × 𝑑𝑚𝑜𝑑𝑒𝑙

)

, where 𝑆𝐿 denotes the
sequence length. These BRAMs are reused across encoder and decoder
layers, allowing each layer to access the outputs of the previous layer
as inputs for subsequent computations. Three distinct Load_inputs units
manage the data movement to accommodate differences in compu-
tation, tiling, and array dimensions across modules. The first unit
populates the intermediate input BRAMs of each attention head (Fig.
2) using Algorithm 2 of Appendix. These BRAMs are represented as
two-dimensional arrays of size (𝑆𝐿 × 𝑇𝑆𝑀𝐻𝐴

)

, where tiling is applied
along the column dimension. Consequently, data are loaded iteratively
𝑑𝑚𝑜𝑑𝑒𝑙

𝑇𝑆𝑀𝐻𝐴
 times to supply all columns to the processing elements.

The second unit transfers data to the Score BRAMs of the 𝐹𝐹𝑁1𝑃𝑀
module (Fig. 3), defined as two-dimensional arrays of size
(

𝑆𝐿 × 𝑇𝑆𝐹𝐹𝑁
)

, using Algorithm 3. The third unit supplies data to the
LN1 buffers of the 𝐹𝐹𝑁2𝑃𝑀 module (Fig. 3), represented as arrays
of size (𝑆𝐿 × 4 × 𝑇𝑆𝐹𝐹𝑁

) and loaded according to Algorithm 4 of
Appendix. The separation of load units ensures efficient handling of the
differing computational demands, tile sizes, and array shapes across the
attention and feedforward network modules.

4.5. Load biases unit

Bias parameters are stored in registers due to their relatively small
size, enabling low-latency access during computation. Three dedicated
Load_bias units manage the transfer of biases from external memory
to the corresponding registers. The first unit supplies biases to the
registers of each attention head in accordance with Algorithm 5. The
same procedure, as described in Algorithm 6 of Appendix, is used to
load biases for the feedforward network and the layer normalization
modules. In HLS, biases are represented as one-dimensional arrays,
and the application of a complete array partition pragma maps these
arrays directly to registers. Since tiling is unnecessary for these small
vectors, each array is loaded in a single transfer, providing all bias
values simultaneously.
6
4.6. Activation unit

The activation functions employed within the transformer architec-
ture are implemented at this stage. Commonly used functions include
ReLU, GeLU, and softmax, each defined according to its mathematical
formulation. After synthesis, these functions are realized using LUTs
to support efficient hardware computation. While the implementations
of ReLU and GeLU are straightforward, the softmax function involves
more complex operations; therefore, only its implementation is detailed
in Algorithm 7 of Appendix.

4.7. Layer Normalization unit

The Layer Normalization (LN) unit computes the mean and variance
of the outputs from both the attention and feedforward network layers,
following Eq. (4). These statistics are then used to normalize the
outputs, which are subsequently scaled by learned weights and shifted
by biases in an element-wise manner. Notably, the outputs of 𝐹𝐹𝑁1𝑃𝑀
and 𝐹𝐹𝑁3𝑃𝑀 are processed through the LN unit prior to subsequent
stages, as illustrated in Fig. 3. The corresponding HLS implementation
is provided in Algorithm 8 of Appendix.

4.8. Bias add unit

Three dedicated Bias_add units are employed to incorporate biases
into the query (𝑄), key (𝐾), and value (𝑉) matrices, as well as into the
outputs of the three feedforward network modules. Separate units are
necessary because the corresponding HLS functions operate on arrays
of differing dimensions, producing outputs with distinct shapes. One
of the units associated with the feedforward networks additionally
integrates the ReLU activation function. The operations performed by
these units are detailed in Algorithms 16, 17, and 13 of Appendix.

5. System design and optimizations

The overall system design for deploying ADAPTOR across multiple
FPGA platforms is presented in Fig. 4. Experiments were conducted on
three representative devices: the VC707 (Virtex-7 xc7vx485tffg1761-
2), ZCU102 (Zynq UltraScale+ xczu9eg-ffvb1156-2-e MPSoC), and the
Alveo U55C (UltraScale+ xcu55c-fsvh2892-2L-e). While the VC707
and ZCU102 boards integrate on-board DDR3 DRAM, the Alveo U55C
employs high-bandwidth memory (HBM), offering significantly greater
throughput for memory-intensive workloads.

Design parameters such as the number of attention heads, embed-
ding dimension, hidden dimension, sequence length, and the number of
encoder and decoder layers can be reconfigured at runtime, up to their
maximum supported values, via a MicroBlaze softcore processor using
the AXI4-Lite interface. These parameters are stored in a set of registers
within ADAPTOR to specify the topology of the TNN during runtime
from the software. The registers are described in Table 1, along with
the corresponding parameters they store. The system architecture was
implemented using the Vivado 2022.1.2 design suite. The accelerator
itself is encapsulated in a custom IP block generated from high-level
synthesis (HLS) and integrated into the larger system. All toolflows
from Xilinx-AMD were executed on a host workstation equipped with
an Intel(R) Xeon(R) Gold 6130 CPU (2.10 GHz, 32 cores) and 192 GB of
RAM. Data movement between the accelerator and external memory is
managed through AXI4 master interfaces [41]. Depending on workload
demand, the accelerator fetches inputs and weights directly from off-
chip HBM or DRAM when instructed by the accelerator controller.
Control signals are delivered from the processor to the accelerator via
an AXI-Lite slave interface. Additionally, the processor facilitates data
transfers between external memory and on-chip BRAMs, while also
issuing configuration and synchronization signals to the accelerator.

The boards were connected to the host system through either a USB–
JTAG interface or PCIe 3.0 × 4 link. Although the system includes a

E. Kabir et al. Microprocessors and Microsystems 120 (2026) 105223
Fig. 4. Complete system design.

Table 1
Configuration registers of the ADAPTOR.
 Register name Description/Stored parameter
 Sequence Sequence length of inputs
 Heads Number of attention heads
 Layers_enc Number of encoders
 Layers_dec Number of decoders
 Embeddings Dimension of the embedding layer
 Hidden Dimension of the intermediate layers
 Out Number of outputs

DMA/Bridge Subsystem for PCIe IP [42], PCIe-based communication
was not utilized in this work. Performance measurements were con-
ducted using the AXI-TIMER [43], which recorded end-to-end latency
between the initiation and completion signals of the custom IP. Final
results were communicated back to the host via the UARTLite inter-
face [44], with outputs displayed on the terminal connected through
the JTAG interface [45].

The software interface illustrated in Fig. 5 is designed to communi-
cate the programmable parameters mentioned above to the accelerator.
To support this, TNN models are trained using the PyTorch framework,
with the trained models stored as ‘.pth’ files. In our experiments, we
utilized publicly available pre-trained models from Hugging Face [46],
trained on a Tesla V100 GPU. The software stack processes these files
through a Python interpreter, which extracts the relevant parameter
values. While these values vary across applications, the accelerator
itself does not require re-synthesis for each case. Instead, only a subset
of variables within the software must be reassigned to reflect the new
configuration. The software, implemented in C++ using the Xilinx SDK
and executed on the embedded processor, is summarized in Algorithm
18 of Appendix. Based on the extracted parameters, the processor
generates the necessary instructions and control signals to configure the
accelerator, thereby enabling selective activation of different hardware
components.

The software control overhead varies depending on the execution
environment and task complexity. Loading a PyTorch model in Jupyter
Notebook typically takes less than 2 s for small models and 5 to 20 s
for large transformer models. Running a Python script, which primarily
generates the C code executed in Vitis IDE, generally completes within
a few seconds, depending on script complexity and hardware resources.
In Vitis IDE, compiling and running the generated C program on
the ARM processor (with the bitstream already programmed) requires
about 5 to 30 s for compilation and 1 to 5 s to download and execute
the ELF file; rerunning a prebuilt ELF takes less than 2 s before exe-
cution begins. The FPGA hardware kernels, already synthesized in the
bitstream, execute directly with negligible control overhead, and their
performance has been reported and compared in the results section.
7
Transformer models are inherently large, leading to significant de-
mands on both on-chip memory and computational resources. To ad-
dress these challenges, we adopt a tiling strategy that enables efficient
utilization of available hardware resources while maintaining manage-
able compilation times. Tiling facilitates the effective partitioning of
arrays by the HLS tool, which in turn allows loop pipelining and un-
rolling to reduce computational latency. The proposed tiling approach
for multi-head attention (MHA) is illustrated in Fig. 6(a).

In the attention module, the weight matrices are partitioned into
tiles, enabling partial data loading from off-chip memory into BRAMs.
Tiling is applied along the second dimension (the columns of the
matrix), since the first dimension (the rows) is already reduced by
the number of attention heads. Consequently, the weight matrices are
loaded 𝑑𝑚𝑜𝑑𝑒𝑙

𝑇𝑆𝑀𝐻𝐴
 times. Similarly, the input buffers for each attention

head are defined as two-dimensional arrays of size (𝑆𝐿 × 𝑇𝑆𝑀𝐻𝐴),
and tiling is applied along the column dimension. The buffers are
replenished 𝑑𝑚𝑜𝑑𝑒𝑙

𝑇𝑆𝑀𝐻𝐴
 times, with one tile being processed at each iter-

ation. During each iteration, the PEs compute results on the loaded
tile, store intermediate results in buffers, and accumulate these with
the outputs from previous iterations. The final output is thus obtained
as the cumulative sum across all tiles. The feedforward networks (FFNs)
following the attention layer are the most computationally demanding
components of the encoder. Their weight matrices are represented
as two-dimensional arrays of size (𝑇𝑆𝐹𝐹𝑁) × (4 × 𝑇𝑆𝐹𝐹𝑁) and are
tiled along both dimensions (rows and columns). Iterative loading is
performed using two nested loops, one for each tiling dimension. As a
result, the first FFN module is reused (𝑑𝑚𝑜𝑑𝑒𝑙

𝑇𝑆𝐹𝐹𝑁
)2 times, since both loops

iterate 𝑑𝑚𝑜𝑑𝑒𝑙
𝑇𝑆𝐹𝐹𝑁

 times. The second and third FFN modules are reused
(4×(𝑑𝑚𝑜𝑑𝑒𝑙)

2

(𝑇𝑆𝐹𝐹𝑁)2) times due to their larger dimensions. The tiling strategy for
the FFN is summarized in Fig. 6(b), where intermediate results are first
accumulated along the columns and subsequently along the rows to
produce the final outputs across all tiles.

The tile size must be fixed before synthesis, since changing it would
require re-synthesizing the hardware. Fig. 7(a) and (b) show how differ-
ent choices of 𝑇𝑆𝑀𝐻𝐴 and 𝑇𝑆𝐹𝐹𝑁 affect both system frequency (MHz)
and latency (normalized to the minimum value). In these experiments,
the number of tiles in MHA (𝑑𝑚𝑜𝑑𝑒𝑙

𝑇𝑆𝑀𝐻𝐴
) was varied between 6 and 48,

while the FFN tile count (𝑑𝑚𝑜𝑑𝑒𝑙
𝑇𝑆𝐹𝐹𝑁

) ranged from 2 to 6. The results
highlight that using 24 tiles for MHA together with 6 tiles for FFN yields
the best overall performance, reaching the highest frequency of 200
MHz and the lowest latency.

6. Theoretical model

The primary parameters influencing both resource utilization and
performance in ADAPTOR include the tile size, or equivalently the
number of tiles, in the attention module and the feedforward network,
as well as the number of attention heads, sequence length, embedding
dimension, hidden dimension, and the number of encoder and decoder
layers, assuming a fixed bit width. The utilization of DSPs is largely
determined by the degree of parallelism in multiplication operations,
with the highest demand observed in the 𝑄𝐾𝑉 𝑃𝑀 , 𝑄𝐾𝑃𝑀 , 𝑆𝑉 𝑃𝑀 , and
𝐹𝐹𝑁 modules. In contrast, BRAM utilization depends on the number
of arrays required for intermediate data storage, the synthesis modes
assigned to these memories, and the partitioning strategies specified
through HLS pragmas.

To guide design-space exploration, we developed an analytical
model that captures the relationship between these architectural
parameters and the resulting latency and resource consumption.
This model enables designers to predict performance and utilization
outcomes, thereby facilitating informed parameter selection prior to
full hardware synthesis.

E. Kabir et al. Microprocessors and Microsystems 120 (2026) 105223
Fig. 5. Programming procedures with software.
6.1. Model for DSP utilization

Eq. (8) gives an estimate for DSP consumption. It was derived from
all the loops described in the functions that generate RTL modules for
𝑄𝐾𝑉 𝑃𝑀 , 𝑄𝐾𝑃𝑀 , 𝑆𝑉 𝑃𝑀 , and 𝐹𝐹𝑁 .

𝑁𝑜. 𝑜𝑓 𝐷𝑆𝑃𝑠 = 3 × ℎ ×
𝑑𝑚𝑜𝑑𝑒𝑙

𝑇 𝑖𝑙𝑒 𝑛𝑜. 𝑀𝐻𝐴
+ ℎ ×

(

𝑑𝑚𝑜𝑑𝑒𝑙
ℎ

+ 𝑆𝐿
)

+ 6 ×
𝑑𝑚𝑜𝑑𝑒𝑙

𝑇 𝑖𝑙𝑒 𝑛𝑜. 𝐹𝐹𝑁
+ 𝑑𝑚𝑜𝑑𝑒𝑙

(8)

The design follows a modular approach, with each module imple-
mented as a function containing loops. The latency of a module depends
on the time taken by its loops, which is affected by loop pipelining
and unrolling directives. For nested loops, the second-to-last loop is
pipelined, while the innermost loop is fully unrolled. The outermost
loop is not modified with pragmas to avoid overly complex pipeline
depth and high resource usage. The latency of a pipelined loop (PLL)
can be calculated using Eq. (9). If a pipelined loop is inside another
loop, the total latency (TL) is given by Eq. (10). Here, the loop trip
count (TC) is the number of iterations, and the initiation interval (II)
is the time between the start of two consecutive iterations. Pipeline
depth is the time needed to complete one iteration, depending on the
sequential and parallel operations within it. Different modules can have
different pipeline depths (PD). Latency is measured in clock cycles (cc).

𝑃 𝑖𝑝𝑒𝑙𝑖𝑛𝑒𝑑_𝐿𝑜𝑜𝑝_𝐿𝑎𝑡𝑒𝑛𝑐𝑦 = 𝑃 𝑖𝑝𝑒𝑙𝑖𝑛𝑒_𝐷𝑒𝑝𝑡ℎ + 𝐼𝑛𝑖𝑡𝑖𝑎𝑡𝑖𝑜𝑛_𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙
× (𝑇 𝑟𝑖𝑝_𝐶𝑜𝑢𝑛𝑡 − 1)

(9)

𝑇 𝑜𝑡𝑎𝑙_𝐿𝑎𝑡𝑒𝑛𝑐𝑦 = 𝑃 𝑖𝑝𝑒𝑙𝑖𝑛𝑒𝑑_𝐿𝑜𝑜𝑝_𝐿𝑎𝑡𝑒𝑛𝑐𝑦 × 𝑂𝑢𝑡𝑒𝑟_𝐿𝑜𝑜𝑝_𝑇 𝑟𝑖𝑝_𝐶𝑜𝑢𝑛𝑡 (10)

Eqs. (9) & (10) are generalized equations for measuring latency, the
variables of which differ for different modules of ADAPTOR as shown
in the following equations (see [47]).

6.2. Latency model for attention module

𝐿𝐼 = [(𝑑𝑚𝑜𝑑𝑒𝑙 − 1) × 1 + 𝑃𝐷_𝐿] × 𝑆𝐿 (11)

𝐿𝐵𝐴 = (
𝑑𝑚𝑜𝑑𝑒𝑙
ℎ

− 1) × 1 + 𝑃𝐷_𝐿 (12)

𝐿𝑊𝐴 = [(
𝑑𝑚𝑜𝑑𝑒𝑙
ℎ

− 1) × 1 + 𝑃𝐷_𝐿] × 𝑆𝐿 (13)

𝐿𝐼𝐴 = [(𝑑_𝑚𝑜𝑑𝑒𝑙
𝑇 𝑖𝑙𝑒 𝑛𝑜. 𝑀𝐻𝐴

− 1) × 1 + 𝑃𝐷_𝐿] × 𝑆𝐿 (14)

where, PD_L is 𝑃 𝑖𝑝𝑒𝑙𝑖𝑛𝑒_𝐷𝑒𝑝𝑡ℎ_𝐿𝑜𝑎𝑑 that includes the time required
to establish communication with HBM using AXI master interface
(7 cc), read address location (1 cc), load (1 cc), and store (1 cc)
data from and to that address, and convert floating point data to
fixed point (3 cc) for tasks such as loading all inputs (LI), as well
8
as loading inputs (LIA), biases (LBA) and weights (LWA) for each
attention head. 𝑃 𝑖𝑝𝑒𝑙𝑖𝑛𝑒_𝐷𝑒𝑝𝑡ℎ_𝑀𝐻𝐴 (PD_MHA) equals (𝑑𝑚𝑜𝑑𝑒𝑙

𝑇𝑆𝑀𝐻𝐴
)

plus the time required to load, multiply (2 cc), add (1 cc), and store
for computing self-attention (SA) in 𝑄𝐾𝑉𝑃𝑀 module (Eq. (15)).
𝑃 𝑖𝑝𝑒𝑙𝑖𝑛𝑒_𝐷𝑒𝑝𝑡ℎ_𝐵𝑖𝑎𝑠_𝐴𝑑𝑑 (PD_BA) includes latency associated with
loading, adding, and storing operations in bias addition (BA) tasks (Eq.
(16)). 𝑃 𝑖𝑝𝑒𝑙𝑖𝑛𝑒_𝐷𝑒𝑝𝑡ℎ_𝑆𝑐𝑜𝑟𝑒 (PD_S) equals (𝑑𝑚𝑜𝑑𝑒𝑙ℎ), the time required to
compute the score (S) in 𝑄𝐾𝑃𝑀 module (Eq. (17)). 𝑃 𝑖𝑝𝑒𝑙𝑖𝑛𝑒_𝐷𝑒𝑝𝑡ℎ_𝑆𝑉
(PD_SV) equals 𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒_𝐿𝑒𝑛𝑔𝑡ℎ in the computation of SV within the
𝑆𝑉𝑃𝑀 module (Eq. (18)). Eq. (19) estimates time for softmax (SM)
calculation, which includes exponentiation (4 cc) and division (14 cc).
It starts after the 𝑄𝐾𝑃𝑀 module is finished.

𝑆𝐴 = [(𝑑_𝑚𝑜𝑑𝑒𝑙
ℎ

− 1) × 1 + 𝑃𝐷_𝑀𝐻𝐴] × 𝑆𝐿 (15)

𝐵𝐴 = [(𝑑_𝑚𝑜𝑑𝑒𝑙
ℎ

− 1) × 1 + 𝑃𝐷_𝐵𝐴] × 𝑆𝐿 (16)

𝑆𝑐𝑜𝑟𝑒(𝑆) = [(𝑆𝐿 − 1) × 1 + 𝑃𝐷_𝑆] × 𝑆𝐿 (17)

𝑆𝑉 = [(𝑑_𝑚𝑜𝑑𝑒𝑙
ℎ

− 1) × 1 + 𝑃𝐷_𝑆𝑉] × 𝑆𝐿 (18)

𝑆𝑀 =[(𝑆𝐿 − 1) × 1 + 𝐿𝑜𝑎𝑑 + 𝑆𝑡𝑜𝑟𝑒] × 𝑆𝐿 + [(𝑆𝐿 − 1) × 1 + 𝐿𝑜𝑎𝑑

+ 𝑆𝑡𝑜𝑟𝑒 + 𝑎𝑑𝑑 + 𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑡𝑖𝑜𝑛] × 𝑆𝐿 + [(𝑆𝐿 − 1) × 2

+ 𝐿𝑜𝑎𝑑 + 𝑆𝑡𝑜𝑟𝑒 + 𝑑𝑖𝑣𝑖𝑑𝑒] × 𝑆𝐿

(19)

6.3. Latency model for FFN1 module

𝐿𝐼𝐹1 = [(𝑑_𝑚𝑜𝑑𝑒𝑙
𝑇 𝑖𝑙𝑒 𝑛𝑜. 𝐹𝐹𝑁

− 1) × 1 + 𝑃𝐷_𝐿𝐹𝐹𝑁1] × 𝑆𝐿 (20)

𝐿𝑊 𝐹1 = [(𝑑_𝑚𝑜𝑑𝑒𝑙
𝑇 𝑖𝑙𝑒 𝑛𝑜. 𝐹𝐹𝑁

− 1) × 1 + 𝑃𝐷_𝐿] × 𝑑_𝑚𝑜𝑑𝑒𝑙
𝑇 𝑖𝑙𝑒 𝑛𝑜. 𝐹𝐹𝑁 (21)

𝐿𝐵𝐹1 = (𝑑_𝑚𝑜𝑑𝑒𝑙 − 1) × 1 + 𝑃𝐷_𝐿 (22)

𝐹𝐹𝑁1 = [(𝑑_𝑚𝑜𝑑𝑒𝑙
𝑇 𝑖𝑙𝑒 𝑛𝑜. 𝐹𝐹𝑁

− 1) × 1 + 𝑃𝐷_𝐹𝐹𝑁1] × 𝑆𝐿 (23)

𝐵𝐴𝐹1 = [(𝑑_𝑚𝑜𝑑𝑒𝑙 − 1) × 1 + 𝑃𝐷_𝐵𝐴] × 𝑆𝐿 (24)

where, 𝐿𝑜𝑎𝑑_𝐼𝑛𝑝𝑢𝑡𝑠_𝐹𝐹𝑁1 (LIF1) unit loads tiled outputs from
the attention module into the input buffer of the FFN1 module.
𝐿𝑜𝑎𝑑_𝑊 𝑒𝑖𝑔ℎ𝑡𝑠_𝐹𝐹𝑁1 (LWF1) unit loads partial weights from off-chip
memory to the weight buffer of the FFN1 module according to
𝑇𝑆𝐹𝐹𝑁 . 𝑃 𝑖𝑝𝑒𝑙𝑖𝑛𝑒_𝐷𝑒𝑝𝑡ℎ_𝐹𝐹𝑁1 (PD_FFN1) equals (𝑑𝑚𝑜𝑑𝑒𝑙

𝑇 𝑖𝑙𝑒 𝑛𝑜. 𝐹𝐹𝑁) plus
the time required to perform load, add, and store operations in the
FFN1 module. 𝑃 𝑖𝑝𝑒𝑙𝑖𝑛𝑒_𝐷𝑒𝑝𝑡ℎ_𝐿𝑜𝑎𝑑_𝐹𝐹𝑁1 (PD_LFFN1) is the time
required to load, add, and store in the loading units. FFN1 is the
computation time of 𝐹𝐹𝑁1 module. 𝐿𝑜𝑎𝑑_𝐵𝑖𝑎𝑠𝑒𝑠_𝐹𝐹𝑁 (LBF1)
𝑃𝑀

E. Kabir et al. Microprocessors and Microsystems 120 (2026) 105223
loads biases to registers from off-chip memory while 𝐹𝐹𝑁1𝑃𝑀
operates. 𝐵𝑖𝑎𝑠_𝐴𝑑𝑑𝑖𝑡𝑖𝑜𝑛_𝐹𝐹𝑁1 (BAF1) adds biases to the outputs of
𝐹𝐹𝑁1𝑃𝑀 .

6.4. Model for BRAM utilization

Eq. (25) gives an estimate for BRAM consumption. It was derived
from all the arrays declared in HLS with true dual-port BRAM pragmas.

𝑁𝑜. 𝑜𝑓 𝐵𝑅𝐴𝑀𝑠 =
10 × 𝑆𝐿 × 𝑑𝑚𝑜𝑑𝑒𝑙 × 𝐵𝑖𝑡_𝑤
𝐵𝑅𝐴𝑀_𝑤 × 𝐵𝑅𝐴𝑀_𝑑 + 𝑆𝐿

× 𝑚𝑎𝑥
(

0.5, 𝑆𝐿 × 𝐵𝑖𝑡_𝑤
𝐵𝑅𝐴𝑀_𝑤 × 𝐵𝑅𝐴𝑀_𝑑

)

+ 𝑚𝑎𝑥
(

0.5,
𝑆𝐿 × 𝑑𝑚𝑜𝑑𝑒𝑙 × 𝐵𝑖𝑡_𝑤

𝐵𝑅𝐴𝑀_𝑤 × 𝐵𝑅𝐴𝑀_𝑑

)

+
ℎ × 𝑆𝐿 × 𝑑𝑚𝑜𝑑𝑒𝑙 × 𝐵𝑖𝑡_𝑤
𝐵𝑅𝐴𝑀_𝑤 × 𝐵𝑅𝐴𝑀_𝑑

+ 𝑚𝑎𝑥
(

0.5,
𝑑𝑚𝑜𝑑𝑒𝑙 × 𝐵𝑖𝑡_𝑤

𝐵𝑅𝐴𝑀_𝑤 × 𝐵𝑅𝐴𝑀_𝑑

)

+ 𝑆𝐿 × 𝑇 𝑖𝑙𝑒 𝑛𝑜. 𝑀𝐻𝐴 × 𝐵𝑖𝑡_𝑤
𝐵𝑅𝐴𝑀_𝑤 × 𝐵𝑅𝐴𝑀_𝑑

+ 𝑇 𝑖𝑙𝑒 𝑛𝑜. 𝑀𝐻𝐴 × ℎ × 𝑚𝑎𝑥

×
(

0.5, 𝑆𝐿 × 𝐵𝑖𝑡_𝑤
𝐵𝑅𝐴𝑀_𝑤 × 𝐵𝑅𝐴𝑀_𝑑

)

+
8 × 𝑑2𝑚𝑜𝑑𝑒𝑙 × 𝐵𝑖𝑡_𝑤

𝑇 𝑖𝑙𝑒 𝑛𝑜. 𝐹𝐹𝑁 × 𝐵𝑅𝐴𝑀_𝑤 × 𝐵𝑅𝐴𝑀_𝑑
+ 𝑇 𝑖𝑙𝑒 𝑛𝑜. 𝑀𝐻𝐴 × ℎ

× 𝑚𝑎𝑥
(

0.5,
𝑑𝑚𝑜𝑑𝑒𝑙 × 𝐵𝑖𝑡_𝑤

𝐵𝑅𝐴𝑀_𝑤 × 𝐵𝑅𝐴𝑀_𝑑

)

+
𝑑𝑚𝑜𝑑𝑒𝑙

𝑇 𝑖𝑙𝑒 𝑛𝑜. 𝐹𝐹𝑁
× 𝑚𝑎𝑥 (0.5,

𝑆𝐿 × 𝐵𝑖𝑡_𝑤
𝐵𝑅𝐴𝑀_𝑤 × 𝐵𝑅𝐴𝑀_𝑑

)

+ 4 × 𝑑𝑚𝑜𝑑𝑒𝑙

× 𝑚𝑎𝑥
(

0.5, 𝑆𝐿 × 𝐵𝑖𝑡_𝑤
𝐵𝑅𝐴𝑀_𝑤 × 𝐵𝑅𝐴𝑀_𝑑

)

(25)

Here, BRAM_d is the depth of BRAMs, which indicates the number of
storage locations (or entries) within a BRAM block. Each location holds
a fixed number of bits, defined by the width of BRAM (BRAM_w), and
both parameters can vary depending on the platform. Bit_w is the bit
precision of the data being stored. BRAM_w = 36 and BRAM_d = 1024
for most FPGAs. Each term in the equation corresponds to an array
declared in the HLS code. For instance, the first term represents the
number of BRAMs synthesized for 10 arrays of size SL× d𝑚𝑜𝑑𝑒𝑙. The max
function in the second term accounts for cases where an array may not
fully utilize the 18 kb width of a synthesized BRAM, but at least one
18 kb BRAM will still be allocated. The factor 0.5 is used because the
total BRAM count is calculated based on 36 kb BRAMs.

6.5. Latency model for LN module

𝐿𝑊𝑁 = (𝑑_𝑚𝑜𝑑𝑒𝑙 − 1) × 1 + 𝑃𝐷_𝐿 (26)

𝐿𝐵𝑁 = (𝑑_𝑚𝑜𝑑𝑒𝑙 − 1) × 1 + 𝑃𝐷_𝐿 (27)

𝑅𝐶 = [(𝑑_𝑚𝑜𝑑𝑒𝑙 − 1) × 1 + 𝑃𝐷_𝐵𝐴] × 𝑆𝐿 (28)

𝐿𝑎𝑦𝑒𝑟 𝑁𝑜𝑟𝑚 =[(𝑑_𝑚𝑜𝑑𝑒𝑙 − 1) × 2 + 𝐿𝑜𝑎𝑑 + 𝐴𝑑𝑑 + 𝑆𝑡𝑜𝑟𝑒]

× 𝑆𝐿 + [(𝑑_𝑚𝑜𝑑𝑒𝑙 − 1) × 2 + 𝐿𝑜𝑎𝑑 + 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑦

+ 𝑎𝑑𝑑 + 𝑠𝑡𝑜𝑟𝑒] × 𝑆𝐿 + [(𝑑_𝑚𝑜𝑑𝑒𝑙 − 1) × 1 + 𝐿𝑜𝑎𝑑

+ 𝑆𝑞𝑢𝑎𝑟𝑒 + 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑦 + 𝑎𝑑𝑑 + 𝑆𝑡𝑜𝑟𝑒

+ 𝑑𝑖𝑣𝑖𝑑𝑒 + 𝑓𝑙𝑜𝑎𝑡_𝑡𝑜_𝑓𝑖𝑥𝑒𝑑_𝑐𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛] × 𝑆𝐿

+ [(𝑑_𝑚𝑜𝑑𝑒𝑙 − 1) × 1 + 𝐿𝑜𝑎𝑑 + 𝑎𝑑𝑑

(29)
+ 𝑆𝑡𝑜𝑟𝑒] × 𝑆𝐿

9
where, 𝐿𝑜𝑎𝑑_𝑊 𝑒𝑖𝑔ℎ𝑡𝑠_𝐿𝑁 (LWN) unit loads weights from off-chip
memory to the weight buffer of the LN module. 𝐿𝑜𝑎𝑑_𝐵𝑖𝑎𝑠𝑒𝑠_𝐿𝑁
(LBN) loads biases to registers from off-chip memory. RC
represents the operations of the residual connection in LN module.
𝑓𝑙𝑜𝑎𝑡_𝑡𝑜_𝑓𝑖𝑥𝑒𝑑_𝑐𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛 in the LN module takes 3 cc.

6.6. Latency model for FFN2 module

𝐿𝐼𝐹2 = [(
𝑑𝑚𝑜𝑑𝑒𝑙

𝑇 𝑖𝑙𝑒 𝑛𝑜. 𝐹𝐹𝑁
− 1) × 1 + 𝑃𝐷_𝐿𝐹𝐹𝑁2] × 𝑆𝐿 (30)

𝐿𝑊 𝐹2 = [(
𝑑𝑚𝑜𝑑𝑒𝑙

𝑇 𝑖𝑙𝑒 𝑛𝑜. 𝐹𝐹𝑁
− 1) × 1 + 𝑃𝐷_𝐿] ×

𝑑𝑚𝑜𝑑𝑒𝑙
𝑇 𝑖𝑙𝑒 𝑛𝑜. 𝐹𝐹𝑁 (31)

𝐿𝐵𝐹2 = (𝑑𝑚𝑜𝑑𝑒𝑙 − 1) × 1 + 𝑃𝐷_𝐿 (32)

𝐹𝐹𝑁2 = [(
4 × 𝑑𝑚𝑜𝑑𝑒𝑙

𝑇 𝑖𝑙𝑒 𝑛𝑜. 𝐹𝐹𝑁
− 1) × 1 + 𝑃𝐷_𝐹𝐹𝑁2] × 𝑆𝐿 (33)

𝐵𝐴𝐹2 = [(4 × 𝑑𝑚𝑜𝑑𝑒𝑙 − 1) × 1 + 𝑃𝐷_𝐵𝐴] × 𝑆𝐿 (34)

where, 𝐿𝑜𝑎𝑑_𝐼𝑛𝑝𝑢𝑡𝑠_𝐹𝐹𝑁2 (LIF2) unit loads tiled outputs from
the FFN1 module into the input buffer of the FFN2 module.
𝐿𝑜𝑎𝑑_𝑊 𝑒𝑖𝑔ℎ𝑡𝑠_𝐹𝐹𝑁2 (LWF2) unit loads partial weights from off-chip
memory to the weight buffer of the FFN2 module according to 𝑇𝑆𝐹𝐹𝑁 .
𝑃 𝑖𝑝𝑒𝑙𝑖𝑛𝑒_𝐷𝑒𝑝𝑡ℎ_𝐹𝐹𝑁2 equals (𝑑𝑚𝑜𝑑𝑒𝑙

𝑇 𝑖𝑙𝑒 𝑛𝑜. 𝐹𝐹𝑁) plus the time required
to perform load, add, and store operations in the FFN2 module.
𝑃 𝑖𝑝𝑒𝑙𝑖𝑛𝑒_𝐷𝑒𝑝𝑡ℎ_𝐿𝑜𝑎𝑑_𝐹𝐹𝑁2 (PD_LFFN2) is the time required to load,
add, and store in the loading units. FFN2 is the computation time of
𝐹𝐹𝑁2𝑃𝑀 module. 𝐿𝑜𝑎𝑑_𝐵𝑖𝑎𝑠𝑒𝑠_𝐹𝐹𝑁2 (LBF2) loads biases to registers
from off-chip memory while 𝐹𝐹𝑁2𝑃𝑀 operates. 𝐵𝑖𝑎𝑠_𝐴𝑑𝑑𝑖𝑡𝑖𝑜𝑛_𝐹𝐹𝑁2
(BAF2) adds biases to the outputs of 𝐹𝐹𝑁2𝑃𝑀 .

6.7. Latency model for FFN3 module

𝐿𝐼𝐹3 = [(
4 × 𝑑𝑚𝑜𝑑𝑒𝑙

𝑇 𝑖𝑙𝑒 𝑛𝑜. 𝐹𝐹𝑁
− 1) × 1 + 𝑃𝐷_𝐿𝐹𝐹𝑁3] × 𝑆𝐿 (35)

𝐿𝑊 𝐹3 = [(
4 × 𝑑𝑚𝑜𝑑𝑒𝑙

𝑇 𝑖𝑙𝑒 𝑛𝑜. 𝐹𝐹𝑁
− 1) × 1 + 𝑃𝐷_𝐿] ×

𝑑𝑚𝑜𝑑𝑒𝑙
𝑇 𝑖𝑙𝑒 𝑛𝑜. 𝐹𝐹𝑁 (36)

𝐿𝐵𝐹3 = (𝑑𝑚𝑜𝑑𝑒𝑙 − 1) × 1 + 𝑃𝐷_𝐿 (37)

𝐹𝐹𝑁3 = [(
𝑑𝑚𝑜𝑑𝑒𝑙

𝑇 𝑖𝑙𝑒 𝑛𝑜. 𝐹𝐹𝑁
− 1) × 1 + 𝑃𝐷_𝐹𝐹𝑁3] × 𝑆𝐿 (38)

𝐵𝐴𝐹3 = [(𝑑𝑚𝑜𝑑𝑒𝑙 − 1) × 1 + 𝑃𝐷_𝐵𝐴] × 𝑆𝐿 (39)

where, 𝐿𝑜𝑎𝑑_𝐼𝑛𝑝𝑢𝑡𝑠_𝐹𝐹𝑁3 (LIF3) unit loads tiled outputs from
the FFN2 module into the input buffer of the FFN3 module.
𝐿𝑜𝑎𝑑_𝑊 𝑒𝑖𝑔ℎ𝑡𝑠_𝐹𝐹𝑁3 (LWF3) unit loads partial weights from off-
chip memory to the weight buffer of the FFN3 module according
to 𝑇𝑆𝐹𝐹𝑁 . 𝑃 𝑖𝑝𝑒𝑙𝑖𝑛𝑒_𝐷𝑒𝑝𝑡ℎ_𝐹𝐹𝑁3 equals (4×𝑑𝑚𝑜𝑑𝑒𝑙

𝑇 𝑖𝑙𝑒 𝑛𝑜. 𝐹𝐹𝑁) plus the time
required to perform load, add, and store operations in the FFN3
module. 𝑃 𝑖𝑝𝑒𝑙𝑖𝑛𝑒_𝐷𝑒𝑝𝑡ℎ_𝐿𝑜𝑎𝑑_𝐹𝐹𝑁3 is the time required to load,
add, and store in the loading units. FFN3 is the computation time of
𝐹𝐹𝑁3𝑃𝑀 module. 𝐿𝑜𝑎𝑑_𝐵𝑖𝑎𝑠𝑒𝑠_𝐹𝐹𝑁3 (LBF3) loads biases to registers
from off-chip memory while 𝐹𝐹𝑁3𝑃𝑀 operates. 𝐵𝑖𝑎𝑠_𝐴𝑑𝑑𝑖𝑡𝑖𝑜𝑛_𝐹𝐹𝑁3
(BAF3) adds biases to the outputs of 𝐹𝐹𝑁3𝑃𝑀 .

7. Evaluation and results

ADAPTOR supports software-level programmability, allowing mod-
ification of key design parameters at runtime. These parameters include
the embedding dimension (𝑑𝑚𝑜𝑑𝑒𝑙), number of attention heads (h),
number of encoder layers (N), and sequence length (SL). Initially, these
parameters were configured with fixed values of 768, 12, 12, and 64,
respectively, based on a BERT variant [10], which is a widely used

E. Kabir et al. Microprocessors and Microsystems 120 (2026) 105223

(a) Tiling technique in MHA.

(b) Tiling technique in FFN.

Fig. 6. Tiling technique.
Fig. 7. Choosing the optimum tile size.
transformer model for natural language processing, and the available
FPGA resources. In contrast, the tile sizes are fixed at synthesis and
cannot be modified at runtime. Consequently, synthesis was performed
with fixed tile sizes of 𝑇𝑆𝑀𝐻𝐴 = 64 and 𝑇𝑆𝐹𝐹𝑁 = 128. This design
approach is a key contribution that gives ADAPTOR the ability to retain
a single, resource-constrained synthesis configuration while enabling
runtime configurability of core transformer parameters so that it can
support diverse transformer neural network models without requiring
re-synthesis.

Fig. 8(a) presents the effect of varying the number of attention
heads on system frequency and normalized latency, where latency
accounts for computation time assuming overlap with data loading.
While increasing the number of attention heads generally improves
parallelism and reduces latency, the system frequency decreases beyond
a certain threshold, leading to higher latency. Optimal performance
is observed with 6–10 attention heads. Fig. 8(b) illustrates the cor-
responding increase in DSP and LUT utilization, showing that higher
resource usage contributes to reduced system frequency. These results
10
provide a quantitative analysis of the trade-off between parallelism and
hardware timing constraints, identify an optimal design point for FPGA-
based transformers, and characterize the impact of resource utilization
on latency and frequency. Furthermore, the evaluation methodology
accounts for overlapped data loading and computation, offering a
realistic performance assessment for hardware accelerators.

Fig. 9 illustrates the effect of varying tile sizes (𝑇𝑆𝑀𝐻𝐴, 𝑇𝑆𝐹𝐹𝑁)
on the utilization of DSP, LUT, and BRAM. Since processing modules
rely on DSPs for multiplication–accumulation (MAC) operations, DSPs
represent the most widely used resource and can reach saturation
before BRAMs, rendering accelerator computation bound. Increasing
the tile sizes for both the attention and feedforward modules results in
higher DSP utilization, which enables greater parallelism and reduces
latency until the system frequency begins to decline. This analysis is
the characterization of resource–performance trade-offs, showing that
tile size selection directly determines when the accelerator becomes
computation-bound or frequency-limited, thus guiding optimal design
choices for FPGA-based transformer implementations.

E. Kabir et al. Microprocessors and Microsystems 120 (2026) 105223

(a) Variation of performance with number of attention heads.

(b) Variation of resources with number of attention heads.

Fig. 8. Performance and resource utilization vs. attention heads.
Fig. 9. Utilization vs. tile size.
Fig. 10 compares the power consumption (in watts) and power
efficiency (throughput per watt, GOPS/W) for various models across
different CPUs, GPUs, and our FPGA accelerator. Data for different
models and platforms were obtained from cited literature, and we used
them to compare the performance of ADAPTOR on the U55C platform
for the same models. Since ADAPTOR is synthesized only once, and
power is measured using Vivado’s power estimation tool post-synthesis,
the total dynamic power consumption remains constant for all models.
The JETSON TX2 GPU [18] achieves the highest power efficiency for
the BERT model, mainly due to the sparse architecture of the algorithm,
and also has the lowest overall power consumption. The RTX K5000
GPU [48] is 1.5× more power efficient than ADAPTOR for the BERT
model, due to compression techniques, but consumes 10× more power.
The i7-8700K CPU is the least power-efficient for BERT [48]. ADAP-
TOR is 1.2× and 2.87× more power efficient than the NVIDIA K80
GPU and i7-8700K CPU, respectively, when running BERT, according
to FQ-BERT [49]. A custom encoder with four encoding layers was run
on an i5-4460 CPU and an RTX 3060 GPU [31], both of which were
5.1× and 1.63× less power efficient than ADAPTOR while also being
more power-hungry. Fang et al. [50] executed a shallow transformer
on an i9-9900X CPU, JETSON NANO GPU, RTX 2080, and RTX 3090
GPUs. Although the JETSON NANO GPU consumed 1.56× less power
than ADAPTOR, the other devices used 14–30× more power. However,
ADAPTOR is 3.7×, 1.28×, 4.4×, and 1.67× more power efficient than
all of them.

Fig. 11 illustrates that ADAPTOR can be deployed on any platform,
regardless of the size of the TNN model or available resources, by
adjusting the 𝑇𝑆𝑀𝐻𝐴 and 𝑇𝑆𝐹𝐹𝑁 parameters in HLS during design
time. The figure presents results for a custom TNN encoder with an
embedding dimension of 200, 3 attention heads, 2 encoder layers,
and a sequence length of 64. On the Alveo U55C, the tile sizes can
be maximized (𝑇𝑆 = 200, 𝑇𝑆 = 200) due to the abundance
𝑀𝐻𝐴 𝐹𝐹𝑁

11
of resources, resulting in lower latency. For the ZCU102 board, the
tile sizes were reduced to 25 and 50 respectively, to fit the model
within its resource constraints, nearly consuming 100% of the DSPs
and LUTs and increasing the latency. On the VC707 board, 𝑇𝑆𝑀𝐻𝐴
and 𝑇𝑆𝐹𝐹𝑁 were set to 50 each, as it has slightly more resources than
the ZCU102. However, latency increased as fewer DSPs were utilized,
and LUT consumption almost reached its limit.

Fig. 12 presents the roofline model of ADAPTOR, highlighting its
peak performance and memory bandwidth limits. The Memory Bound
(blue dashed line) indicates the maximum achievable performance
based on the memory bandwidth, which is 103,000 GB/s. Data points
to the left of this line are constrained by memory bandwidth. The
Compute Bound (red line) represents the peak performance determined
by the FPGA’s computational resources, capped at 53 GOP/s. Points
below this line indicate underutilization of computational resources.
All data points (green, yellow, and purple) fall within the compute
and memory-bound regions, meaning none fully utilize the accelerator’s
available resources. The yellow square, representing the BERT model
with 𝑇𝑆𝑀𝐻𝐴 = 64 and 𝑇𝑆𝐹𝐹𝑁 = 192, achieves the highest perfor-
mance, being closest to the compute bound. In contrast, the purple star,
corresponding to the shallow transformer model with 𝑇𝑆𝑀𝐻𝐴 = 64 and
𝑇𝑆𝐹𝐹𝑁 = 128, exhibits the highest operational intensity but the lowest
performance.

Eq. (40) below is used to calculate memory bandwidth (BW), where
no. of BRAMs = 340, BRAM’s width = 36 KB, no. of LUTRAMs =
129101, LUTRAM’s Width = 32 KB. Our previous work [51] calculated
latency and throughput data (53 GOP/s).
𝑀𝑒𝑚𝑜𝑟𝑦 𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ = (𝑁𝑜. 𝑜𝑓 𝐵𝑅𝐴𝑀𝑠 × 𝐵𝑅𝐴𝑀 ′𝑠 𝑊 𝑖𝑑𝑡ℎ

+ 𝑁𝑜. 𝑜𝑓 𝐿𝑈𝑇𝑅𝐴𝑀𝑠
′

(40)

× 𝐿𝑈𝑇𝑅𝐴𝑀 𝑠 𝑊 𝑖𝑑𝑡ℎ) × 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦

E. Kabir et al. Microprocessors and Microsystems 120 (2026) 105223
Fig. 10. Cross platform comparison of power consumption.
Table 2
Comparison with FPGA accelerators.
 Accelerator DSP LUT GOPS Power (GOPS/DSP) (GOPS/LUT) GOPS/ Method Sparsity
 (W) ×1000 ×1000 Power
 Network #1 Shallow transformer
 Qi et al. [19] 3572 (52%) 485k (41%) 14 – 3.92 0.03 –

HLS
80%

 Qi et al. [34] 5040 (74%) 908k (76%) 12 – 2.38 0.013 – 86%
 ADAPTOR 3612 (40%) 391k (30%) 27 11.8 7.47 0.069 2.28 0%
 Network #2 Custom transformer encoder
 Qi et al. [34] 4145 (60%) 937k (79%) 75.94 – 18 0.08 – HLS 0%
 ADAPTOR 3612 (40%) 391k (30%) 132 11.8 37 0.34 11
 Network #3 BERT

 Tzanos et al. [52] 5861 (85%) 910k (77%) 65.7 – 11.2 0.07 – – 0%
 TRAC [39] 1379 (80%) 126k (55%) 128 – 93 1.01 – – –
 ADAPTOR 3612 (40%) 391k (30%) 40 11.8 11 0.10 3.39 HLS 0%
Fig. 11. Testing portability feature.

Table 2 compares the performance of our accelerator, ADAPTOR,
with other FPGA-based accelerators. Each of these accelerators is opti-
mized for specific TNN models, with some designed for sparse com-
putations. TRAC [39] is the only one that automatically generates
accelerator code based on the target FPGA and TNN architecture. Since
ADAPTOR was synthesized once with fixed hardware resources and bit
width, and implemented on a dense model without sparsity, we eval-
uated throughput (GOPS), power consumption, normalized throughput
(GOPS per DSP or GOPS per LUT), and power efficiency (GOPS per
watt) for a fair comparison. ADAPTOR achieved 1.9× and 2.25× higher
GOPS compared to the accelerators by Qi et al. in [19,34], respectively,
for a shallow transformer. Its normalized throughput was also higher,
12
Fig. 12. Peak performance and peak memory bandwidth.

indicating more efficient DSP and LUT usage without relying on prun-
ing, whereas Qi et al. employed block balanced pruning and block row
storage. Qi et al.’s four-layer transformer encoder [34] was 1.7× slower
and 2× less resource-efficient than ADAPTOR even with hierarchical
pruning. TRAC [39] consumed fewer DSPs and LUTs but reported 3.2×
higher GOPS and 8.4× higher GOPS/DSP. None of these accelerators
incorporated tiling or partitioning schemes to support large models
such as BERT, which our design explicitly addresses. Tzanos et al. [52]
applied tiling and used more resources, achieving 1.6× higher speed
with GOPS/DSP comparable to ADAPTOR.

Although ADAPTOR utilizes over 3000 DSPs at 200 MHz, the
measured throughput is significantly lower than the theoretical peak
of 1200 GOPS. This underutilization arises from several factors: (i)

E. Kabir et al. Microprocessors and Microsystems 120 (2026) 105223
Fig. 13. Effect of DSP on GOP/s for various tile size combinations.
Table 3
Validation of experimental and analytical results.
 Method Sequence Embedding Number Tile Tile DSPs BRAMs Frequency Latency (ms)
 length dimension of size size 18k (MHz) Attention Load FFN
 heads MHA FFN module weights unit module
 (SA) (LWA) (FFN1)
 Analytical 64 768 8 64 128 3784 2375

200

0.052 0.037 0.082
 Experimental 3612 2246 0.053 0.038 0.084
 Analytical 128 768 8 64 128 3784 2375 0.103 0.037 0.165
 Experimental 3612 2246 0.106 0.038 0.168
 Analytical 64 512 8 64 128 3784 2375 0.042 0.025 0.055
 Experimental 3612 2246 0.043 0.026 0.056
 Analytical 64 768 8 128 192 6272 2955 135 0.11 0.1 0.18
 Experimental 6317 1693 0.11 0.1 0.23
sequential execution of certain submodules (e.g., 𝑄𝐾𝑉𝑃𝑀 , 𝑄𝐾𝑃𝑀 ,
𝑆𝑉𝑃𝑀 , 𝐹𝐹𝑁1𝑃𝑀 , 𝐹𝐹𝑁2𝑃𝑀 , 𝐹𝐹𝑁3𝑃𝑀 , softmax, layer normalization
etc.) that prevents simultaneous activation of all functional modules,
and (ii) control dependencies that limit pipelining across nested loops.
As a result, a portion of the available DSPs remain idle at different
stages of execution, reducing overall efficiency. Fig. 13 illustrates how
GOPS scales with DSP consumption as the tile sizes of the MHA and
FFN layers increase. While larger tiles increase DSP utilization and
improve throughput, the system frequency drops beyond certain tile
sizes (Fig. 7), leading to diminishing returns and even a reduction of
GOPS to 30 and 32 for 65% and 70% DSP utilization, respectively. This
analysis highlights the fundamental trade-off between resource utiliza-
tion, frequency, and achievable throughput in FPGA-based transformer
accelerators.

Table 3 presents a comparison between the experimental results of
ADAPTOR and the theoretical predictions derived in Section 6. For
clarity, only a subset of design configurations is reported, focusing on
the computation time of the attention and feedforward modules as
well as the loading time of the attention module. Latency is primarily
influenced by parameters such as sequence length, embedding dimen-
sion, and number of attention heads. The measured latency closely
aligned with the theoretical estimates, with an average deviation of
only 1.8%. Resource utilization remained stable across configurations
with fixed tile sizes, whereas variations in tile size led to corresponding
changes in both analytical and experimental values. The deviations
were relatively small for DSPs (0.71–4.7%), but larger for BRAMs
(5.7%–74%), particularly at larger tile sizes. The latter discrepancy
arises because LUTRAMs were increasingly used in place of BRAMs to
sustain higher operating frequency, thereby reducing the accuracy of
BRAM utilization estimates.
13
8. Conclusion

In this article, we present a runtime-adaptive FPGA-based accelera-
tor for the encoder and decoder layers of transformer neural networks
(TNN), designed using a high-level synthesis (HLS) tool. The archi-
tecture leverages FPGA parallelism as well as the inherent parallel
nature of TNNs. We demonstrated its deployment on various FPGA
platforms, including Alveo U55C, VC707, and ZCU102, highlighting
how resources like DSPs and LUTs can be effectively utilized to max-
imize parallelism and minimize latency in HLS designs. The accel-
erator is software-programmable, enabling adaptability to different
topologies without requiring new code generation or re-synthesis. We
implemented an efficient tiling technique and data-loading method for
weight matrices, ensuring portability and resource-efficient execution
across different TNN models. Experimental results indicate that our
design outperforms certain CPUs and GPUs in terms of dynamic power
consumption and power efficiency, despite no algorithmic optimiza-
tions. Moreover, it achieved a 1.7 to 2.25× speedup over leading
FPGA-based accelerators. An analytical model was also developed to
validate the experimental findings.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

This material is based upon work supported by the National Science
Foundation, United States under Grant No. 1956071.

E. Kabir et al. Microprocessors and Microsystems 120 (2026) 105223
Appendix. Supplementary materials

Algorithm 1 Load Weights for MHA
1: for (𝑖 = 1; 𝑖 <= 𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔 𝐷𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐻𝑒𝑎𝑑𝑠 ; 𝑖 = 𝑖 + 1) do
2: #pragma HLS pipeline off
3: for (𝑗 = 1; 𝑗 <= 𝑇 𝑖𝑙𝑒𝑠_𝑖𝑛_𝑀𝐻𝐴; 𝑗 = 𝑗 + 1) do
4: #pragma HLS pipeline II = 1
5: 𝑊𝑄[𝑖][𝑗] ← 𝑤𝑒𝑖𝑔ℎ𝑡𝑠_𝑄[𝑖𝑛𝑑𝑒𝑥];
6: 𝑊𝐾 [𝑖][𝑗] ← 𝑤𝑒𝑖𝑔ℎ𝑡𝑠_𝐾[𝑖𝑛𝑑𝑒𝑥];
7: 𝑊𝑉 [𝑖][𝑗] ← 𝑤𝑒𝑖𝑔ℎ𝑡𝑠_𝑉 [𝑖𝑛𝑑𝑒𝑥];
8: 𝑖𝑛𝑑𝑒𝑥 ← 𝑖𝑛𝑑𝑒𝑥 + 1;
9: end for
10: end for

Algorithm 2 Load Inputs for MHA
1: for (𝑖 = 1; 𝑖 <= 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒_𝑙𝑒𝑛𝑔𝑡ℎ; 𝑖 = 𝑖 + 1) do
2: #pragma HLS pipeline off
3: for (𝑗 = 1; 𝑗 <= 𝑇 𝑖𝑙𝑒𝑠_𝑖𝑛_𝑀𝐻𝐴; 𝑗 = 𝑗 + 1) do
4: #pragma HLS pipeline II = 1
5: 𝑋1[𝑖][𝑗] ← 𝑖𝑛𝑝𝑢𝑡_𝑡𝑜𝑘𝑒𝑛[𝑖𝑛𝑑𝑒𝑥];
6: 𝑋2[𝑖][𝑗] ← 𝑖𝑛𝑝𝑢𝑡_𝑡𝑜𝑘𝑒𝑛[𝑖𝑛𝑑𝑒𝑥];
7: ;
8: 𝑋𝑁 [𝑖][𝑗] ← 𝑖𝑛𝑝𝑢𝑡_𝑡𝑜𝑘𝑒𝑛[𝑖𝑛𝑑𝑒𝑥];
9: 𝑖𝑛𝑑𝑒𝑥 ← 𝑖𝑛𝑑𝑒𝑥 + 1;
10: end for
11: end for

Algorithm 3 Load Inputs for FFN1
1: for (𝑖 = 1; 𝑖 <= 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒_𝑙𝑒𝑛𝑔𝑡ℎ; 𝑖 = 𝑖 + 1 do
2: #pragma HLS pipeline off
3: for (𝑗 = 1; 𝑗 < 𝑇𝑆𝐹𝐹𝑁 ; 𝑗 = 𝑗 + 1)) do
4: #pragma HLS pipeline II = 1
5: 𝑘 ← (𝑖𝑛𝑑𝑒𝑥) ∗ (𝑓𝑎𝑐𝑡𝑜𝑟);
6: 𝑋1[𝑖][𝑗] ← 𝑜𝑢𝑡𝑝𝑢𝑡𝑠_𝑀𝐻𝐴[𝑖][𝑘 + 𝑗];
7: 𝑋2[𝑖][𝑗] ← 𝑜𝑢𝑡𝑝𝑢𝑡𝑠_𝑀𝐻𝐴[𝑖][𝑘 + 𝑗];
8: ;
9: 𝑋𝑁 [𝑖][𝑗] ← 𝑜𝑢𝑡𝑝𝑢𝑡𝑠_𝑀𝐻𝐴[𝑖][𝑘 + 𝑗];
10: 𝑖𝑛𝑑𝑒𝑥 ← 𝑖𝑛𝑑𝑒𝑥 + 1;
11: end for
12: end for

Algorithm 4 Load Inputs for FFN2 & FFN3
1: for (𝑖 = 1; 𝑖 <= 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒_𝑙𝑒𝑛𝑔𝑡ℎ; 𝑖 = 𝑖 + 1 do
2: #pragma HLS pipeline off
3: for (𝑗 = 1; 𝑗 < 𝑇𝑆𝐹𝐹𝑁 ; 𝑗 = 𝑗 + 1)) do
4: #pragma HLS pipeline II = 1
5: 𝑘 ← (𝑖𝑛𝑑𝑒𝑥) ∗ (𝑓𝑎𝑐𝑡𝑜𝑟);
6: 𝑋1[𝑖][𝑗] ← 𝑜𝑢𝑡𝑝𝑢𝑡𝑠_𝐹𝐹𝑁2[𝑖][𝑘 + 𝑗];
7: 𝑋2[𝑖][𝑗] ← 𝑜𝑢𝑡𝑝𝑢𝑡𝑠_𝐹𝐹𝑁2[𝑖][𝑘 + 𝑗];
8: ;
9: 𝑋𝑁 [𝑖][𝑗] ← 𝑜𝑢𝑡𝑝𝑢𝑡𝑠_𝐹𝐹𝑁2[𝑖][𝑘 + 𝑗];
10: 𝑖𝑛𝑑𝑒𝑥 ← 𝑖𝑛𝑑𝑒𝑥 + 1;
11: end for
12: end for
14
Algorithm 5 Load Biases for MHA
1: for (𝑖 = 1; 𝑖 <= 𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔 𝐷𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐻𝑒𝑎𝑑𝑠 ; 𝑖 = 𝑖 + 1) do
2: #pragma HLS pipeline II = 1
3: 𝑏𝑞[𝑖] ← 𝑏𝑖𝑎𝑠_𝑄[𝑖𝑛𝑑𝑒𝑥];
4: 𝑏𝑘[𝑖] ← 𝑏𝑖𝑎𝑠_𝐾[𝑖𝑛𝑑𝑒𝑥];
5: 𝑏𝑣[𝑖] ← 𝑏𝑖𝑎𝑠_𝑉 [𝑖𝑛𝑑𝑒𝑥];
6: 𝑖𝑛𝑑𝑒𝑥 ← 𝑖𝑛𝑑𝑒𝑥 + 1;
7: end for

Algorithm 6 Load Biases for FFN & Layer Norm.
1: for (𝑖 = 1; 𝑖 <= 𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔 𝐷𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛; 𝑖 = 𝑖 + 1) do
2: #pragma HLS pipeline II = 1
3: 𝑏𝐹𝐹𝑁 [𝑖] ← 𝑏𝑖𝑎𝑠_𝑝𝑜𝑟𝑡[𝑖𝑛𝑑𝑒𝑥];
4: 𝑖𝑛𝑑𝑒𝑥 ← 𝑖𝑛𝑑𝑒𝑥 + 1;
5: end for

Algorithm 9 Q, K, V Calculation
1: for (𝑖 = 1; 𝑖 <= 𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝐿𝑒𝑛𝑔𝑡ℎ; 𝑖 = 𝑖 + 1) do
2: #pragma HLS pipeline off
3: 𝑆𝑞 ← 0
4: 𝑆𝑘 ← 0
5: 𝑆𝑣 ← 0
6: for (𝑘 = 1; 𝑘 <= 𝑑𝑚𝑜𝑑𝑒𝑙

ℎ ; 𝑘 + +) do
7: #pragma HLS pipeline II = 1
8: for (𝑗 = 1; 𝑗 <= 𝑑𝑚𝑜𝑑𝑒𝑙

𝑇𝑆𝑀𝐻𝐴
; 𝑗 + +) do

9: 𝑆𝑞 ← 𝑆𝑞 +𝑋[𝑖][𝑗] ×𝑊𝑄[𝑘][𝑗];
10: 𝑆𝑘 ← 𝑆𝑘 +𝑋[𝑖][𝑗] ×𝑊𝐾 [𝑘][𝑗];
11: 𝑆𝑣 ← 𝑆𝑣 +𝑋[𝑖][𝑗] ×𝑊𝑉 [𝑘][𝑗];
12: end for
13: 𝑄[𝑖][𝑘] ← 𝑄[𝑖][𝑘] + 𝑆𝑞 ;
14: 𝐾[𝑖][𝑘] ← 𝐾[𝑖][𝑘] + 𝑆𝑘;
15: 𝑉 [𝑖][𝑘] ← 𝑉 [𝑖][𝑘] + 𝑆𝑣;
16: end for
17: end for

Algorithm 10 FFN3 Calculation
1: for (𝑖 = 1; 𝑖 <= 𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝐿𝑒𝑛𝑔𝑡ℎ; 𝑖 = 𝑖 + 1) do
2: #pragma HLS pipeline off
3: 𝑚 ← 𝑖𝑛𝑑𝑒𝑥 × 𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔 𝐷𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛

𝑇 𝑖𝑙𝑒𝑠 𝑖𝑛 𝐹𝐹𝑁
4: for (𝑗 = 1; 𝑗 <= 𝑑𝑚𝑜𝑑𝑒𝑙

𝑇 𝑖𝑙𝑒𝑠 𝑖𝑛 𝐹𝐹𝑁 ; 𝑗 + +) do
5: #pragma HLS pipeline II = 1
6: 𝑠𝑢𝑚 ← 0
7: for (𝑘 = 1; 𝑘 <= 4×𝑑𝑚𝑜𝑑𝑒𝑙

𝑇 𝑖𝑙𝑒𝑠 𝑖𝑛 𝐹𝐹𝑁 ; 𝑘 + +) do
8: 𝑠𝑢𝑚 ← 𝑠𝑢𝑚 + 𝑖𝑛𝑝𝑢𝑡𝑠[𝑖][𝑘] ×𝑤𝑒𝑖𝑔ℎ𝑡𝑠[𝑘][𝑗];
9: end for
10: 𝑜𝑢𝑡𝑝𝑢𝑡[𝑖][𝑚] ← 𝑜𝑢𝑡𝑝𝑢𝑡[𝑖][𝑗] + 𝑠𝑢𝑚;
11: 𝑚 ← 𝑚 + 1;
12: end for
13: end for

E. Kabir et al. Microprocessors and Microsystems 120 (2026) 105223
Algorithm 7 Softmax
Max Value:
for (𝑖 = 1; 𝑖 <= 𝑆𝐿; 𝑖 + +) do
 #pragma HLS pipeline off
 for (𝑗 = 1; 𝑗 <= 𝑆𝐿; 𝑗 + +) do
 #pragma HLS pipeline II = 1
 if 𝑥[𝑖][𝑗] > 𝑚𝑎𝑥𝑉 𝑎𝑙𝑢𝑒 then
 𝑚𝑎𝑥𝑉 𝑎𝑙𝑢𝑒 ← 𝑥[𝑖][𝑗]
 end if
 end for
end for

Exponential:
for (𝑖 = 1; 𝑖 <= 𝑆𝐿; 𝑖 + +) do
 #pragma HLS pipeline off
 for (𝑗 = 1; 𝑗 <= 𝑆𝐿; 𝑗 + +) do
 #pragma HLS pipeline II = 1
 𝑥[𝑖][𝑗] ← 𝑒𝑥𝑝(𝑥[𝑖][𝑗]−
 𝑚𝑎𝑥𝑉 𝑎𝑙𝑢𝑒)
 𝑠𝑢𝑚 ← 𝑠𝑢𝑚 + 𝑥[𝑖][𝑗]
 end for
end for

Normalization:
for (𝑖 = 1; 𝑖 <= 𝑆𝐿; 𝑖 + +) do
 #pragma HLS pipeline off
 for (𝑗 = 1; 𝑗 <= 𝑆𝐿; 𝑗 + +) do

 #pragma HLS pipeline
 II = 1
 𝑥[𝑖][𝑗] ← 𝑥[𝑖][𝑗]

𝑠𝑢𝑚 end for
end for
Algorithm 8 Layer Normalization
Mean:

1: for (𝑖 = 1; 𝑖 <= 𝑆𝐿; 𝑖 + +) do
2: #pragma HLS pipeline off
3: for (𝑗 = 1; 𝑗 <= 𝑑𝑚𝑜𝑑𝑒𝑙; 𝑗 + +) do
4: #pragma HLS pipeline II = 1
5: 𝑚[𝑖] ← 𝑚[𝑖] + 𝑖𝑛𝑝𝑢𝑡𝑠[𝑖][𝑗]
6: end for
7: 𝑚[𝑖] ← 𝑚[𝑖]∕𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔_𝐷𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛;
8: end for

Variance:
1: for (𝑖 = 1; 𝑖 <= 𝑆𝐿; 𝑖 + +) do
2: #pragma HLS pipeline off
3: for (𝑗 = 1; 𝑗 <= 𝑑𝑚𝑜𝑑𝑒𝑙; 𝑗 + +) do
4: #pragma HLS pipeline II = 1
5: 𝑣[𝑖] ← 𝑣[𝑖] + (𝑖𝑛𝑝𝑢𝑡𝑠[𝑖][𝑗] − 𝑚[𝑖])2

6: end for
7: 𝑚[𝑖] ← 𝑚[𝑖]∕𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔_𝐷𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛;
8: end for

Normalization:
1: for (𝑖 = 1; 𝑖 <= 𝑆𝐿; 𝑖 + +) do
2: #pragma HLS pipeline off
3: for (𝑗 = 1; 𝑗 <= 𝑑𝑚𝑜𝑑𝑒𝑙; 𝑗 + +) do
4: #pragma HLS pipeline II = 1
5: 𝑛𝑜𝑟𝑚𝑜𝑢𝑡[𝑖][𝑗] ←

(𝑖𝑛𝑝𝑢𝑡𝑠[𝑖][𝑗]−𝑚[𝑖]
√

𝑣[𝑖]+𝜖
6: end for
7: end for

Final Output:
1: for (𝑖 = 1; 𝑖 <= 𝑆𝐿; 𝑖 + +) do
2: #pragma HLS pipeline off
3: for (𝑗 = 1; 𝑗 <= 𝑑𝑚𝑜𝑑𝑒𝑙; 𝑗 + +) do
4: #pragma HLS pipeline II = 1
5: 𝑜𝑢𝑡𝑝𝑢𝑡𝑠[𝑖][𝑗] ← 𝑔𝑎𝑚𝑚𝑎[𝑗] × 𝑛𝑜𝑟𝑚𝑜𝑢𝑡[𝑖][𝑗]+;
6: 𝑏𝑒𝑡𝑎[𝑗];
7: end for
8: end for
Algorithm 11 𝑄 ×𝐾𝑇 Calculation
1: for (𝑖 = 1; 𝑖 <= 𝑆𝐿; 𝑖 = 𝑖 + 1) do
2: #pragma HLS pipeline off
3: for (𝑗 = 1; 𝑗 <= 𝑆𝐿; 𝑗 = 𝑗 + 1) do
4: #pragma HLS pipeline II = 1
5: 𝑆 ← 0
6: for (𝑘 = 1; 𝑘 <= 𝑑𝑚𝑜𝑑𝑒𝑙

ℎ ; 𝑘 + +) do
7: 𝑆 ← 𝑆 +𝑄[𝑖][𝑘] ×𝐾[𝑗][𝑘];
8: end for
9: 𝑠[𝑖][𝑗] ← 𝑆∕𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔_𝐷𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛;
10: end for
11: end for

Algorithm 12 𝑆 × 𝑉 Calculation
1: for (𝑖 = 1; 𝑖 <= 𝑆𝐿; 𝑖 = 𝑖 + 1) do
2: #pragma HLS pipeline off
3: for (𝑗 = 1; 𝑗 <= 𝑑𝑚𝑜𝑑𝑒𝑙

ℎ ; 𝑗 + +) do
4: #pragma HLS pipeline II = 1
5: 𝑣𝑣 ← 0
6: for (𝑘 = 1; 𝑘 <= 𝑆𝐿; 𝑘 = 𝑘 + 1) do
7: 𝑣𝑣 ← 𝑣𝑣 + 𝑆[𝑖][𝑘] × 𝑉 [𝑘][𝑗];
8: end for
9: 𝑆𝑉 [𝑖][𝑗] ← 𝑣𝑣;
10: end for
11: end for
15
Algorithm 13 Bias add unit 3
1: for (𝑖 = 1; 𝑖 <= 𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝐿𝑒𝑛𝑔𝑡ℎ; 𝑖 + +) do
2: #pragma HLS pipeline off
3: for (𝑗 = 1; 𝑗 <= 𝐻𝑖𝑑𝑑𝑒𝑛 𝐷𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛; 𝑗 + +) do
4: #pragma HLS pipeline II = 1
5: 𝐹𝐹𝑜𝑢𝑡[𝑖][𝑗] ← 𝐹𝐹𝑜𝑢𝑡[𝑖][𝑗] + 𝑏𝑖𝑎𝑠𝐹𝐹𝑁 [𝑗];
6: 𝐹𝐹𝑜𝑢𝑡[𝑖][𝑗] ← 𝑟𝑒𝑙𝑢(𝐹𝐹𝑜𝑢𝑡[𝑖][𝑗]);
7: end for
8: end for

Algorithm 14 FFN1 Calculation
1: for (𝑖 = 1; 𝑖 <= 𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝐿𝑒𝑛𝑔𝑡ℎ; 𝑖 = 𝑖 + 1) do
2: #pragma HLS pipeline off
3: 𝑚 ← 𝑖𝑛𝑑𝑒𝑥 × 𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔 𝐷𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛

𝑇 𝑖𝑙𝑒𝑠 𝑖𝑛 𝐹𝐹𝑁
4: for (𝑗 = 1; 𝑗 <= 𝑑𝑚𝑜𝑑𝑒𝑙

𝑇 𝑖𝑙𝑒𝑠 𝑖𝑛 𝐹𝐹𝑁 ; 𝑗 + +) do
5: #pragma HLS pipeline II = 1
6: 𝑠𝑢𝑚 ← 0
7: for (𝑘 = 1;𝐾 <= 𝑑𝑚𝑜𝑑𝑒𝑙

𝑇 𝑖𝑙𝑒𝑠 𝑖𝑛 𝐹𝐹𝑁 ; 𝑘 + +) do
8: 𝑠𝑢𝑚 ← 𝑠𝑢𝑚 + 𝑖𝑛𝑝𝑢𝑡𝑠[𝑖][𝑘] ×𝑤𝑒𝑖𝑔ℎ𝑡𝑠[𝑘][𝑗];
9: end for
10: 𝑜𝑢𝑡𝑝𝑢𝑡[𝑖][𝑚] ← 𝑜𝑢𝑡𝑝𝑢𝑡[𝑖][𝑗] + 𝑠𝑢𝑚;
11: 𝑚 ← 𝑚 + 1;
12: end for
13: end for

E. Kabir et al. Microprocessors and Microsystems 120 (2026) 105223
Algorithm 15 FFN2 Calculation
1: for (𝑖 = 1; 𝑖 <= 𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝐿𝑒𝑛𝑔𝑡ℎ; 𝑖 + +) do
2: #pragma HLS pipeline off
3: 𝑚 ← 𝑖𝑛𝑑𝑒𝑥 × 𝐻𝑖𝑑𝑑𝑒𝑛 𝐷𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛

𝑇 𝑖𝑙𝑒𝑠 𝑖𝑛 𝐹𝐹𝑁
4: for (𝑗 = 1; 𝑗 <= 4×𝑑𝑚𝑜𝑑𝑒𝑙

𝑇 𝑖𝑙𝑒𝑠 𝑖𝑛 𝐹𝐹𝑁 ; 𝑗 + + do
5: #pragma HLS pipeline II = 1
6: 𝑠𝑢𝑚 ← 0
7: for (𝑘 = 1; 𝑘 <= 𝑑𝑚𝑜𝑑𝑒𝑙

𝑇 𝑖𝑙𝑒𝑠 𝑖𝑛 𝐹𝐹𝑁 ; 𝑘 + +) do
8: 𝑠𝑢𝑚 ← 𝑠𝑢𝑚 + 𝑖𝑛𝑝𝑢𝑡𝑠[𝑖][𝑘] ×𝑤𝑒𝑖𝑔ℎ𝑡𝑠[𝑘][𝑗];
9: end for
10: 𝑜𝑢𝑡𝑝𝑢𝑡[𝑖][𝑚] ← 𝑜𝑢𝑡𝑝𝑢𝑡[𝑖][𝑗] + 𝑠𝑢𝑚;
11: 𝑚 ← 𝑚 + 1;
12: end for
13: end for

Algorithm 16 Bias add unit 1
1: for (𝑖 = 1; 𝑖 <= 𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝐿𝑒𝑛𝑔𝑡ℎ; 𝑖 = 𝑖 + 1) do
2: #pragma HLS pipeline off
3: for (𝑘 = 1; 𝑘 <= 𝑑𝑚𝑜𝑑𝑒𝑙

ℎ ; 𝑘 + +) do
4: #pragma HLS pipeline II = 1
5: 𝑄[𝑖][𝑘] ← 𝑄[𝑖][𝑘] + 𝑏𝑖𝑎𝑠𝑞[𝑘];
6: 𝐾[𝑖][𝑘] ← 𝐾[𝑖][𝑘] + 𝑏𝑖𝑎𝑠𝑘[𝑘];
7: 𝑉 [𝑖][𝑘] ← 𝑉 [𝑖][𝑘] + 𝑏𝑖𝑎𝑠𝑣[𝑘];
8: end for
9: end for

Algorithm 17 Bias add unit 2
1: for (𝑖 = 1; 𝑖 < 𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝐿𝑒𝑛𝑔𝑡ℎ; 𝑖 + +) do
2: #pragma HLS pipeline off
3: for (𝑗 = 1; 𝑗 < 𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔 𝐷𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛; 𝑗 + +) do
4: #pragma HLS pipeline II = 1
5: 𝐹𝐹𝑜𝑢𝑡[𝑖][𝑗] ← 𝐹𝐹𝑜𝑢𝑡[𝑖][𝑗] + 𝑏𝑖𝑎𝑠𝐹𝐹𝑁 [𝑗];
6: end for
7: end for

Data availability

I have shared the link of my code in the manuscript.

References

[1] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever, et al., Language
models are unsupervised multitask learners, OpenAI Blog 1 (8) (2019) 9.

[2] K. Song, K. Wang, H. Yu, Y. Zhang, Z. Huang, W. Luo, X. Duan, M. Zhang,
Alignment-enhanced transformer for constraining NMT with pre-specified trans-
lations, in: AAAI Conference on Artificial Intelligence, 2020, [Online]. Available:
https://api.semanticscholar.org/CorpusID:213842037.

[3] T. Wang, L. Gong, C. Wang, Y. Yang, Y. Gao, X. Zhou, H. Chen, ViA: A novel
vision-transformer accelerator based on FPGA, IEEE Trans. Comput.-Aided Des.
Integr. Circuits Syst. 41 (11) (2022) 4088–4099, [Online]. Available: https:
//ieeexplore.ieee.org/document/9925700/.

[4] K. Cho, B. van Merriënboer, D. Bahdanau, Y. Bengio, On the properties of
neural machine translation: Encoder–decoder approaches, in: D. Wu, M. Carpuat,
X. Carreras, E.M. Vecchi (Eds.), Proceedings of SSST-8, Eighth Workshop on
Syntax, Semantics and Structure in Statistical Translation, Association for Com-
putational Linguistics, Doha, Qatar, 2014, pp. 103–111, [Online]. Available:
https://aclanthology.org/W14-4012.
16
Algorithm 18 Software Program
1: Assign the accelerator and other devices with IDs and base
addresses

2: Initialize and configure the accelerator and other devices
3: Write to the registers of the configurable parameters: Sequence,

Heads, Layers_enc, Layers_dec, Embeddings, Hidden,
Out

4: for i from 0 to no._of_inputs do ⊳ Iterate based on the
number of tiles and layers

5: Load input axi master interface buffers with data ⊳ Same tasks
for all input interfaces

6: end for
7: for i from 0 to no._of_weights do ⊳ Iterate based on the
number of tiles and layers

8: Load weight axi master interface buffers with data ⊳ Same
tasks for all weight interfaces

9: end for
10: for i from 0 to no._of_biases do ⊳ Iterate based on the

number of tiles and layers
11: Load bias axi master interface buffers with data ⊳ Same tasks

for all bias interfaces
12: end for
13: Write to control register to start the accelerator
14: Write to control register to start the timer
15: Record Start time
16: while accelerator is not done do
17: Read status register until the accelerator has finished
18: end while
19: Record End time
20: Compute 𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛_𝑡𝑖𝑚𝑒 ← 𝐸𝑛𝑑_𝑡𝑖𝑚𝑒 − 𝑆𝑡𝑎𝑟𝑡_𝑡𝑖𝑚𝑒;

[5] S. Hochreiter, J. Schmidhuber, Long short-term memory, Neural Comput. 9 (8)
(1997) 1735–1780, [Online]. Available: https://doi.org/10.1162/neco.1997.9.8.
1735.

[6] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner,
M. Dehghani, M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, N. Houlsby,
An image is worth 16x16 words: Transformers for image recognition at scale,
2020, arXiv abs/2010.11929. [Online]. Available: https://api.semanticscholar.
org/CorpusID:225039882.

[7] J.-B. Cordonnier, A. Loukas, M. Jaggi, On the relationship between self-
attention and convolutional layers, in: International Conference on Learning
Representations, 2020, [Online]. Available: https://openreview.net/forum?id=
HJlnC1rKPB.

[8] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A.N. Gomez, Ł. Kaiser,
I. Polosukhin, Attention is all you need, Adv. Neural Inf. Process. Syst. 30 (2017).

[9] J.J. Lin, R. Nogueira, A. Yates, Pretrained transformers for text ranking: BERT
and beyond, in: Proceedings of the 14th ACM International Conference on Web
Search and Data Mining, 2020, [Online]. Available: https://api.semanticscholar.
org/CorpusID:222310837.

[10] J. Devlin, M.-W. Chang, K. Lee, K. Toutanova, Bert: Pre-training of deep
bidirectional transformers for language understanding, 2018, arXiv preprint
arXiv:1810.04805.

[11] Z. Lan, M. Chen, S. Goodman, K. Gimpel, P. Sharma, R. Soricut, Albert: A lite
bert for self-supervised learning of language representations, 2019, arXiv preprint
arXiv:1909.11942.

[12] W. Wang, B. Bi, M. Yan, C. Wu, Z. Bao, J. Xia, L. Peng, L. Si, Structbert: Incor-
porating language structures into pre-training for deep language understanding,
2019, arXiv preprint arXiv:1908.04577.

[13] H. Peng, S. Huang, S. Chen, B. Li, T. Geng, A. Li, W. Jiang, W. Wen, J. Bi, H. Liu,
C. Ding, A length adaptive algorithm-hardware co-design of transformer on FPGA
through sparse attention and dynamic pipelining, in: Proceedings of the 59th
ACM/IEEE Design Automation Conference, ACM, San Francisco California, 2022,
pp. 1135–1140, [Online]. Available: https://dl.acm.org/doi/10.1145/3489517.
3530585.

[14] T.J. Ham, Y. Lee, S.H. Seo, S. Kim, H. Choi, S.J. Jung, J.W. Lee, ELSA:
Hardware-software co-design for efficient, lightweight self-attention mechanism
in neural networks, in: 2021 ACM/IEEE 48th Annual International Symposium
on Computer Architecture, ISCA, 2021, pp. 692–705, ISSN: 2575-713X.

http://refhub.elsevier.com/S0141-9331(25)00090-0/sb1
http://refhub.elsevier.com/S0141-9331(25)00090-0/sb1
http://refhub.elsevier.com/S0141-9331(25)00090-0/sb1
https://api.semanticscholar.org/CorpusID:213842037
https://ieeexplore.ieee.org/document/9925700/
https://ieeexplore.ieee.org/document/9925700/
https://ieeexplore.ieee.org/document/9925700/
https://aclanthology.org/W14-4012
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
http://arxiv.org/abs/2010.11929
https://api.semanticscholar.org/CorpusID:225039882
https://api.semanticscholar.org/CorpusID:225039882
https://api.semanticscholar.org/CorpusID:225039882
https://openreview.net/forum?id=HJlnC1rKPB
https://openreview.net/forum?id=HJlnC1rKPB
https://openreview.net/forum?id=HJlnC1rKPB
http://refhub.elsevier.com/S0141-9331(25)00090-0/sb8
http://refhub.elsevier.com/S0141-9331(25)00090-0/sb8
http://refhub.elsevier.com/S0141-9331(25)00090-0/sb8
https://api.semanticscholar.org/CorpusID:222310837
https://api.semanticscholar.org/CorpusID:222310837
https://api.semanticscholar.org/CorpusID:222310837
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1909.11942
http://arxiv.org/abs/1908.04577
https://dl.acm.org/doi/10.1145/3489517.3530585
https://dl.acm.org/doi/10.1145/3489517.3530585
https://dl.acm.org/doi/10.1145/3489517.3530585
http://refhub.elsevier.com/S0141-9331(25)00090-0/sb14
http://refhub.elsevier.com/S0141-9331(25)00090-0/sb14
http://refhub.elsevier.com/S0141-9331(25)00090-0/sb14
http://refhub.elsevier.com/S0141-9331(25)00090-0/sb14
http://refhub.elsevier.com/S0141-9331(25)00090-0/sb14
http://refhub.elsevier.com/S0141-9331(25)00090-0/sb14
http://refhub.elsevier.com/S0141-9331(25)00090-0/sb14

E. Kabir et al. Microprocessors and Microsystems 120 (2026) 105223
[15] P. Rajpurkar, R. Jia, P. Liang, Know what you don’t know: Unanswerable
questions for SQuAD, in: I. Gurevych, Y. Miyao (Eds.), Proceedings of the 56th
Annual Meeting of the Association for Computational Linguistics (Volume 2:
Short Papers), Association for Computational Linguistics, Melbourne, Australia,
2018, pp. 784–789, [Online]. Available: https://aclanthology.org/P18-2124.

[16] S. Zeng, J. Liu, G. Dai, X. Yang, T. Fu, H. Wang, W. Ma, H. Sun, S. Li, Z.
Huang, Y. Dai, J. Li, Z. Wang, R. Zhang, K. Wen, X. Ning, Y. Wang, FlightLLM:
Efficient large language model inference with a complete mapping flow on
FPGAs, in: Proceedings of the 2024 ACM/SIGDA International Symposium on
Field Programmable Gate Arrays, New York, USA, 2024, [Online]. Available:
https://doi.org/10.1145/3626202.3637562.

[17] P. Ganesh, Y. Chen, X. Lou, M.A. Khan, Y. Yang, H. Sajjad, P. Nakov, D. Chen,
M. Winslett, Compressing large-scale transformer-based models: A case study on
bert, Trans. Assoc. Comput. Linguist. 9 (2021) 1061–1080.

[18] B. Li, S. Pandey, H. Fang, Y. Lyv, J. Li, J. Chen, M. Xie, L. Wan, H. Liu,
C. Ding, FTRANS: energy-efficient acceleration of transformers using FPGA, in:
Proceedings of the ACM/IEEE international symposium on low power electronics
and design, ACM, Boston Massachusetts, 2020, pp. 175–180, [Online]. Available:
https://dl.acm.org/doi/10.1145/3370748.3406567.

[19] P. Qi, Y. Song, H. Peng, S. Huang, Q. Zhuge, E.H.-M. Sha, Accommodating
transformer onto FPGA: Coupling the balanced model compression and FPGA-
implementation optimization, in: Proceedings of the 2021 on Great Lakes
Symposium on VLSI, ACM, Virtual Event USA, 2021, pp. 163–168, [Online].
Available: https://dl.acm.org/doi/10.1145/3453688.3461739.

[20] K. Guo, S. Zeng, J. Yu, Y. Wang, H. Yang, [DL] A survey of FPGA-based neural
network inference accelerators, ACM Trans. Reconfigurable Technol. Syst. 12 (1)
(2019) [Online]. Available: https://doi.org/10.1145/3289185.

[21] M. Rognlien, Z. Que, J.G.F. Coutinho, W. Luk, Hardware-aware optimizations
for deep learning inference on edge devices, in: L. Gan, Y. Wang, W. Xue,
T. Chau (Eds.), Applied Reconfigurable Computing. Architectures, Tools, and
Applications, in: Lecture Notes in Computer Science, vol. 13569, Springer Nature
Switzerland, Cham, 2022, pp. 118–133, [Online]. Available: https://link.springer.
com/10.1007/978-3-031-19983-7_9.

[22] S. Lu, M. Wang, S. Liang, J. Lin, Z. Wang, Hardware accelerator for multi-head
attention and position-wise feed-forward in the transformer, in: 2020 IEEE 33rd
International System-on-Chip Conference, SOCC, IEEE, Las Vegas, NV, USA, 2020,
pp. 84–89, [Online]. Available: https://ieeexplore.ieee.org/document/9524802/.

[23] T.J. Ham, S. Jung, S. Kim, Y.H. Oh, Y. Park, Y. Song, J.-H. Park, S. Lee,
K. Park, J.W. Lee, D.-K. Jeong, A3: Accelerating attention mechanisms in
neural networks with approximation, in: 2020 IEEE International Symposium on
High Performance Computer Architecture, HPCA, 2020, pp. 328–341, [Online].
Available: https://api.semanticscholar.org/CorpusID:211296403.

[24] W. Ye, X. Zhou, J. Zhou, C. Chen, K. Li, Accelerating attention mechanism
on FPGAs based on efficient reconfigurable systolic array, ACM Trans. Embed.
Comput. Syst. 22 (6) (2023) 1–22, [Online]. Available: https://dl.acm.org/doi/
10.1145/3549937.

[25] X. Zhang, Y. Wu, P. Zhou, X. Tang, J. Hu, Algorithm-hardware Co-design of
attention mechanism on FPGA devices, ACM Trans. Embed. Comput. Syst. 20
(5s) (2021) 1–24, [Online]. Available: https://dl.acm.org/doi/10.1145/3477002.

[26] S. Hur, S. Na, D. Kwon, J. Kim, A. Boutros, E. Nurvitadhi, J. Kim, A fast
and flexible FPGA-based accelerator for natural language processing neural
networks, ACM Trans. Arch. Code Optim. 20 (1) (2023) [Online]. Available:
https://doi.org/10.1145/3564606.

[27] H. Peng, S. Huang, T. Geng, A. Li, W. Jiang, H. Liu, S. Wang, C. Ding,
Accelerating transformer-based deep learning models on FPGAs using column
balanced block pruning, in: 2021 22nd International Symposium on Quality
Electronic Design, ISQED, IEEE, Santa Clara, CA, USA, 2021, pp. 142–148,
[Online]. Available: https://ieeexplore.ieee.org/document/9424344/.

[28] Z. Jiang, D. Yin, E.E. Khoda, V. Loncar, E. Govorkova, E. Moreno, P. Harris,
S. Hauck, S.-C. Hsu, Ultra fast transformers on FPGAs for particle physics
experiments.

[29] F. Wojcicki, Z. Que, A.D. Tapper, W. Luk, Accelerating transformer neural
networks on FPGAs for high energy physics experiments, in: 2022 International
Conference on Field-Programmable Technology, ICFPT, IEEE, Hong Kong, 2022,
pp. 1–8, [Online]. Available: https://ieeexplore.ieee.org/document/9974463/.

[30] Y. Chen, T. Li, X. Chen, Z. Cai, T. Su, High-frequency systolic array-based
transformer accelerator on field programmable gate arrays, Electronics 12 (4)
(2023) 822, [Online]. Available: https://www.mdpi.com/2079-9292/12/4/822.
Number: 4 Publisher: Multidisciplinary Digital Publishing Institute.

[31] X. Yang, T. Su, EFA-trans: Anefficient and flexible acceleration architecture
for transformers, Electronics 11 (21) (2022) 3550, [Online]. Available: https:
//www.mdpi.com/2079-9292/11/21/3550.

[32] Y. Bai, F. University, LTrans-OPU: A low-latency FPGA-based overlay processor
for transformer networks.
17
[33] E. Kabir, D. Coble, J.N. Satme, A.R. Downey, J.D. Bakos, D. Andrews, M.
Huang, Accelerating LSTM-based high-rate dynamic system models, in: 2023
33rd International Conference on Field-Programmable Logic and Applications,
FPL, 2023, pp. 327–332.

[34] P. Qi, E.H.-M. Sha, Q. Zhuge, H. Peng, S. Huang, Z. Kong, Y. Song, B.
Li, Accelerating framework of transformer by hardware design and model
compression co-optimization, in: 2021 IEEE/ACM International Conference on
Computer Aided Design, ICCAD, IEEE, Munich, Germany, 2021, pp. 1–9,
[Online]. Available: https://ieeexplore.ieee.org/document/9643586/.

[35] H. Chen, J. Zhang, Y. Du, S. Xiang, Z. Yue, N. Zhang, Y. Cai, Z. Zhang, Un-
derstanding the potential of FPGA-based spatial acceleration for large language
model inference, ACM Trans. Reconfigurable Technol. Syst. 18 (1) (2025) 1–29,
[Online]. Available: https://dl.acm.org/doi/10.1145/3656177.

[36] Y. Qin, W. Lou, C. Wang, L. Gong, X. Zhou, Enhancing long sequence input
processing in FPGA-based transformer accelerators through attention fusion, in:
Proceedings of the Great Lakes Symposium on VLSI 2024, ACM, Clearwater FL
USA, 2024, pp. 599–603, [Online]. Available: https://dl.acm.org/doi/10.1145/
3649476.3658810.

[37] S. Hur, S. Na, D. Kwon, J. Kim, A. Boutros, E. Nurvitadhi, J. Kim, A fast and
flexible FPGA-based accelerator for natural language processing neural networks,
ACM Trans. Archit. Code Optim. 20 (1) (2023) 1–24, [Online]. Available: https:
//dl.acm.org/doi/10.1145/3564606.

[38] Y. Bai, H. Zhou, K. Zhao, H. Wang, J. Chen, J. Yu, K. Wang, FET-OPU: A flexible
and efficient FPGA-based overlay processor for transformer networks, in: 2023
IEEE/ACM International Conference on Computer Aided Design, ICCAD, IEEE,
San Francisco, CA, USA, 2023, pp. 1–9, [Online]. Available: https://ieeexplore.
ieee.org/document/10323752/.

[39] P. Plagwitz, F. Hannig, J. Teich, TRAC: Compilation-based design of transformer
accelerators for FPGAs, in: 2022 32nd International Conference on Field-
Programmable Logic and Applications, FPL, IEEE, Belfast, United Kingdom,
2022, pp. 17–23, [Online]. Available: https://ieeexplore.ieee.org/document/
10035242/.

[40] H. Ye, C. Hao, J. Cheng, H. Jeong, J. Huang, S. Neuendorffer, D. Chen, ScaleHLS:
A new scalable high-level synthesis framework on multi-level intermediate
representation, 2021, arXiv:2107.11673. [Online]. Available: https://arxiv.org/
abs/2107.11673.

[41] AMD Technical Information Portal — docs.amd.com, https://docs.amd.com/r/en-
US/ug1399-vitis-hls/AXI4-Master-Interface.

[42] Introduction ∙ DMA/Bridge subsystem for PCI express product guide (PG195) ∙
reader ∙ documentation portal. [Online]. Available: https://docs.xilinx.com/r/en-
US/pg195-pcie-dma.

[43] AMD Technical Information Portal — docs.amd.com, https://docs.amd.com/v/
u/en-US/axi_timer_ds764.

[44] AMD Technical Information Portal — docs.amd.com, https://docs.amd.com/v/
u/en-US/axi_uartlite_ds741.

[45] Programmers — digilent.com, https://digilent.com/shop/fpga-boards/
programmers/.

[46] BERT — huggingface.co, https://huggingface.co/docs/transformers/en/model_
doc/bert.

[47] J. Zhao, L. Feng, S. Sinha, W. Zhang, Y. Liang, B. He, Performance modeling and
directives optimization for high-level synthesis on FPGA, IEEE Trans. Comput.-
Aided Des. Integr. Circuits Syst. 39 (7) (2020) 1428–1441, [Online]. Available:
https://ieeexplore.ieee.org/document/8695879/.

[48] Y. Han, T. University, HPTA: A high performance transformer accelerator based
on FPGA.

[49] Z. Liu, G. Li, J. Cheng, Hardware acceleration of fully quantized BERT for
efficient natural language processing, in: 2021 Design, Automation & Test in
Europe Conference & Exhibition, DATE, IEEE, Grenoble, France, 2021, pp.
513–516, [Online]. Available: https://ieeexplore.ieee.org/document/9474043/.

[50] C. Fang, A. Zhou, Z. Wang, An algorithm-hardware co-optimized framework for
accelerating N:M sparse transformers, IEEE Trans. Very Large Scale Integr. (VLSI)
Syst. 30 (11) (2022) 1573–1586, [Online]. Available: http://arxiv.org/abs/2208.
06118. arXiv:2208.06118 [cs].

[51] E. Kabir, J.D. Bakos, D. Andrews, M. Huang, ProTEA: Programmable transformer
encoder acceleration on FPGA, in: SC24-W: Workshops of the International
Conference for High Performance Computing, Networking, Storage and Analysis,
2024, pp. 521–530.

[52] G. Tzanos, C. Kachris, D. Soudris, Hardware acceleration of transformer networks
using FPGAs, in: 2022 Panhellenic Conference on Electronics & Telecommu-
nications, PACET, IEEE, Tripolis, Greece, 2022, pp. 1–5, [Online]. Available:
https://ieeexplore.ieee.org/document/9976354/.

https://aclanthology.org/P18-2124
https://doi.org/10.1145/3626202.3637562
http://refhub.elsevier.com/S0141-9331(25)00090-0/sb17
http://refhub.elsevier.com/S0141-9331(25)00090-0/sb17
http://refhub.elsevier.com/S0141-9331(25)00090-0/sb17
http://refhub.elsevier.com/S0141-9331(25)00090-0/sb17
http://refhub.elsevier.com/S0141-9331(25)00090-0/sb17
https://dl.acm.org/doi/10.1145/3370748.3406567
https://dl.acm.org/doi/10.1145/3453688.3461739
https://doi.org/10.1145/3289185
https://link.springer.com/10.1007/978-3-031-19983-7_9
https://link.springer.com/10.1007/978-3-031-19983-7_9
https://link.springer.com/10.1007/978-3-031-19983-7_9
https://ieeexplore.ieee.org/document/9524802/
https://api.semanticscholar.org/CorpusID:211296403
https://dl.acm.org/doi/10.1145/3549937
https://dl.acm.org/doi/10.1145/3549937
https://dl.acm.org/doi/10.1145/3549937
https://dl.acm.org/doi/10.1145/3477002
https://doi.org/10.1145/3564606
https://ieeexplore.ieee.org/document/9424344/
https://ieeexplore.ieee.org/document/9974463/
https://www.mdpi.com/2079-9292/12/4/822
https://www.mdpi.com/2079-9292/11/21/3550
https://www.mdpi.com/2079-9292/11/21/3550
https://www.mdpi.com/2079-9292/11/21/3550
http://refhub.elsevier.com/S0141-9331(25)00090-0/sb33
http://refhub.elsevier.com/S0141-9331(25)00090-0/sb33
http://refhub.elsevier.com/S0141-9331(25)00090-0/sb33
http://refhub.elsevier.com/S0141-9331(25)00090-0/sb33
http://refhub.elsevier.com/S0141-9331(25)00090-0/sb33
http://refhub.elsevier.com/S0141-9331(25)00090-0/sb33
http://refhub.elsevier.com/S0141-9331(25)00090-0/sb33
https://ieeexplore.ieee.org/document/9643586/
https://dl.acm.org/doi/10.1145/3656177
https://dl.acm.org/doi/10.1145/3649476.3658810
https://dl.acm.org/doi/10.1145/3649476.3658810
https://dl.acm.org/doi/10.1145/3649476.3658810
https://dl.acm.org/doi/10.1145/3564606
https://dl.acm.org/doi/10.1145/3564606
https://dl.acm.org/doi/10.1145/3564606
https://ieeexplore.ieee.org/document/10323752/
https://ieeexplore.ieee.org/document/10323752/
https://ieeexplore.ieee.org/document/10323752/
https://ieeexplore.ieee.org/document/10035242/
https://ieeexplore.ieee.org/document/10035242/
https://ieeexplore.ieee.org/document/10035242/
http://arxiv.org/abs/2107.11673
https://arxiv.org/abs/2107.11673
https://arxiv.org/abs/2107.11673
https://arxiv.org/abs/2107.11673
https://docs.amd.com/r/en-US/ug1399-vitis-hls/AXI4-Master-Interface
https://docs.amd.com/r/en-US/ug1399-vitis-hls/AXI4-Master-Interface
https://docs.amd.com/r/en-US/ug1399-vitis-hls/AXI4-Master-Interface
https://docs.xilinx.com/r/en-US/pg195-pcie-dma
https://docs.xilinx.com/r/en-US/pg195-pcie-dma
https://docs.xilinx.com/r/en-US/pg195-pcie-dma
https://docs.amd.com/v/u/en-US/axi_timer_ds764
https://docs.amd.com/v/u/en-US/axi_timer_ds764
https://docs.amd.com/v/u/en-US/axi_timer_ds764
https://docs.amd.com/v/u/en-US/axi_uartlite_ds741
https://docs.amd.com/v/u/en-US/axi_uartlite_ds741
https://docs.amd.com/v/u/en-US/axi_uartlite_ds741
https://digilent.com/shop/fpga-boards/programmers/
https://digilent.com/shop/fpga-boards/programmers/
https://digilent.com/shop/fpga-boards/programmers/
https://huggingface.co/docs/transformers/en/model_doc/bert
https://huggingface.co/docs/transformers/en/model_doc/bert
https://huggingface.co/docs/transformers/en/model_doc/bert
https://ieeexplore.ieee.org/document/8695879/
https://ieeexplore.ieee.org/document/9474043/
http://arxiv.org/abs/2208.06118
http://arxiv.org/abs/2208.06118
http://arxiv.org/abs/2208.06118
http://arxiv.org/abs/2208.06118
http://refhub.elsevier.com/S0141-9331(25)00090-0/sb51
http://refhub.elsevier.com/S0141-9331(25)00090-0/sb51
http://refhub.elsevier.com/S0141-9331(25)00090-0/sb51
http://refhub.elsevier.com/S0141-9331(25)00090-0/sb51
http://refhub.elsevier.com/S0141-9331(25)00090-0/sb51
http://refhub.elsevier.com/S0141-9331(25)00090-0/sb51
http://refhub.elsevier.com/S0141-9331(25)00090-0/sb51
https://ieeexplore.ieee.org/document/9976354/

E. Kabir et al. Microprocessors and Microsystems 120 (2026) 105223
Dr. Ehsan Kabir has been working as a Lecturer of the
Computer Engineering program at Texas A & M University
Texarkana since August 2025. He has recently completed
his Ph.D. in Computer Engineering at the University of
Arkansas, Fayetteville, where his research focused on devel-
oping machine learning accelerators using FPGA technology.
He received his BSc. in Electrical & Electronics Engineering
in 2016. Over the past five years, through a combination
of research, coursework, and hands-on projects, he has
built strong expertise in FPGAs, embedded systems, machine
learning, RTL and HLS design, and hardware–software co-
design. He is now seeking opportunities to apply these skills
in innovative and impactful ways. His research interests are
reconfigurable computing, embedded systems, and machine
learning.

Dr. Jason D. Bakos is a Professor of Computer Science and
Engineering at the University of South Carolina, Columbia.
His research focuses on high-performance domain-specific
architectures, including those based on reconfigurable,
graphical, many-core, digital signal, automata, and neuro-
morphic processor technology. He is currently serving as
associate editor for ACM Transactions on Reconfigurable
Technology and Systems (TRETS). Dr. Bakos received his
Ph.D. in Computer Science from the University of Pittsburgh
in 2005 and his B.S. in Computer Science from Youngstown
State University in 1999.
18
Dr. Miaoqing Huang is an associate professor in the
Department of Electrical Engineering and Computer Science
at the University of Arkansas. He received his BS degree
in electronics and information systems from Fudan Uni-
versity, China, in 1998, and the PhD degree in computer
engineering from The George Washington University, in
2009. His research interests are Heterogeneous many-core
architecture, Hardware-oriented security, high-performance
computing, and hardware design.

Dr. David Andrews is a professor of Electrical Engineering
& Computer Science at the University of Arkansas, Fayet-
teville. He joined there as the Mullins Endowed Chair of
Computer Engineering in 2008. His research interests are in
the general area of embedded systems architectures, parallel
and distributed real-time systems, and reconfigurable com-
puting. He received his Ph.D. from Syracuse University in
1992.

	A runtime-adaptive transformer neural network accelerator on FPGAs
	Introduction
	Related Work
	Background
	Transformer Architecture
	High Level Synthesis Design

	ADAPTOR's Architecture
	Attention Module
	QKV PM module
	QK PM module
	SV PM module

	Feedforward Network Module
	FFN1PM module
	FFN2PM module
	FFN3PM module

	Load Weights Unit
	Load Inputs Unit
	Load Biases Unit
	Activation Unit
	Layer Normalization Unit
	Bias Add Unit

	System Design and Optimizations
	Theoretical Model
	Model for DSP utilization
	Latency model for Attention Module
	Latency model for FFN1 Module
	Model for BRAM utilization
	Latency model for LN Module
	Latency model for FFN2 Module
	Latency model for FFN3 Module

	Evaluation and Results
	Conclusion
	Declaration of competing interest
	Acknowledgments
	Appendix. Supplementary Materials
	Data availability
	References

