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Abstract
In this paper, we propose the CrossNAS framework, an automated
approach for exploring a vast, multidimensional search space that
spans various design abstraction layers—circuits, architecture, and
systems—to optimize the deployment of machine learning work-
loads on analog processing-in-memory (PIM) systems. CrossNAS
leverages the single-path one-shot weight-sharing strategy com-
bined with the evolutionary search for the first time in the context
of PIM system mapping and optimization. CrossNAS sets a new
benchmark for PIM neural architecture search (NAS), outperform-
ing previous methods in both accuracy and energy efficiency while
maintaining comparable or shorter search times.

CCS Concepts
• General and reference→ Design; • Computing methodolo-
gies→ Neural networks; • Hardware→ Emerging architec-
tures.
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processing-in-memory, neural architecture search, weight-sharing,
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1 Introduction
Processing-in-memory (PIM) architectures have emerged as promis-
ing alternatives to conventional vonNeumann-basedmachine learn-
ing (ML) hardware [13]. These architectures exploit features such as
massive parallelism, analog computation, and the ability to perform
computations directly where data is stored, leading to significant
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Figure 1: The CrossNAS method explores a multi-
dimensional search space across multiple design abstraction
layers—circuit, architecture, and system levels—using a
custom multi-objective search and optimization process.

performance improvements [3, 7, 22]. The foundation of most PIM
architectures is based on memristive crossbar arrays, which uti-
lize resistive memory technologies such as resistive random-access
memory (RRAM) and magnetoresistive random-access memory
(MRAM) [30]. These arrays enable matrix-vector multiplication
(MVM) in the analog domain using basic circuit laws [8, 11].

Despite the progress in PIM architectures, previous research
indicates that deploying pre-trained ML models, designed and opti-
mized for digital von Neumann architectures, does not consistently
achieve comparable performance on analog PIM architectures [2].
This is caused by several factors, including the limited numerical
precision of memristive devices [18], and circuit imperfections such
as interconnect parasitics [1], and device variations [14].

An alternative strategy for mapping and deploying MLmodels to
PIM architecture includes the automated tuning of neural architec-
ture parameters alongside PIM circuit and device-level hyperparam-
eters to achieve specific design objectives. NACIM [12] and UAE
[28] provide such exploration frameworks based on reinforcement
learning and LSTM controller, respectively, but they explore only
VGG-like models, which limits their performance. NAS4RRAM [29]
also provides a similar framework for ResNet-like architectures.
NACIM, UAE and NAS4RRAM need to train the sampled architec-
tures from scratch to estimate the accuracy which increases the
search time. NAX [19] trains an over-parameterized network for
both architecture and hardware optimization but their architec-
ture search space only contains filter sizes for each layer, lacking
block types or channel numbers. Gibbon [26] uses a recurrent neu-
ral network (RNN)-based predictor for estimation of accuracy and
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Figure 2: (a) The analog PIM architecture with multiple banks including several interconnected tiles. (b) The PIM tile consists
of a network of processing elements (PEs). (c) The PEs include memristive crossbars and signal conversion units.

hardware performance, but it only includes ResNet-like blocks in
their architecture. AnalogNAS [5] trains a surrogate model which
predicts the behavior of searched architectures but they mostly fo-
cus on ResNet-like architectures and PIM configuration parameters
are not included in the search space.

In this work, we present the CrossNAS framework, an automated
approach for exploring a vast multidimensional search space across
PIM design abstraction layers, including circuit, architecture, and
system levels, as shown in Fig. 1. We propose a weight-sharing-
based neural architecture search (NAS) approach to explore the
cross-layer search space, encompassing diverse neural building
blocks, convolutional channel configurations, layer-specific quanti-
zation, and PIM circuit-level hyperparameters.

The main challenge of the weight-sharing approaches is to over-
come the weight coupling among different architectures within
the supernet, which raises concerns about the effectiveness of in-
herited weights for a specific architecture. Various weight-sharing
approaches have been previously explored for neural architecture
search [4, 6, 9, 20, 24, 27, 31]. Many weight-sharing methods em-
ploy continuous relaxation to parameterize the search space, where
architecture distribution parameters are jointly optimized during
supernet training using gradient-based techniques [20, 27]. After
optimization, the best architecture is sampled from the distribu-
tion. However, the joint optimization method entangles architec-
ture parameters with supernet weights, and the greedy nature of
gradient-based methods introduces bias, potentially misleading the
architecture search. The one-shot paradigm [4, 6] alleviates this
issue by decoupling the architecture search from supernet training.
It defines the supernet and performs weight inheritance similarly,
without architecture relaxation. However, the issue of weight cou-
pling among different architectures still persists. To overcome this
issue, single-path [9, 24, 31] NAS has been proposed, where all archi-
tectures are optimized simultaneously, through uniform sampling
during supernet training.

The CrossNAS framework utilizes the single-path one-shot [9]
weight-sharing strategy to find the optimum neural model and
corresponding PIM parameters. The process involves training an
overparameterized supernet based on neural search space, followed
by using an evolutionary algorithm to select optimal subnets based
on multi-objective fitness functions. The contributions of our work
can be summarized as follows:

• Creating a multi-dimensional cross-layer search space in-
cluding different architectures, channel counts, layer-specific
weight and activation bit widths, as well as PIM parameters
such as crossbar size and the precision of analog-to-digital
(ADC) and digital-to-analog (DAC) converters. We introduce
new parameters to the PIM search space, allowing for the
selection of different neural building blocks for each layer
of the model.

• Adapting the single-path one-shot weight-sharing strategy
along with the evolutionary search for the first time in the
context of mapping and optimization of PIM systems.

• Establishing a new benchmark for PIM neural architecture
search that surpasses prior works in terms of accuracy and
energy efficiency.

2 PIM Architecture
Figure 2 illustrates the structure of the analog PIM architecture
utilized in this work [32]. This architecture features multiple PIM
banks, a global buffer, a global accumulator, and a PIM controller,
as shown in Fig. 2 (a). The PIM controller oversees data transfer
between DRAM and PIM banks and receives status updates from the
CPU. The global buffer and global accumulator support elementwise
summation, which is crucial for implementing skip connections in
ML models such as ResNet [10].

Each PIM bank is structured into arrays of tiles interconnected
via a network-on-chip (NoC). Within each tile are processing ele-
ments (PEs), a poolingmodule, and input/output buffers, as depicted
in Fig. 2 (b). The PEs include memristive crossbars and peripheral
circuits such as ADCs, DACs, and a post-processing unit for han-
dling nonlinear vector operations. The memristive crossbars exe-
cute MVM operations in the analog domain by leveraging basic
circuit principles: Ohm’s law is used for multiplication (𝐼 = 𝐺𝑉 ),
while Kirchhoff’s law enables accumulation via charge conserva-
tion [2, 11]. The weight kernels are expanded into a vector and
loaded onto crossbar columns by adjusting the conductance (𝐺) of
memristive devices, while the input feature maps are applied as
input voltages (𝑉 ) to the crossbar. In this work, we use MNISIM 2.0
[32] to emulate PIM circuit behavior and map ML models onto PIM
hardware, allowing us to measure model accuracy, as well as PIM
energy consumption and latency.
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Figure 3: Optimization flow for the CrossNAS framework.

3 The Proposed CrossNAS Methodology
Figure 3 provides a high-level description of the proposed CrossNAS
framework which includes four main steps. ❶ Train an overparame-
terized supernet comprising all possible architectures in the search
space using a single-path one-shot weight-sharing strategy. ❷ Use
an evolutionary algorithm to search subnet architectures and evalu-
ate them based on a multi-objective fitness function (FF) comprising
accuracy and performance metrics. We use corresponding inher-
ited weights from the supernet to approximate accuracy for the
subnets, so no retraining is required. We adopt a behavior-level
PIM simulator MNSIM 2.0 [32] for fast calculation of the hardware
performance metrics. ❸ The single-path one-shot weight-sharing
strategy is utilized to train a mixed-precision quantization supernet
based on the selected neural network (NN) architecture comprising
all possible quantization scenarios in the quantization search space.
❹ Using an evolutionary algorithm, we search the quantization
space and PIM parameters to maximize FF. To calculate the FF,
supernet weights are sent to MNSIM to measure the PIM-based
NN accuracy and hardware performance metrics for the candidate
quantization map and PIM parameters.

The single-path one-shot NAS method is described in section 3.1.
The supernet training and subnet search methods for NN architec-
tures (steps ❶ and ❷) are described in section 3.2. Finally, section
3.3 describes the mixed-precision quantization supernet training
along with the evolutionary search of quantization space and PIM
hyperparameters (steps ❸ and ❹).

3.1 Single-path One-shot NAS
According to the single-path one-shot NAS approach [9], the su-
pernet weight training and the subnet architecture search are per-
formed in two separate sequential steps. The supernet is an over-
parameterized network which contains the trained weights for all
possible architectures in the search space. The subnet is a subset of
the supernet which is evaluated using its inherited weights from
the supernet. For the supernet training, our goal is to minimize the
training loss for all possible architecture choices in the search space
as shown in equation (1),

Figure 4: Hierarchical sampling of subnet from supernet.
(a) building blocks, (b) NN architecture buildup by depth
sampling, (c) block sampling, (d) output channel sampling
via slicing of the weight matrix, and (e) layerwise weight and
activation quantization

𝑊𝑆𝑈𝑃 = argmin
𝑊

L𝑡𝑟𝑎𝑖𝑛 (N (𝐴,𝑊 )) (1)

where𝐴 is the architecture search space,N(𝐴,𝑊 ) represents the set
of all subnet architectures,L𝑡𝑟𝑎𝑖𝑛 is the loss function. To ensure that
the accuracy of a sampled architecture 𝑎 on the test dataset using
inherited weights𝑊𝑆𝑈𝑃 (𝑎) is highly predictive of the accuracy
of fully-trained architecture 𝑎, we simultaneously optimize the
weights for all architectures in the search space through uniform
sampling. So, equation (1) can be rewritten as,

𝑊𝑆𝑈𝑃 = argmin
𝑊

E𝑎∼Γ (𝐴) [L𝑡𝑟𝑎𝑖𝑛 (N (𝑎,𝑊𝑆𝑈𝑃 (𝑎)))] (2)

where Γ(𝐴) is a prior distribution of 𝑎𝜖𝐴. Thus, in each optimization
step, we randomly sample one architecture 𝑎 and only its corre-
sponding weight𝑊𝑆𝑈𝑃 (𝑎) is activated and trained. Therefore, By
the end of training, the supernet acts as an approximate model,
representing the weights of fully-trained subnet architectures.

Once the supernet is trained, we sample subnets from the trained
supernet architecture and evaluate them based on the desired FF.
During the subnet search, each of the sampled architecture inherits
weights from the supernet𝑊𝑆𝑈𝑃 as𝑊𝑆𝑈𝑃 (𝑎). The best architecture
is selected as,

𝑎∗ = argmax
𝑎𝜖𝐴

𝐹𝐹𝑡𝑒𝑠𝑡N(𝑎,𝑊𝑆𝑈𝑃 (𝑎)) (3)

Since each fitness function (𝐹𝐹𝑡𝑒𝑠𝑡 ) utilized in this work includes
accuracy as a key metric, we assess accuracy through inference
using weights inherited from the supernet. With access to these
pre-trained supernet weights, our search process becomes highly ef-
ficient, eliminating the need for retraining. To search for optimized
subnets based on specific FFs, we apply an evolutionary algorithm
as described in the following.
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Table 1: Network Configuration Settings

Architecture Search Space
No. of blocks in the network (𝑛) 1-8

The block type (𝐵𝑙𝑜𝑐𝑘) VGG, MVGG, RES
No. of out. channels in each block (𝐾 ) 32, 64, 128

Quantization Search Space
Weight bit width (𝑊𝐵) 5, 7, 9

Activation bit width (𝐴𝐵) 5, 7, 9
PIM Search Space

Crossbar size (𝑋𝑏𝑎𝑟 ) 32, 64, 128, 256
ADC resolution (𝐴𝐷𝐶) 4, 6, 8, 10
DAC resolution (𝐷𝐴𝐶) 1, 2

3.2 Neural Network (NN) Architecture Search
As shown in Figure 4, we build an overparameterized supernet
containing the weights for all possible architecture choices in the
search space. As building blocks for our network configuration,
we design three different convolutional choice blocks based on the
well-known VGG [23] and ResNet [10] architectures, as shown in
Fig. 4 (a). The three building blocks are: (1) the VGG block with
two 3 × 3 convolution layers with a stride of 1 followed by a 2 × 2
max pooling layer, (2) the modified VGG block (MVGG) which is
similar to VGG without the sub-sampling layer, and (3) the RES
block with two 3 × 3 convolution layers and a residual connection
with a 1 × 1 convolution block. The ReLU activation function is
used as the nonlinear unit in all of the building blocks. The full
search space is shown in Table 1.

As shown in Fig. 4 (b), the supernet is configured with the max-
imum depth (𝐷𝑚𝑎𝑥 ) and includes the highest possible number of
sequential convolutional (conv) blocks within the search space, fol-
lowed by fully connected layers as classification heads. Each conv
block in the supernet includes all three types of VGG, MVGG, and
RES blocks connected in parallel paths (Fig. 4 (c)). The size of the
conv layers weight matrices in the supernet are set according to
maximum input (𝑘𝑖𝑛) and output (𝑘𝑜𝑢𝑡 ) channel sizes possible (Fig.
4 (d)). At each training step, the algorithm randomly selects a depth
of 𝑛 blocks, one of the VGG, MVGG, or RES paths in each block, and
output channel count (𝑘𝑜𝑢𝑡 ) for each block. Based on this selection,
the first 𝑛 conv blocks and their corresponding paths are activated,
and the remaining 𝐷𝑚𝑎𝑥 − 𝑛 blocks are skipped. The weight ma-
trices of active conv layers and paths are then sliced according to
the selected input and output channels, updating only the relevant
kernel portions in that training step.

During the search phase, we employ an evolutionary algorithm
to identify top subnet candidates based on a multi-objective FF.
We introduce a PIM-oriented FF, defined as a weighted sum of
accuracy and the normalized energy-delay product (EDP), as shown
in equation (4).

𝐹𝐹 = 𝑤𝑎𝑐𝑐 × 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 − (1 −𝑤𝑎𝑐𝑐 ) × 𝐸𝐷𝑃𝑛𝑜𝑟𝑚 (4)

where𝑤𝑎𝑐𝑐 can be tuned to any number between 0 and 1 to adjust
the balance between accuracy and EDP.

We utilize the MNSIM 2.0 [32] simulator to determine the energy
and latency of the selected subnet model’s PIM implementation.
The𝑤𝑎𝑐𝑐 is set based on user preference. Since the accuracy of each
subnet—obtained using the inherited supernet weights—offers a

Algorithm 1: Evolutionary Subnet Search
Input: supernet weights (𝑊𝑆𝑈𝑃 ), training data (𝑡𝑟𝑎𝑖𝑛), test

data (𝑡𝑒𝑠𝑡 ), population (𝑃 ), maximum cycle (𝑐𝑦𝑐), top
k candidates (𝑡𝑜𝑝𝐾 ), mutation value (𝑛), crossover
value (𝑚), mutation probability (𝑝𝑟𝑜𝑏)

Output: The NN architecture with the best value of
corresponding fitness function

1 Initialize: 𝑃 = 50, 𝑃0=random P candidates, 𝑡𝑜𝑝𝐾 = 𝜙 ,
𝑛 = 𝑃/2,𝑚 = 𝑃/2, prob=0.1

2 for 𝑖 = 1 to 𝑐𝑦𝑐 do
3 𝐹𝐹𝑖−1 ⇐ Calculate_FF(𝑊𝑆𝑈𝑃 , 𝑡𝑟𝑎𝑖𝑛, 𝑡𝑒𝑠𝑡 , 𝑃𝑖−1)
4 topK⇐ Update_topK(topK, 𝑃𝑖−1, 𝐹𝐹𝑖−1)
5 𝑃𝑐𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟 ⇐ Crossover(topK, n)
6 𝑃𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛 ⇐Mutation(topK, m, prob)
7 𝑃𝑖 ⇐ 𝑃𝑐𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟 ∪ 𝑃𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛

8 end
9 Return the NN architecture with the highest value in topK

reliable estimate for comparing subnet architectures, we use this ap-
proximate accuracy rather than performing themore time-intensive
PIM-specific accuracy measurement in this phase. Because the su-
pernet’s batch normalization (BN) statistics do not apply to can-
didate subnets, we retrain only the BN layers on the training set
before evaluating subnet accuracy via inference. This BN retraining
takes just a few seconds, adding minimal computational or time
cost to the process.

We employ Algorithm 1 to identify the best-performing candi-
date subnet architecture from the search space. First, we initialize a
candidate set 𝑃𝑖 with 𝑃 random subnets, which will represent the
new population in each search cycle. Additionally, we maintain
a set 𝑡𝑜𝑝𝐾 to store the top 𝑘 subnet candidates with the highest
fitness. After calculating the FF for candidates in 𝑃𝑖 , we update
𝑡𝑜𝑝𝐾 in descending order based on fitness scores. Based on the
𝑡𝑜𝑝𝐾 candidates and a predefined mutation probability 𝑝𝑟𝑜𝑏, we
generate𝑚 crossover and 𝑛 mutation candidates, with the newly
generated candidates forming the updated 𝑃𝑖 . This process is re-
peated for a fixed number of cycles (𝑐𝑦𝑐). Ultimately, the candidate
with the highest fitness value is selected as the optimal architecture.

3.3 Quantization and PIM Configuration Search
We apply a single-path one-shot weight-sharing method to train
a mixed-precision quantization supernet, followed by a search for
optimal mixed-precision quantization and PIM configurations using
an evolutionary algorithm. This search is performed on the opti-
mal model architecture identified in the preceding NN architecture
search step, which defines the supernet architecture for this stage.
During training, weight and activation bit widths are randomly
sampled from the search space at each step, and these sampled bit
precisions are dynamically applied to the model, as shown in Fig. 4
(e). As a result, the supernet model approximates the fully trained
mixed-precision quantized weights, allowing for efficient represen-
tation of all possible mixed-precision subnet configurations.

We use a non-uniform quantization scheme [25] to quantize the
weights and activations, as shown in the below equation.
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𝑥𝑞 = clip
(
𝑟𝑜𝑢𝑛𝑑

(
𝜃 × 𝑥𝑖𝑛

𝛼

)
,−𝜃, 𝜃

)
× 𝛼

𝜃
(5)

where 𝛼 is the scaling parameter and [−𝜃, 𝜃 ] is the integer range.
𝜃 is calculated as 2𝑞−1 − 1, where q is the quantization bit width.
For weights, 𝛼 is set to the maximum absolute value in the weight
tensor. The activations have a broader range, which may include
individual extreme values. So, for a fair reflection of the overall
data distribution, we use |𝜇 | + 3|𝜎 | as the scaling parameter for
activations, where 𝜇 and 𝜎 are the mean and standard deviation
of the activation data, respectively. The scaling parameter 𝛼 can
be different in different mini-batches, which may cause jitter and
non-convergence in training [25]. Therefore, each time a new 𝛼 is
generated, it is combined with the 𝛼 from the previous mini-batch
using a weighted sum, as shown in the equation (6).

𝛼 =𝑚𝛼 + (1 −𝑚) × (|𝜇 (𝑥𝑖𝑛) | + 3|𝜎 (𝑥𝑖𝑛) |) (6)

To train a quantized model effectively, we begin by training a
floating-point model and then fine-tune its weights to develop a
mixed-precision quantization supernet. A fitness function and evo-
lutionary algorithm, similar to those used in the NN architecture
search step, are applied to explore various mixed-precision quan-
tization mappings and PIM configurations. We update the batch
normalization (BN) weights for the quantization subnet candidate
before evaluating PIM-based NN accuracy in MNSIM. A lower mu-
tation probability is assigned to the quantization map and a higher
mutation probability to the PIM configuration parameters so that
the top quantization candidates are cross-checked with different
PIM configurations. Once the best subnet candidate is identified,
we fine-tune the model for one last time to achieve optimal PIM
accuracy.

4 Results and Discussions
4.1 Experimental Setup
The proposed CrossNAS framework is compatible with any PIM
simulator that provides accuracy, energy, and delay metrics. For our
experiments, we use MNSIM 2.0 [32] as the baseline simulator. The
PIM accelerator is configured with a 64 × 64 tile arrangement, with
each tile containing 2×2 PE arrays, and uses 1-bit memristor devices
as the basic crossbar elements. We evaluate the performance of
CrossNAS against previous exploration methods, including NACIM
[12], UAE [28], NAS4RRAM [29], and Gibbon [26], on the CIFAR-
10 and CIFAR-100 [16] datasets. CIFAR-10 is selected because it
serves as a common benchmark used in all previous related studies,
allowing consistent comparisons. All experiments are conducted
on a single NVIDIA® GeForce® RTX™ 2080 Ti GPU paired with
an Intel® Core™ i9-9820X CPU at 3.30GHz.

4.2 Training and Search Details
During the neural network architecture search phase, we train the
supernet using stochastic gradient descent (SGD) optimizer [21] for
1000 epochs, starting with a learning rate of 0.1 and a batch size of
128. A learning rate scheduler is applied, reducing the learning rate
by a factor of 5 every 250 epochs. The evolutionary algorithm runs
for 10 cycles, evaluating 50 new candidates per cycle, consisting of
25 mutation candidates and 25 crossover candidates.

Table 2: Performance comparison against different PIM-
oriented NAS methods on CIFAR-10 dataset.

Method PIM Latency EDP Search
Accuracy (𝑚𝑠) (𝑚𝐽 ×𝑚𝑠) time (h)

NACIM [12] 73.9% - 1.55 59
UAE [28] 83% - - 154

NAS4RRAM [29] 84.4% - - 289
Gibbon [26] (acc opt.) 89.2% 3.44 1.67 6
Gibbon [26] (edp opt.) 83.4% 1.99 0.26 6
CrossNAS (𝑤𝑎𝑐𝑐=0.99) 91.27% 1.35 0.28 6
CrossNAS (𝑤𝑎𝑐𝑐=0.8) 88.09% 0.577 0.073 5

Table 3: Performance comparison against various well-
known deep learning models on CIFAR-10 Dataset.

Method PIM Energy Latency EDP Area
Accuracy (mJ) (ms) (𝑚𝐽 ×𝑚𝑠) (𝑚𝑚2)

AlexNet [17] 81.7% 0.38 0.99 0.38 103.99
VGG16 [23] 88.8% 2.68 6.43 17.22 499.57
ResNet18 [10] 89.7% 1.33 3.58 4.75 466.94

CrossNAS (𝑤𝑎𝑐𝑐=0.99) 91.27% 0.21 1.35 0.28 306.64
CrossNAS (𝑤𝑎𝑐𝑐=0.8) 88.09% 0.127 0.577 0.073 106.3

In themixed-precision quantization and PIM configuration search
phase, training begins with a floating-point (FP) model to achieve
high accuracy. An SGD optimizer is used with an initial learning
rate of 0.1, training for 200 epochs, with a step learning rate sched-
uler reducing the rate by a factor of 5 at epochs 60, 120, and 160.
The FP weights are then used to retrain the model with variable
mixed-precision quantization, employing the Adam optimizer [15]
for quantization-aware training (QAT). Due to the sensitivity of
QAT to learning rate, a low initial learning rate of 0.0008 is set,
which is further divided by 5 every 40 epochs using a step learning
rate scheduler.

4.3 Performance Comparison Results on
CIFAR-10 Dataset

Table 2 presents a comparison of our results with previous PIM-
oriented NAS frameworks on the CIFAR-10 dataset.

To obtain a model optimized for high accuracy, we set the𝑤𝑎𝑐𝑐

to 0.99 in the FF. The model selected by CrossNAS at the end of
optimization, shown in Fig. 6 (a), achieves an accuracy improvement
of 2.07% to 17.37% over previous frameworks. The search process
takes approximately six hours, comparable to Gibbon and up to
48.6× faster than other NAS methods. This model also achieves a 6×
reduction in energy-delay-product (EDP) compared to the model
selected by Gibbon under accuracy optimization.

Next, we optimize the model for EDP by setting 𝑤𝑎𝑐𝑐 to 0.8 in
the FF, leading to the model shown in Fig. 6 (b). This EDP-focused
model achieves a 3.6 × −21.2× reduction in EDP compared to pre-
vious methods, with only five hours of search time, and provides a
4.69% accuracy improvement over the EDP-optimized model from
Gibbon. Figure 5 shows the accuracy-EDP trade-off obtained for
various𝑤𝑎𝑐𝑐 values in our FF. Overall, CrossNAS establishes a new
benchmark for multi-objective optimization of PIM-based architec-
tures, surpassing previous methods.

We also compare the models optimized by CrossNAS with other
well-known deep learning models, such as AlexNet [17], VGG16
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Figure 5: CrossNAS search results on CIFAR-10 dataset com-
pared to previous PIM-oriented NAS methods.

Table 4: Performance comparison against various deep learn-
ing models on CIFAR-100 Dataset.

Method PIM Energy Latency EDP Area
Accuracy (mJ) (ms) (𝑚𝐽 ×𝑚𝑠) (𝑚𝑚2)

AlexNet [17] 57.1% 0.38 1.00 0.38 103.99
VGG16 [23] 67.2% 2.68 6.44 17.25 499.57
ResNet18 [10] 72.3% 1.33 3.59 4.76 466.94

CrossNAS (𝑤𝑎𝑐𝑐=0.99) 69.55% 0.81 3.62 2.93 282.12
CrossNAS (𝑤𝑎𝑐𝑐=0.8) 60.09% 0.193 1.096 0.211 343.436

[23] and ResNet18 [10], as presented in Table 3. The accuracy-
optimized model achieves an accuracy improvement of 1.57%-9.57%
compared to these models, along with an EDP reduction of 1.35 ×
−61.5×. The EDP-focused model delivers an EDP reduction of
5.2 × −235.9×, with a slight accuracy loss compared to VGG16
and ResNet18.

4.4 Performance Comparison Results on
CIFAR-100 Dataset

Here, we analyze the performance of CrossNAS in optimizing mod-
els for the CIFAR-100 dataset and compare the results with those
of well-known deep learning models, as listed in Table 4. Similar
to CIFAR-10, we set the𝑤𝑎𝑐𝑐 to 0.99 to obtain an accuracy-focused
model, leading to the model shown in Fig. 6 (c). The accuracy-
optimized model achieves a 12.45% accuracy improvement over
AlexNet, and a 2.35% improvement over VGG16, but experiences a
2.75% accuracy drop compared to ResNet18. The accuracy drop oc-
curs because ResNet18 has channel numbers as high as 512, whereas
our designed search space limits the maximum channel number
to 128 to optimize EDP. Therefore, the accuracy-focused model
achieves a 1.62× reduction in EDP compared to ResNet18. Addi-
tionally, by setting𝑤𝑎𝑐𝑐 to 0.8, we obtain an EDP-focused model,
shown in Fig. 6 (d), which results in a 1.8×−22.6× reduction in EDP
compared to other models, along with a 3% accuracy improvement
over AlexNet. Note that a stride of 2 is used in the first 3 × 3 and
1 × 1 conv layers of the RES block when optimizing the models for
CIFAR-100 by CrossNAS.

4.5 Analysis of Selected Models
By analyzing various models optimized with different 𝑤𝑎𝑐𝑐 val-
ues in the fitness function, we gain important insights that aid in
designing PIM-specific model architectures tailored to particular
design objectives.

Based on our observations from the optimizedmodels selected by
CrossNAS, shown in Fig. 6, the EDP-focused models for the CIFAR-
10 dataset typically select the VGG block as the first block, as it
reduces the feature map size through max pooling. This reduction

Figure 6: Block types along with channel numbers (𝐵𝑙𝑜𝑐𝑘/𝐾)
selected by CrossNAS for (a) CIFAR-10 dataset with 𝑤𝑎𝑐𝑐 =

0.99 and (b)𝑤𝑎𝑐𝑐 = 0.8; (c) CIFAR-100 dataset with𝑤𝑎𝑐𝑐 = 0.99
and (d)𝑤𝑎𝑐𝑐 = 0.8; (e) corresponding PIM circuit configuration
and quantization color map. AAP denotes adaptive average
pooling, WB and AB denote weight and activation bit width,
respectively. Underlined blocks indicate 𝑠𝑡𝑟𝑖𝑑𝑒 = 2.

in feature map size lowers the hardware cost in subsequent layers,
thereby reducing the overall EDP. For the CIFAR-100 dataset, the
EDP-focused models tend to choose either the RES (𝑠𝑡𝑟𝑖𝑑𝑒 = 2) or
VGG block as the first block, as both reduce the feature map size
through higher stride or pooling layers.

From the mixed-precision quantization map, highlighted by var-
ious colors in Fig. 6, we observe that the EDP-focused models se-
lected by CrossNAS tend to use higher weight bit widths in the
middle convolutional layers, while the head and tail layers have
lower weight bit precision. The activation bit width is generally
lower in the middle layers, whereas the head and tail layers exhibit
higher activation precision. For shallower models, e.g., Fig. 6 (b),
there is a tendency to apply the same activation bit width across
the entire architecture.

From the PIM circuit configuration selected by CrossNAS, shown
in Fig. 6 (e), we observe that the EDP-focused models prefer a
crossbar size of 256 × 256. This configuration, combined with an
8-bit ADC, offers the best balance between accuracy and EDP. Most
of the EDP-focused models opt for a 2-bit DAC, resulting in minimal
accuracy loss, while improving both latency and energy efficiency
due to the reduced number of digital-to-analog conversions.

5 Conclusion
In this paper, we present CrossNAS, an efficient weight-sharing-
based NAS framework for PIM systems. We construct a multi-
dimensional cross-layer search space that includes diverse archi-
tectures, layer-specific weight and activation bit widths, and PIM
parameters such as crossbar size and ADC/DAC precisions. Our
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search leverages a multi-objective fitness function to explore vari-
ous neural network architectures and PIM hardware configurations.
CrossNAS outperforms previous PIM-oriented NAS methods and
most of the well-known deep learning models, identifying superior
models in terms of both accuracy and EDP.
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