
CSCE 612
Lab 4

Course Project: Design of Accumulator-Based ALU

Introduction
Lab 4 is the course project. For this project, you will work in teams to build your
first large-scale VLSI design. To complete this project, you may use the cell library
developed by any team member in order to achieve synthesis runs with the best
performance. The goal of this project is to design a 16-bit accumulator-based (DSP-
like) ALU.

Your ALU must have a top-level interface as shown in Figure 1 and as described in
Table 1.

in (16)

clk

rst

op (4)

acc (32)

busy

valid

Figure 1: Interface

Pin
Name Direction Width Description
rst in 1 active-high synchronous reset
clk in 1 rising-edge clock signal
valid in 1 active-high signal that will cause in and op inputs to

be internally latched on the rising-edge of the clock
whenever the busy output signal is not asserted

in in 16 16-bit input
op in 4 operation code (see Table 3)
acc out 32 current value of accumulator – valid on falling-edge of

busy
busy out 1 active-high busy signal, indicates that ALU is busy

performing an operation
Table 1: Interface Description

Your ALU must implement the 13 operations described in Table 2.

Name Operation Description
NOT ACC[15 downto 0]=NOT(ACC[15 downto 0]) bit-wise NOT (compliment)
AND ACC[15 downto 0]=ACC[15 downto 0] AND IN bit-wise AND
OR ACC[15 downto 0]=ACC[15 downto 0] OR IN bit-wise OR

XOR ACC[15 downto 0]=ACC[15 downto 0] XOR IN bit-wise XOR
ADD ACC[15 downto 0]=ACC[15 downto 0] + IN signed addition
SUB ACC[15 downto 0]=ACC[15 downto 0] – IN signed substraction

MULT ACC[31 downto 0]=ACC[15 downto 0] * IN unsigned multiplication
DIV ACC[31 downto 16]=ACC MOD IN

ACC[15 downto 0]=ACC / IN
unsigned division

SLL ACC=ACC SLL IN shift left logical
SRL ACC=ACC SRL IN shift right logical
SRA ACC=ACC SRA IN shift right arithmetic
ROL ACC=ACC ROL IN rotate left
ROR ACC=ACC ROR IN rotate right

Table 2: List of Operations

The operation encoding is shown in Table 3.

Name Op(3 downto 0)
NOT 0000
AND 0001
OR 0010

XOR 0011
ADD 0100
SUB 0101

MULT 0110
DIV 0111
SLL 1000
SRL 1001
SRA 1010
ROL 1011
ROR 1100

Table 3: Operation Code Encoding

Implementation Requirements
The ALU must be capable of operating at a clock speed of 20 MHz (50 ns clock
period). However, you are not required to meet any requirements for number of
cycles per operation. The layout must fit within the core area of a MOSIS “tiny chip,”
which is a 900 μm x 900 μm square.

Subtraction Implementation
The tutorial guided you through the design of a 32-bit carry-lookahead adder. You
may use a similar design for the 16-bit adder required for this design. However, in
order to implement subtraction, you will need to add additional logic around the
adder.

First, recall that when using two’s complement integer representation, the sign of a
value may be changed by taking the complement of a value and adding one.

1+=− AA

Also recall that subtraction is equivalent to adding one value to the negated form of
another value.

()BABA −+=−

Finally, recall that addition is an associative operation.

() () 11 ++=++ BABA

Therefore, you can easily turn an adder into a subtractor by inverting the B input
then adding one to the sum. This may easily be performed using a single adder by
taking advantage of the “carry in” input to the adder.

Multiplier Implementation
For this project, you may implement a multiple-cycle multiplier and divider. The
easiest way to do this is to design an add-then-shift multiplier and a subtract-then-
shift divider.

The multiplier design is control logic is shown in Figure 2. Your design will multiply a
16-bit multiplicand, provided by the input, by a 16-bit multiplier, provided by the
low-order 16 bits of the accumulator register. This operation produces a 32-bit
result in the accumulator register.

Figure 2: Multiplier Design

Note that the “ALU” shown in Figure 2 is not an entire ALU, but an adder/substractor.

Example
Assume a 4-bit multiplicand register and a 8-bit product register. If the multiplicand
is 9 and the multiplier is 5, Table 4 illustrates the operation of the multiplier.

multiplicand register (MR) product register (PR) next action it
1001 0000 0101 LSB of PR is 1, so PR[7:4]=PR[7:4]+MR 1
1001 1001 0101 shift PR 1
1001 0100 1010 LSB of PR is 0, so shift 2
1001 0010 0101 LSB of PR is 1, so PR[7:4]=PR[7:4]+MR 3
1001 1011 0101 shift PR 3
1001 0101 1010 LSB of PR is 0, so shift 4
1001 0010 1101 PR is 45, done! X

 Table 4: Multiplier Example

Divider Implementation
Fortunately, the same hardware (aside from differences in the control logic) may be
used for the divider. A divider design is shown in Figure 3.

Figure 3: Divider Design

Example
Assume a 4-bit divisor register and a 8-bit remainder register. If the divisor is 4 and
the dividend is 11, Table 5 illustrates the operation of the divider.

Table 5: Divider Example

divisor register (DR) remainder register (RR) next action it
0100 0000 1011 shift RR left 1 bit 0
0100 0001 0110 RR[7:4]=RR[7:4]-DR 1
0100 1101 0110 RR<0, so RR[7:4]=RR[7:4]+DR 1
0100 0001 0110 shift RR to left, shift in 0 1
0100 0010 1100 RR[7:4]=RR[7:4]-DR 2
0100 1110 1100 RR<0, so RR[7:4]=RR[7:4]+DR 2
0100 0010 1100 shift RR to left, shift in 0 2
0100 0101 1000 RR[7:4]=RR[7:4]-DR 3
0100 0001 1000 RR>=0, so shift RR to left, shift in 1 3
0100 0011 0001 RR[7:4]=RR[7:4]-DR 4
0100 1111 0001 RR<0, so RR[7:4]=RR[7:4]+DR 4
0100 0011 0001 shift RR to left, shift in 0 4
0100 0110 0010 shift RR[7:4] to right
0100 0011 0010 done, quotient=2, remainder=3

What to Submit
The project report must consist of the following components.

• All high-level designs
Submit a plot for each behavioral design. This includes any graphical designs
or pure HDL. Feel free to add comments/notes where appropriate to explain
any details concerning your designs. You are not required to submit any HDL
that was generated from graphical designs.

• Testbench design

Submit the design of your testbench.

• Behavioral simulation
Submit the waveform for the behavioral simulation of your testbench.

• Synthesized designs

Submit plots revealing the entire hierarchy of your entire synthesized (gate-
level) design.

• Synthesis reports

Submit synthesis reports for timing and cell usage.

• Layout
Submit a plot of your final layout from the Cadence IC-Tools. Add rulers to
show the dimensions of your final layout.

• Timing simulation

Submit the waveform of the testbench simulation that includes the cell and
interconnect delay models.

• Place-and-route timing reports

Submit a place-and-route report for the timing of your design. Also submit a
report for dynamic power analysis over your testbench simulation.

