Exam 1

CS 447: Computer Organization and Assembly Language Programming

Date: 10/18/01

Fall 2001

Jason D. Bakos

Name (please print): __

Instructions
This is a CLOSED BOOK AND NOTES exam. You may use calculators and scratch paper. Write clearly to minimize legibility issues when grading. I recommend using a pencil if you have one. Point values for each question are provided. Use these as a tool to maximize your score if you cannot complete the exam in time. There are 135 possible points available. If you have any questions, see me. If you are unclear on what a question is asking, ASK! Good luck!

Chapter 1: Computer Abstractions and Technology

1.
(3 points) Define Instruction Set Architecture. What are its two main characteristics? Be precise!

Interface between the hardware and software – includes instruction set and instruction encoding.

(Lecture 1, slide 4)
2.
(4 points) Provide four types (categories/classes) of instructions, as defined in class.

arithmetic/logical, constant manipulation, comparison, load/store, branch, jump, I/O, data movement

(Lecture 1, slide 6)

3.
(1 point) Software that translates assembly code into machine code: assembler
(1 point) Software that translates high-level code into machine code: compiler
(2 points) Of these two pieces of software, which is more computationally complex and why?

Compiler, because translation from high-level language to machine language is not one-to-one

(Lecture 1, slides 7,9)

(1 point) Software that executes (interprets) MIPS instructions on a non-MIPS processor (SPIM) is a: simulator

(Class lecture, 9/18/01)
4.
(1 point) For the MIPS R2000/R3000 architecture, what is the “bit width” of a word?

32 bits

(Lecture 1, slide 8)

(3 points) Provide three types of data that the computer represents as words.

encoded instructions, integers, memory addresses

(Programming Project 1)
5.
(2 points) What electrical devices form the basic digital-logic gates that are physically manufactured on the surface of a processor?

transistors

(Lecture 1, slide 10)
6.
(1 point) What is the silicon disc called that is created early on during a processor manufacturing process?

wafer (Lecture 1, slide 12)

(1 point) After it is “diced” into smaller silicon squares/rectangles, what are these called?

dies (Lecture 1, slide 11)

7.
(4 points) If, during the run of a manufacturing process, 1200 of the 2000 dies that are manufactured test OK, what is the effective yield?

[image: image1.wmf]#1200

.660%

#2000

ofgooddies

oftotaldies

===

(Lecture 1, slide 13)
Chapter 2: Performance

1.
(4 points) Define response (execution) time.

response (or execution) time -- the time between the start and the finish of a task

(2 points) Define throughput.

throughput -- total amount of work done in a given time

(Lecture 2, slide 3)
2.
(4 points) Describe why using the clock rate of a processor is a bad way to measure performance. Provide a concrete example using the performance equation to back up your assertion.

CPI must also be provided when clock rate is used as a performance metric. CPI “links” clock rate to instructions executed.

Machine A is 200MHz, CPI of 1

Machine B is 400MHz, CPI of 4

For a given program...

[image: image2.wmf]6

1

20010

instructioncount

MachineAruntime

´

=

´

[image: image3.wmf]6

4

40010

instructioncount

MachineBruntime

´

=

´

Machine B will clearly be slower for any program, in spite of its higher clock rate.

(Lecture 2, slide 12)
3.
(6 points) What is the average CPI of a 1.4 GHz machine that executes 12.5 million instructions in 12 seconds?

[image: image4.wmf]9

6

12(1.410)

1344

12.510

CPI

´´

==

´

(Lecture 2, slide 11)

4.
(4 points) What is the CPI of a program execution that consists of the following instruction types (classes) and CPI:

	Instruction class
	CPI
	Percentage

	A
	1.4
	25%

	B
	2.4
	70%

	C
	2
	5%

CPI = .25(1.4) + .70(2.4) + .05(2) = 2.13

(Lecture 2, slide 14)
5.
(6 points) Suppose one machine, A, executes a program with an average CPI of 1.9. Suppose another machine, B (with the same instruction set and an enhanced compiler), executes the same program with 20% less instructions and with a CPI of 1.1 at 800MHz. In order for the two machines to have the same performance, what does the clock rate of the first machine need to be?

[image: image5.wmf]6

1.91.1(1.0.20)

80010

1.7

A

A

ICIC

CR

CRGHz

´´-

=

´

=

(Lecture 2, slide 12)

6.
(4 points) Use Amdahl’s Law to compute the new execution time for an architecture that previously required 20 seconds to execute a program, where 20% of the instructions executed were load/stores, if the time required for a load/store operation is reduced by 30% (amount of improvement for load/stores = 1/.70 = 1.44).

[image: image6.wmf]20(.20)

20(.80)

1.44

18.8

Timeaffectedbyimprovement

TimeafterimprovementTimeunaffectedbyimpr

ovement

Amountofimprovement

Time

Times

=+

=+

=

(Lecture 2, slide 16)

7.
(2 points) What’s the best way to measure performance of a machine? Clock rate, CPI, MIPS, FLOPS (floating-point operations per second), memory latency, or average execution time? Why?

Average execution time, since that’s all we care about in the end (performance is based solely on execution time).

(Lecture 2, slide 5)
Chapter 3: MIPS Instructions

1.
(4 points) Convert –76 to hexadecimal for a 12-bit register.

First, convert 76 to binary using the divide-by-2 scheme we covered in class. Then perform 2’s compliment on the result, and sign extend to 12 bits. Then, convert to hex, starting from the right. We know this will work because we can represent –212-1 to 212-1-1 (-2048 to 2047) with 12 bits.

76

=0000 0100 1100

1’s compliment
=1111 1011 0011

2’s compliment
=1111 1011 0100

hex

=FB4

(Class lecture)
2.
(4 points) List 3 different memory addressing modes available for load and stores for standard MIPS assembly language.

• symbolic address

• symbolic address with register index

• decimal_offset($basereg)

(Lecture 3, slide 11)
(2 points) List all the memory addressing modes available for loads and stores for MIPS machine language.

decimal_offset($basereg)

(Lecture 3, slide 11)
Note: for the next three questions, assume the instruction word is INST31..0.

(2 points) Provide an equation for computing the effective address of a load/store target using the data provided in an encoded load/store instruction. What is this addressing mode called?

C(INST26..22)+INST15..0

Base-displacement addressing

(Lecture 3, slide 11)
(2 points) Provide an equation for computing the effective address of a branch target using the data provided in an encoded branch instruction. What is this addressing mode called?

C(PC)+INST15..0*4

PC-relative addressing

(Class lectures and textbook)

(2 points) Provide an equation for computing the effective address for a jump using the data provided in an encoded jump instruction (assuming the jump instruction is j or jal). What is this addressing mode called?

C(PC)31..27 & INST25..0 & “00”

Pseudo-direct addressing

(Class lectures and textbook)
(6 points) Convert the following assembly-language instruction to machine instruction(s) represented in hexadecimal. Assume the data segment of the program starts at 1010 010016 and that INPUT is offset from the beginning of the data segment by 24 bytes. Also assume that register $1 is the only register you may use for resolving pseudoinstructions.

lb $2,INPUT+2($3)

Note: the opcode for lb is 2016.

First, we need to convert this statement to assembly language...

lui $1,0x1100

ori $1,$1,0x0100

add $1,$1,$3

addi $1,$1,2

lb $2,24($1)

Next, we need to encode the instructions...

0x3c011100

0x34210100

0x00230820

0x80220018

Because I only provided the opcode for lb, you will receive full credit for this question if you encoded the lb (regardless of the registers used in the instruction).

(Lecture 3, slide 12)
(6 points) There are only 3 different MIPS instruction formats. List them and show their encoding. Provide the bit widths and purpose of each field word (in the common-most cases) in the instruction.

R-type

	opcode (6)
	reg1 (5)
	reg2 (5)
	dest. reg (5)
	shamt (5)
	function (6)

I-type

	opcode (6)
	reg1 (5)
	reg2 (5)
	imm (16)

J-type

	opcode (6)
	target (26)

(Lecture 3a)
3.
(10 points) MIPS has the following pseudoinstruction defined, as part of its interface spec:

ror rdest, rsrc1, rsrc2

This instruction performs a rotate. That is, it is a right shift but the bits that are shifted in from the left are the same bits that are shifted out from the right. The source register is defined by rsrc1 and the rotate distance is defined in rsrc2. How would the following instruction be translated into nonpseudo-MIPS assembly language? Remember, pseudoinstruction translation uses register 1 as a temporary register.

ror $2, $3, $4

sub $1,$0,$4

sllv $1,$3,$1

srlv $2,$3,$4

or $2,$2,$1

(Class lecture and textbook)

(2 points) Describe the difference between shift right logical and shift right arithmetic.

Shift right logical shifts in 0’s, shift right arithmetic shifts in the sign bit.

(Lecture 3)

(2 points) Give a reason why someone would want to use a shift left operation.

To multiply by powers of 2

(Lecture 3)
4.
(20 points) Write a recursive assembly language routine called printover that takes the address of a 50-element halfword array and an integer as arguments. The routine iterates through the array, calling another routine called over for every element that is greater than the integer sent in as printover’s second argument. over’s arguments are the index of an element and its value. over has no return value, but printover returns the number of elements found. You only have to write printover. You may assume that over will not destroy any $a or $s registers. printover must save any registers that it destroys on the MIPS stack before doing anything else. Provide reasonable commentting for your code.

Here’s a sample solution... answers will vary.

printover:
addi $sp,$sp,-32

sw $ra,0($sp)

sw $s0,4($sp)

sw $s1,8($sp)

sw $s2,12($sp)

sw $s3,16($sp)

sw $s4,20($sp)

sw $s5,24($sp)

sw $s6,28($sp)

li $s0,0

index

li $s1,100

loop bound

li $s4,0

no. times over called

move $s5,$a0
array base

move $s6,$a1
num. to compare

loop:

add $s2,$s5,$s0
compute eff. address in $s2

lh $s3,0($s2)
load into $s3

ble $s3,$s6,skip
skip if $s3 <= $s6

addi $s4,$s4,1
increment counter

move $a0,$s0
set up arguments for over

move $a1,$s3

jal over

call over

skip:

addi $s0,$s0,2
increment index by 2

blt $s0,$s1,loop
branch back up if $s0<100

move $v0,$s4
set up return value (count)

lw $ra,0($sp)

lw $s0,4($sp)

lw $s1,8($sp)

lw $s2,12($sp)

lw $s3,16($sp)

lw $s4,20($sp)

lw $s5,24($sp)

lw $s6,28($sp)

addi $sp,$sp,32

jr $ra

(Lecture 3)
5.
(15 points) “Compile” the following C statement into MIPS assembly language.

for (i=a ; (i<b[c]) || (i<j) ; i+=2) b[i]=c;

lw $s0,a

lw $s1,b

lw $s2,c

lw $s3,j

loop:

add $s4,$s1,$s2

lw $s4,0($s4)

bge $s0,$s4,skip

bge $s0,$s3,skip

b out

skip:

add $s4,$s1,$s0

sw $s2,0($s4)

addi $s0,$s0,2

b loop

sw $s0,i
(Lecture 3)
6.
(2 points) Convert 6FA16 to decimal.

6(162) + 15(161) + 10(160) = 1786

(Class lectures)

_1065185385.unknown

_1065209546.unknown

_1065212622.unknown

_1065214072.unknown

_1065185386.unknown

_1065184313.unknown

