MCC Technical Report Number ACT-RA-215-90

ROI for DAI

Michael N. Huhns and David Murray Bridgeland

June 1990

’ MCC Nonconfidential \

Microelectronics and Computer Technology Corporation
Artificial Intelligence Laboratory
3500 West Balcones Center Drive
Austin, TX 78759-6509
(512) 338-3651
huhns@MCC.COM

Copyright ©1990 Microelectronics and Computer Technology Corporation.

All Rights Reserved. Shareholders of MCC may reproduce and distribute these materi-
als for internal purposes by retaining MCC'’s copyright notice, proprietary legends, and
markings on all complete and partial copies.

ROI for DAI

Michael N. Huhns and David Murray Bridgeland
Reasoning Architectures Group
MCC

Abstract

The Reasoning Architectures group at MCC has been conducting
research in the area of distributed artificial intelligence (DAT). This
executive summary presents the potential benefits (“return on invest-
ment”) to be gained from this research. In particular, we describe sev-
eral applications, ranging from process control to office automation,
that can be solved with RAD, a distributed expert system shell that
we have developed. RAD enables human and computational agents
to collaborate in solving problems.

1 Uses and Benefits

At a large chemical plant in rural Oklahoma, dozens of expert
systems are used to control the processing of petroleum-based
chemicals. As with any plant of this type, the processing is highly
interconnected, with chemicals made in one part of the plant
used in producing the chemicals made in another part of the
plant. Recently, a boiler failure caused an expert system to shut
down the production of a solvent that was needed in another
process producing latex paint. Unfortunately, the expert system
controlling the paint process did not find out about the shut down
until the solvent in the input pipe to the column dried up. After
the dried paint was cleaned from the column six months and $2
million later, the paint process was back on line.

The problem was that the processes in this plant were connected at the
physical level, but the expert systems were not connected at the knowledge
level, even though they were written in the same language, ran on the same
hardware, and were connected by ethernet. They were not designed to com-
municate! They were unaware of the decisions being made by the other

expert systems, so they were unable to take corrective action until, as in this
case, it was too late.

So, why not centralize the control of the plant by using just one large
expert system? Then there would be no need for communications. Unfortu-
nately, this makes control of the plant extremely complex and very unreliable.
Also, the development effort required for such a large expert system would
be prohibitive.

RAD has been developed to provide a better solution to this kind of
problem, and it can solve it in either of two possible ways. First, any expert
system constructed using RAD automatically has the ability to communicate
and interact with any other expert system constructed using RAD. Second,
any existing expert system constructed using another language can commu-
nicate with another through the RAD framework, without being rewritten.

An automotive parts manufacturer encountered a similar prob-
lem when it began to automate its factory. It installed small ex-
pert systems at each machining operation to monitor the parts
produced. When too many parts were produced out-of-tolerance,
the machine would be taken down for maintenance, such as to ad-
just or replace the tool. The length of down-time was dependent
on the amount of maintenance required.

Unfortunately, subsequent machining operations could not be
informed about the estimated down-time, and when their stock
failed to arrive they didn’t know what to do. If the down-time
was short, they could simply wait, but if the down-time was long,
they would have to seek an alternate source of stock, such as
inventory in a warehouse. If properly informed, upstream ma-
chining operations might be able to produce alternative parts, so
that the failed machine would cease to be a bottleneck.

RAD provides the same solution here as for the process-control problem: it
enables the expert systems to interact intelligently. The down-time can be
managed in the most productive way for the factory.

A manufacturer of electronic test equipment uses several ex-
pert systems to trouble-shoot the oscilloscopes it produces—one
expert system for the power supply, one for the waveform gen-
erator, one for the event counter, etc. However, when the filter

capacitor in the power supply fails, it causes a diode in the wave-
form generator to fail also. None of the expert systems is able
to diagnose this fault correctly, because the local problems they
are designed to analyze do not match the global behavior they
observe and are asked to explain.

Clearly, the trouble-shooting would be more successful if the expert systems
could reason jointly and cooperate. The alternative, constructing one large
expert system to perform the entire diagnosis, loses the benefits of modularity
inherent in the use of multiple expert systems. Furthermore, the individual
expert systems can be reused to trouble-shoot other pieces of equipment,
such as function generators and logic analyzers.

When customers of a major computer company call an 800-
number to report their computer system has crashed, the field
service division has a number of expert systems available to help
diagnose the reason for the crash. However, field service first
has to decide which of the expert systems to run. They do this
by asking the customer several questions about his system and
the circumstances of the crash, and by transferring his call, often
several times, to the appropriate field service engineer who knows
how to run the right expert system. Unfortunately, each engineer
who is contacted asks many of the same questions. Worse, multi-
ple faults or problems spanning the specialties of several engineers
are often misdiagnosed.

This is a problem in locating the proper expertise to apply and in coordinat-
ing its application when several experts are involved. Imagine the following
improvement to this scenario: when the call is received, the receptionist asks
a few key questions and enters the answers into a database of error reports.
An expert system, with expertise in overall system diagnosis and in the ca-
pabilities of specific field service engineers, analyzes the error report and
recommends a particular engineer. The call is transferred to that engineer,
along with the error report. By asking additional questions, this engineer
refines the error report and either runs his more specific expert system on
the customer’s problem or invokes the high-level expert system to transfer
the problem to a more suitable engineer. As a result, the customer is asked a

minimum number of questions, a complete record is obtained, and the appro-
priate diagnostic systems are invoked to determine the reason for the crash.
The keys to this scenario are having an expert system assisting each field
service person and an ability for these expert systems to communicate and to
reason collectively.

The claims department of a Northeast insurance company is
now using a database of document images, instead of paper files,
to manage the paperwork associated with the processing of a
claim. Rather than physically carrying files from one desk to
another, the workers access images of a client’s documents elec-
tronically. They would like to automate the workflows of claim
processing within the company, so that, depending on its features,
a particular claim is automatically routed to the right people. For
example, an automobile claim for more than the blue book value
of the car needs to be routed to someone who will investigate,
and probably lower the claim amount to the blue book value.
However, if the car is a 1965 Mustang, the blue book does not
reflect its value to collectors, and the claim needs to be routed to
someone with expertise in classic cars.

Other researchers have investigated the routing of work through an office
environment of distributed workstations [Singh and Forman 1988]. Our re-
search contributes to this effort by supporting the distributed intelligence
that is needed to handle the exceptions that inevitably arise. This intelli-
gence is best expressed in rules. RAD is specialized for encoding these rules
and then applying them at the appropriate times. In addition, an important
feature of RAD is that it can be distributed among the workstations; the
knowledge and reasoning needed for handling exceptions is then available at
the workstations where the exceptions occur.

The interconnection of workstations through communication networks has
led to new problems in software maintenance. Software maintenance is diffi-
cult, and is especially problematic when the software is meant to be executed
in a distributed environment. In this case, local modifications might be made
to the software that result in global incompatibilities and the failure of the
software to perform as expected. Consider the following scenario:

A software package for formatting documents (IXTEX) is dis-
tributed to all branch offices in an organization, allowing docu-
ments to be exchanged efficiently among the offices in raw form,
but then reformatted locally for use within each office. KTEX
is customized at each office to reflect preferences in the appear-
ance of documents and to include such things as a local address.
One office decides to include an abstract on the cover page of
its documents, using space reserved for a footer (which was not
being used anyhow). Unfortunately, a second office decides to
include a copyright notice in the footer to its documents. The
result? Documents can no longer be exchanged between these
two offices.

Now suppose that the formatting software is described by a set of beliefs,
and that changes to the software are justified by these beliefs. For example,
the justification for adding an abstract is the belief that the footer is not
being used. After their respective software modifications, the two offices
do not have consistent beliefs about the use of a footer. The distributed
truth-maintenance system in RAD maintains the consistency of such beliefs
and, in this case, would cause one of the offices to invalidate and remove its
modification, thereby restoring the compatibility of the software.

The above examples are within the reach of current RAD technology.
The following example articulates a future possibility for distributed artificial
intelligence: an automated electronic market!

Rosalind Shea, the senior partner of a Los Angeles legal firm,
decides she wants to upgrade the personal computers in her office.
She realizes that this is a sizable order—at least $300,000—and
hence she has significant market leverage. Rosalind starts up her
purchasing agent, an expert system for purchasing. The agent
downloads the latest product information from the electronic yel-
low pages of Pacific Telesis, and Rosalind browses through the
information. Finally she decides that she wants thirty 586-class
PCs, each with a 20-megabyte main memory, a 500-megabyte
hard disk, ethernet connections, and a CD ROM drive. She is
not brand sensitive, but she wants all products to rate at least
three stars in Info Review, and she wants a three-year full war-

ranty on everything. Finally, she would like everything delivered
and installed within a month, for the lowest price possible.

The agent contacts vendors of systems and components over
the next several hours. It negotiates back and forth with sales
agents (also expert systems) representing the vendors. These
sales agents have up-to-date information about products, prices,
and terms of sales. Like the purchasing agent, they exhibit so-
phisticated negotiating skills.

Finally, the purchasing agent settles on a package, choosing
one vendor to supply the PCs with the main memory and the
ethernet connections, a second to supply the hard drives, a third
to supply the CD ROM drives, and a local firm to do the in-
stallation. The purchasing agent has managed to cut deals for
extended warranties with the vendors of all components except
the hard drives, so it has purchased an extended warranty for the
hard drive from yet another vendor, a mainstream insurance com-
pany that has begun to write warranties electronically. The next
day, Ms. Shea approves the package and finalizes the contract.

An automated electronic market such as this requires a communication net-
work, a DAI communication protocol, negotiation abilities for agents with
different goals, and specific domain knowledge about sales, marketing, and
finance. We are developing the fundamental technologies, such as our pro-
prietary distributed truth-maintenance system, that permit this vision to
become a reality.

2 Background

Knowledge-based systems have become an important part of computing.
There are estimates of over 100,000 fielded systems to date. These systems
are mostly small, independent, and developed for specific applications using
off-the-shelf expert system shells. These shells, including OPS5, Knowledge
Craft, M.1, KEE, ART, Goldworks, Nexpert Object, and Proteus, are most
suitable for monolithic applications involving the knowledge of a single hu-
man expert. But two trends have recently become apparent: 1) systems are
being developed for larger and more complicated domains, and 2) there are

attempts to use several small systems in concert when their application do-
mains overlap. Both of these trends argue for knowledge-based systems to
be developed in a modular and distributed fashion, where the modules are
constructed to interact productively. It is convenient to treat these modules
as intelligent agents.

Distributed artificial intelligence is concerned with how a decentralized
group of intelligent computational agents should coordinate their activi-
ties to achieve their goals. When pursuing common or overlapping goals,
they should act cooperatively so as to accomplish more as a group than
individually; when pursuing conflicting goals, they should compete intelli-
gently. Interconnected agents can cooperate in solving problems, share ex-
pertise, work in parallel on common problems, be developed, implemented,
and maintained modularly, be fault tolerant through redundancy, represent
multiple viewpoints and the knowledge of multiple human experts, and be
reusable. Additional reasons and motivations are presented in [Huhns 1987],
[Bond and Gasser 1988], and [Gasser and Huhns 1989]. DAT is the appropri-
ate technology for applications where

e cxpertise is distributed, as in design;

e information is distributed, as in office automation;

e data are distributed, as in distributed sensing;

e rewards are distributed, as in automated markets;

e decisions are distributed, as in manufacturing control; and

e knowledge bases are developed independently but must be intercon-
nected or reused, as in next-generation knowledge engineering.

DAI has been gathering an increasing amount of attention lately. There
have been several successful implementations of DAI systems, notably the
Hearsay II system for speech understanding [Erman et al. 1980], the DVMT
for distributed sensing [Durfee et al. 1987], the Pilot’s Associate for control
of jet fighters [Smith and Broadwell 1988], and the MINDS system for infor-
mation retrieval [Huhns et al. 1987]. These systems were each developed for
a specific application. RAD is the first general-purpose platform for multia-
gent system development [Arni et al. 1990].

There have been many other attempts to develop systems of cooperating
agents. Early attempts, based on the blackboard model, involved agents with
independent knowledge bases [Jagannathan et al. 1989]. The independence
was achieved by restricting agent interactions to modifications of a global
data structure—a blackboard—and by minimizing overlap in the agents’
knowledge. Later systems allowed richer agent interactions and overlapping
knowledge, but the agents were required to have consistent knowledge and
to reason monotonically. This led to representational problems: different
experts in the same domain often have different perspectives and conflict-
ing knowledge, making it difficult to construct a coherent problem-solving
system for that domain. One solution was to allow inconsistent knowledge
bases; this enabled the conflicting knowledge to be represented, but it did
not confront the problem of how to resolve the conflicts.

A few researchers have explored negotiation as a means to mediate among
conflicting agents. The systems they developed involved either monotonic
reasoners, or nonmonotonic, but memoryless, reasoners, i.e., reasoners that
simply discard old solutions and re-solve in the face of conflicts. We agree
that negotiation is the correct approach, but that the agents must be able
to revise their plans incrementally as they interact. They must be able to
communicate directly, with each other and with human agents, and they
must be able to assess and maintain the integrity of both the communicated
information and their own knowledge. Then they can successfully coordinate
their activities and cooperate in solving mutual problems.

3 RAD Technology

The Reasoning Architecture group at MCC is addressing the above problems
through the development of RAD. RAD enables a set of knowledge-based sys-
tems, constructed quasi-independently, to act as a set of cooperating agents,
working together to solve a problem. Developers of distributed reasoning
systems can exploit a divide-and-conquer approach to development; they
can build smaller, more manageable knowledge-based agents. These smaller
agents might represent alternative points of view on a problem; there is no
longer a need for global consistency across an entire large system. These
smaller agents can also be reused in different combinations for solving ad-
ditional problems as they arise. A further advantage of this approach is

that it enables systems to be physically distributed in the world, just as the
problems that they address are. The intelligence needed for such problems
can be embedded throughout a system of distributed workstations and made
available where appropriate.

RAD is an extension of an MCC-proprietary expert system shell called
Proteus, which provides high-performance forward and backward reasoning
using Warren Abstract Machine technology, a frame system integrated into a
typed unification algorithm, a justification-based truth maintenance system,
and a contradiction resolution mechanism. To support cooperative distrib-
uted problem solving, RAD incorporates a communication channel among
the agents, a communication protocol for exchanging goals and solutions on
this channel, a representation for agents and their capabilities, a Contract
Net mechanism for control of multiple computational agents, and a propri-
etary distributed truth-maintenance system (DTMS) that enables globally-
coherent solutions to be achieved [Bridgeland and Huhns 1990]. RAD sup-
ports interaction among both human and computational agents. Also, it
maintains the integrity of the knowledge bases of its computational agents.
These features distinguish RAD from all other expert system shells.

The DTMS allows each agent to rely on the results of another’s reasoning
without having to keep track of the details of that reasoning. However,
there is no requirement for two agents to agree completely. The DTMS
enforces local consistency within each agent, while enabling negotiation about
inconsistencies among agents. When two or more agents disagree about belief
in a datum and when this disagreement is encountered during problem solving,
then negotiation among the agents will ensue to resolve the disagreement.
The negotiation procedure involves an exchange of justifications among the
agents. The negotiation is necessary to ensure that the global solutions to
the problems posed to the agents are coherent.

The RAD framework and its corresponding collection of agents execute
on a network of computer workstations. The agents operate within this
framework asynchronously and, in general, autonomously. RAD permits
the collection of agents to be dynamic, allowing agents to come and go. It
accomplishes this by requiring all agents to register with a nameserver that
maintains a directory of agent addresses. The agents use the nameserver to
locate and then communicate with each other. Communication involves an
exchange of messages, specifically, queries and assertions. The agents can be
either reactive or ingenuous, i.e., they can either respond to questions and

9

commands from another agent or initiate dialogs with another agent.

The following is a typical scenario for the use of RAD: there is a loosely-
coupled network of experts, each with expertise in a particular area, and
there is a problem that they must solve that is beyond the capabilities of
any one of them. The experts can together solve the problem, but they must
cooperate to do so. Furthermore, some of these experts may be knowledge-
based systems, i.e., computational agents, some may be humans, and others
may be lower-level computational entities, such as databases, software simu-
lators, and neural nets. RAD provides specific assistance for the development
of computational agents and neural nets, and provides the overall framework
within which all of these kinds of agents can operate and interact. Their
interaction enables their cooperation and, ultimately, the solution of their
problem.

Future versions of RAD will include communication protocols that will
enable agents constructed in other rule-based languages, such as CYC and
OPS5, to interact with RAD agents. Future versions also will increase the
effectiveness and efficiency of the RAD agents by providing a common knowl-
edge base of problem solving methods. This knowledge base will support
models for the beliefs, goals, and intentions of each agent. Agents will then
have an understanding of each other and the roles that they play in an overall
application. Their actions will then be flexible, but robust, and applicable
to a wider range of problems.

RAD is only a first step toward cooperative distributed problem solving
among a heterogeneous group of agents: it does not guarantee successful
and efficient cooperation, but it provides the facilities that make cooperation
possible. The next steps will require increased intelligence and capabilities
for each agent, resulting in more sophisticated interactions occurring at a
higher level. We are providing these capabilities through our research.

4 The Competition

We are not the only ones to recognize the benefits of DAI. Besides research
efforts underway at many universities, there are several commercial tools
available for developing DAI applications. These tools include G2 from Gen-
sym Corporation, Nexpert Object from Neuron Data, Inc., GBB from GBB
Inc., and GEST from Georgia Tech Research Corporation. G2 provides a

10

communication mechanism, more primitive than the one in RAD, for two
knowledge-based systems written in G2 to interact. Nexpert Object can in-
terconnect existing databases (not knowledge bases), if there is an object
in Nexpert Object that is programmed to interpret and translate between
the schemas of the databases. GBB and GEST are blackboard tools that
allow two knowledge sources to communicate indirectly through the black-
board. The use of a blackboard for communication is the weakest form of
interaction possible among knowledge sources, and is a subset of the inter-
action facility provided in RAD. There are no tools other than RAD that
provide facilities for distributed reasoning, a Contract Net mechanism for
control of distributed experts, or a communication mechanism for the post
facto integration of expert systems.

5 The Opportunity

The Reasoning Architectures group is uniquely positioned to exploit the po-
tential of distributed artificial intelligence. We are hosting in Austin the next
International Workshop on DAI. One of us, Michael Huhns, is an editor of
two of the three books available on DATI and a contributor to the third. Our
development and analysis of the DTMS is being presented at AAAI-90. And
most importantly, the RAD platform for the development of general-purpose
multiagent systems is incomparable: there simply are no competing tools
available. (But this may not be true for long—both DFKI with ESPRIT
funding in Europe and NTT in Japan have large efforts underway in DAI.)
RAD can support a wide range of shareholder applications, and enables our
further development of new DAI technologies. To capitalize on our advan-
tages, our current shareholders can collaborate with us in constructing new
applications of DAI, and potential shareholders are sought who can apply
and market our technology.

References
[Arni et al. 1989] Natraj Arni, et al., “Proteus 3: A System Description,”

MCC Technical Report No. ACT-AI-226-89-Q), Microelectronics and
Computer Technology Corporation, Austin, TX, June 1989.

11

[Arni et al. 1990] Natraj Arni, et al., “Overview of RAD: A Hybrid and Dis-
tributed Reasoning Tool,” MCC Technical Report No. ACT-RA-098-
90, Microelectronics and Computer Technology Corporation, Austin,
TX, March 1990.

[Bond and Gasser 1988] Alan H. Bond and Les Gasser, Readings in Distrib-
uted Artificial Intelligence, Morgan Kaufmann Publishers, Inc., San
Mateo, CA, 1988.

[Bridgeland and Huhns 1990] David M. Bridgeland and Michael N. Huhns,
“Distributed Truth Maintenance,” Proceedings AAAI-90, Boston, MA,
July 1990.

[Durfee et al. 1987] Edmund H. Durfee, Victor R. Lesser, and Daniel
D. Corkill, “Coherent Cooperation among Communicating Problem
Solvers,” IEEFE Transactions on Computers, vol. C-36, 1987, pp. 1275—
1291.

[Erman et al. 1980] Lee D. Erman, F. Hayes-Roth, Victor R. Lesser, and D.
R. Reddy, “The Hearsay-II Speech Understanding System: Integrating

Knowledge to Resolve Uncertainty,” Computing Surveys, vol. 12, no. 2,
June 1980, pp. 213-253.

[Gasser and Huhns 1989] Les Gasser and Michael N. Huhns, eds., Distrib-
uted Artificial Intelligence, Volume II, Pitman Publishing, London,
1989.

[Huhns 1987] Michael N. Huhns, ed., Distributed Artificial Intelligence, Pit-
man Publishing, London, 1987.

[Huhns et al. 1987] Michael N. Huhns, Uttam Mukhopadhyay, Larry M.
Stephens, and Ronald D. Bonnell, “DAI for Document Retrieval: The
MINDS Project,” in [Huhns 1987], pp. 249-284.

[Jagannathan et al. 1989] V. Jagannathan, Rajendra Dodhiawala, and
Lawrence S. Baum, eds., Blackboard Architectures and Applications,
Academic Press, San Diego, CA, 1989.

[Petrie 1989] Charles J. Petrie, “Reason Maintenance in Expert Systems,”
MCC Technical Report No. ACA-AI-021-89, Microelectronics and
Computer Technology Corporation, Austin, TX, February 1989.

[Singh and Forman 1988] Baldev Singh and Ira R. Forman, “Coordination
Systems: Manual Interactions,” MCC Technical Report No. STP-
229-88(P), Microelectronics and Computer Technology Corporation,
Austin, TX, September 6, 1988.

12

[Smith and Broadwell 1988] D. Smith and M. Broadwell, “The Pilot’s
Associate—An Overview,” SAFE Aerotech Conference, Los Angeles,
CA, May 1988.

13

