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FINAL REPORT 
Summary of JIDOKA Project: 

The JIDOKA Integrated Development Environment (IDE) 

1 Introduction 
 The JIDOKA project’s mission is to create a computer architectural framework 
consisting of electronic sensing components with the purpose of providing vehicles with 
enhanced structural awareness.  The functional intention of JIDOKA is both preventative 
and restorative.  Prevention will be founded on calculations of the statistical likelihood of 
future mechanical failure.  These calculations will be influenced by the current structural 
integrity of the vehicle as well as the impact of the exigent terrains to which it is exposed.   
The non-deterministic nature of real-world real-time systems motivates the 
implementation of restorative solutions to unexpected problems.  This will be enabled by 
a sensor-based awareness of existing mechanical failures based on variations in the 
vehicle’s performance over time.   
 The JIDOKA system will be used for either warning operators of possible or 
existing problems, or to automatically correct or adjust for such problems.  The sensors 
comprising the JIDOKA framework will acquire real world data to be processed and 
characterized in order to generate intelligent decision making.  These decisions will result 
in the more efficient utilization of the vehicle while enabling a more reliable assurance of 
the current, as well as future, safety of the vehicle. 
 In this research, we design a road surface detection system that utilizes sensors for 
detecting the characteristics of the terrain on which a vehicle is driving.  Terrain detection 
is an essential aspect of the greater JIDOKA vision due to the significant effects of terrain 
on the durability and reliability of the car’s overall functional integrity.  For example, wet 
pavement is notorious for its effect of greatly increasing the likelihood of tires slipping or 
sliding, resulting in dangerous, uncontrollable spins.  If the vehicle is aware that it is on 
wet pavement, it can take preventative measures, beginning with informing the driver of 
the wet terrain and the need for caution.  These preventative measures depend on the 
degree of autonomy of the vehicle, but may span from a passive action such as simple 
driver communication in order to allow the driver to react to the information, to a more 
assertive action such as full axel management or speed control in order to decrease the 
likelihood of tire slip on wet pavement. 
 This document consists of a detailed description of the terrain detection 
component of the JIDOKA architecture.  Part One gives a thorough description of the 
physical system.  It begins with Chapter 2, which details the individual hardware sensing 
components of the system and their specifications.  Chapter 3 outlines the setup 
procedure and subsequent use of the system, followed by a detailed description of how to 
interact with the system graphically in Chapter 4.  The system description part is 
concluded with a glimpse in Chapter 5 into the directions that led to the final 
classification procedure, and a brief introduction to the training and execution of this final 
classification mechanism of the system.  This is explained in more detail in Part Two, 
Chapters 6 and 7.  Part Three consists of results obtained from system executions, as well 
as conclusions about the capabilities and limitations of the terrain-detection system. 



 

PART ONE: System Description 
2 System Sensors 
 The road surface detection system component of the JIDOKA project consists of 
three sensing components: an accelerometer, a digital camera, and a pulse radar.  Each of 
these sensors independently and concurrently captures surface terrain data.  The camera 
and the radar’s data sets correspond to the impending terrain on which the vehicle will be 
traversing momentarily, while the accelerometer senses the vertical acceleration of the 
vehicle upon terrain traversal. 
 The sensors regularly transmit captured data via a USB interface to the JIDOKA 
software component running on a central computing device (currently a laptop 
computer).  The data is then processed and the current terrain classification is made with 
respect to the sensor-supplied input. 
 In the following sections, we describe in greater detail the specification of each 
sensing component and a brief overview of their functionality contribution to terrain 
detection. 
 

2.1 Radar 
 The pulse radar was manufactured by ABM Sensor Technology model 
ABM300/400 100R.  The radar used for this project has been specially modified by ABM 
Sensor Technology to provide transmit power adjustability for pulse width and provide 
an analog echo profile for dynamic analysis.  The radar is mounted to the front of the 
vehicle via a mounting bracket made specifically for the requirements of this project.  
The height of the tip of the radar antenna must be between 48-49 inches from the road 
surface in order to separate the transmission profile from the echo profile.  The height is 
also based on the voltage (selected after extensive testing) in order to provide the best 
results with this particular radar.  (Changes in voltage cause variance in the specific pulse 
width generated by the radar.)  The radar must be mounted normal (perpendicular) to the 
surface for best results, in order to receive a strong echo profile.  The analog signal from 
the radar is fed to the Analog Devices AD9223 analog-to-digital converter, which has a 
USB interface connection to the laptop computer. 



 
Table 1. Radar specifications 
 

RADAR GENERAL SPECIFICATIONS 
Conduit Entry 1/2” NPT 
Enclosure Aluminum or Stainless Steel 
Enclosure Rating NEMA 4 (IP65) 
Antenna Polypropylene Dielectric Rod Standard (Optional PTFE) 
Ambient Operating Temperature -40° to +140° F (-40° to 60° C) 
Process Operating Temperature (PP 
Rod): 

-40° to 190° F (-40° to 90° C) 

Pressure 1-10 bar / 15-150 psi 
Approvals FCC Part 15—Low Power Communication Device 
Accuracy +/- 0.25% of maximum Target range (In Air) 
Loss of Echo Hold 30 seconds, 22 mA Output Time 
Calibration Push-button or programmable via optional communication port 
Diagnostics Via communication port (echo profile, echo stability, operation 

errors) 
Power AC AC units 115 VAC 60Hz or 230 VAC 50Hz, 1.7 VA 
Power DC DC units 12 to 30 VDC, 0.07 A max @ 24 VDC 
Transmitter Power 50 uW Average 
Output 4-20 mA, optional RS-232, RS-485, or Modbus RTU 
4 to 20 mA Max. Loop Resistance 110 VAC @ 750 Ohms (isolated) 

12 VDC @ 250 Ohms 
24 VDC @ 750 Ohms 

Frequency 6.3 GHz 
 
 
 



 
Figure 1.  Radar component identification image. 
 
 
 

 

    
Figure 2.  Radar and mount assembly.                      Figure 3.  Radar and mount assembly from side. 

 



Analog-to-Digital Converter 
 Analog Devices manufactured the A/D converter used to interface the radar with 
the laptop computer.  The A/D converter consists of two separate boards that connect 
together to perform the conversion and interface the computer.  The Analog Devices 
model AD9223 monolithic converter interfaces the radar via coaxial cable.  The AD9223 
board also contains a specially built timing encoding oscillator, which operates at 1.2288 
MHz. The timing encoder functions to tell the AD9223 the rate at which to cut up and 
process the incoming analog signal.  The AD9223 connects directly to the Analog 
Devices High Speed ADC USB Evaluation board; model HSC-ADC-EVALA-SC FIFO 4 
Rev 2A.  The HSC-ADC-EVALA-SC interfaces with the laptop computer via a USB 
connection.  Due to the large amount of detail for the specifications of these two boards, 
their specifications are not included in this document, but can be found on the Analog 
Devices Web site www.analog.com. 
 

2.2 Camera 
 The digital camera used in the JIDOKA terrain detecting system was 
manufactured by Arcvision Technology Corp.  The model number of the camera is ARC-
12B49.  The camera is mounted to the front of the vehicle on the same specially made 
mounting bracket as the radar.  The height of the camera is approximately 60 inches from 
the road surface.  The mounting position was chosen out of convenience, because the 
mounting bracket made for the radar provided a logical placement for the camera.  The 
ARC-12B49 is a high quality color ccd camera that is weatherproof and has night vision 
(full camera specifications are shown in Table 2).  The signal from the ARC-12B49 
connects with the laptop computer via a PCI bus video card.  The input from the camera 
is then dynamically read into the Jidoka Software to assist in road surface detection. 



 
Table 2.  Camera Specifications 

ARC-12B49 CAMERA SPECIFICATIONS 
Model Number ARC-12B49 
Image Pick-up Device Color SONY 1/3” Super HAD CCD Sensor 
Effective Picture Elements NTSC: 510 x 492, PAL: 500 x 582 (HxV) 
Horizontal Resolution 380 TV Lines 
Minimum Illumination 0.5 LUX @ F2.0 
S/N Ratio More than 48 dB 
Auto Electronic Shutter NTSC: 1/60s-1/100,000s, PAL: 1/50s-1/110,000s 
Auto Gain Control Yes 
Auto White Balance Yes (2500K-9500K) 
Scanning System Interlace 2:1 
Gamma Characteristic 0.45 
Lens Furnished Board Lens 3.6mm / F2.0 
Synchronous System Internal, Negative Sync. 
Back Light Compensation Yes 
Video Output 1 Vp-p / 75 Ohms 
Power Consumption 1.5 W (CCD Camera only) 
Infrared Luminary 12 pieces IR LED, Life: 6000 hrs. 
Wave Length 850 nm 
Beam Spread 35” 
Projection Distance Up to 10 meters 
Auto Power ON/OFF Cds auto control 
Illumination Active Limit Under 10 LUX 
Power Consumption 1.3 W (IR-LED ON only) 
Power Supply DC 12V +10% / 220 mA min. (Camera+IR-LED ON) 
Waterproofing Criterion Aluminum case, IP 67 waterproof design 
Operating Temp -10C – 60C (14F – 122F) 
 
 

 
Figure 4.  Image of camera ARC-12B49. 



 
 

 
Figure 5.  Dimensions of camera ARC-12B49. 
 



2.3 Accelerometer 
 The accelerometer is manufactured by Techkor, with a model number of M9E-
USB.  This component is mounted to the lower control arm of the vehicle, on the 
passenger side of the vehicle, via a specially made bracket. This mounting location was 
chosen so that the only added damping effect between the accelerometer and the road is 
the tire.  Tire pressure will have an effect on the magnitude of the sensed acceleration but 
only to a relatively small degree, assuming the tire is kept in its suggested pressure range.  
The M9E-USB is an accelerometer and data logger in a single package, which 
communicates to a host device through a standard USB connection. The unit contains a 
piezoelectric accelerometer, constant current power source, amplifier, filter, digital signal 
processor, data memory, and USB transceiver. See Figure 6 for a detailed specification of 
the accelerometer.  The data collection parameters are configured from the Jidoka 
software.  
 

Input Specifications 

• Piezoelectric Sensor  
• 35g full scale range  
• 0.4 Hz to 12,000 Hz Frequency Response  

DSP Specifications 

• 125 Hz to 65K Hz Sampling Rate  
• 16 bit resolution  
• 128K byte Data Storage  
• Programmable Data Form 

- Time Waveform 
- Enveloped Time Waveform 
    - 50 - 1,000 Hz band 
    - 500 - 10,000 Hz band  

Communication Specifications 

• USB 1.1 (low speed device, 3m cable)  
• USB 2.0 (full speed device, 5m cable)  
• MIL-C-26482 Connector (four pin)  

General Specifications 

• Power over USB  
• Hermetically Sealed to IP  
• Corrosion Resistant 316 Stainless  
• 1/4"-28 Thread Mount in Base  
• Case Isolated  
• ESD Protection 

 

Figure 6.  Accelerometer Specification 



 
 The accelerometer is intended to distinguish between smooth terrains, such as 
pavement, and texturally rougher terrains, such as gravel.  Due to the visual similarity of 
different surfaces, the camera sensor was found to be not accurate enough to distinguish 
between pavement and gravel for all forms of gravel.  The texture dimension is 
consistently distinguishable for all forms of gravel and all forms of pavement.  Yet, 
acceleration introduces a speed variable which is provided to the system via a wheel 
speed sensor.  The JIDOKA classification system uses the accelerometer input coupled 
with the speed input to assist in minimizing overlapping characterizations of pavement 
and gravel. 
 The frequency range of the accelerometer was chosen to be able to detect gravel 
of nominal size 0.3 cm (~1/8”) when the vehicle is traveling at 120 kph (33.3 
meters/second).  At this speed, the vibration, along a vertical axis, caused by gravel of 
this size would be approximately 10 KHz.  To capture this would require a sensor with an 
input upper frequency response greater than 10 KHz, which the chosen accelerometer 
has.  In order to characterize this signal as accurately as possible, it must be sampled at 
greater than the Nyquist frequency, requiring a DSP operating at greater than 20KHz.  
The chosen accelerometer satisfies this requirement as well. 
 



3 Setup 
 
Physical Connections 
 
Analog Devices AD9223 Board: 

• J3 to -5V (red wire) 
• J6 to -12V and -5V (two black wires) 
• J2 to +12V (green wire) 
• J5 to -5V (green wire) 
• J4 to +5V (orange wire) 
• J1 (BNC cable) to radar unit 

 
Analog Devices ADC-EVALA-SC FIFO 4 Rev 2A Board: 

• J309 to 3.3V Regulated Power Supply 
• USB Male A to laptop USB Male B 

 
Power Connections to Radar: 

• +24V labeled wire to CSI/SPECO Regulated Power Supply Red Terminal 
• -24V labeled wire to CSI/SPECO Regulated Power Supply Black terminal 
• +13V labeled wire to Tenma DC Regulated Power Supply 
• -13V labeled wire to Tenma DC Regulated Power Supply 

 
Connections to Camera: 

• Camera signal to Video1 port on PCMCIA card of laptop 
• Camera power to power supply connector 

 
Connections to Accelerometer: 

• Single USB connector to USB port on laptop 
 
 
Power-Up Procedure 
 

1. Plug connector into cigarette lighter receptacle 
2. Turn on power inverter 
3. Turn on 24V DC power supply 
4. Turn on Tenma DC power supply 
5. Set current on Tenma power supply to maximum (max. clockwise) 
6. Set voltage on Tenma power supply to 13.0V 
7. Boot laptop and run the Jidoka-classifier program 
 



4 User Interface 
 A user interacts with the system via a graphical user interface consisting of 
individual panels for each sensing component, as well as a primary panel on which 
classification is presented visually.  The panels are intended to illustrate the functional 
processes of each sensor as well as the classification system.  This facilitates the 
understanding of what is going on in the system, as well as providing a monitor for 
observing and maintaining the proper execution of the software. 
 In this section, we describe the interface of each of the four panels comprising the 
JIDOKA interface.  We also briefly detail what the user will observe upon proper 
execution of the system. 
 

4.1 Classification Panel 
 The classification panel’s main component is a graph on which the current terrain 
classification is represented.  A LED located next to the classified terrain type illuminates 
in order to indicate the description of the specific terrain being traversed, as well as the 
kind of precipitation (if any) that is affecting the vehicle’s interaction with the terrain 
surface. The terrain type graph also maintains a short history of recent terrain and 
precipitation classifications in order to provide a slightly larger contextual awareness to 
the operator.  Figure 7 contains images depicting the classification of various terrains and 
precipitations.  
 

 
(a) Snow on pavement 



 
(b) Dirt and no precipitation 
 

 
(c) Gravel and no precipitation 
 
Figure 7 (a), (b), (c).  Classification Panel GUI for all three terrain types with varying precipitations 
 
 



4.2 Camera Panel 
 The camera panel displays an image of the impending terrain on which the 
vehicle will traverse momentarily.  Though slight, the time between sensing the 
approaching terrain and the actual traversal will provide the vehicle with the opportunity 
to mechanically prepare for any potentially dangerous situations.  For example, if the 
camera senses snow on the road, the car will inform the driver of the hazardous 
conditions as well as manage speed level in an attempt to prevent the vehicle from 
sliding.  See Figure 8 for an example of the camera panel. 
 

 
Figure 8. Camera Panel GUI capturing approaching gravel terrain. 
 
 



4.3 Radar Panel 
 The radar panel contains a graph that exhibits the waveform received by the pulse 
radar.  The pulse radar transmits a pulse towards the ground and then receives the echoed 
transmission resulting from the pulse reflecting from the terrain.  Different terrain types 
and precipitation types will reflect the pulse in distinguishable ways.  In Figure 9 below, 
the echoed waveforms from different terrains and precipitations are shown. 
 
 

 
(a) Snow on pavement 
 
 

 
(b) Gravel and no precipitation 
 



 
(c) Dirt and no precipitation 
 
Figure 9 (a), (b), (c). Radar Panel GUI for all three terrain types with varying precipitations 
 
 



4.4 Accelerometer Panel 
 The accelerometer panel graphs the changes in the vertical velocity of the vehicle 
as observed by the accelerometer.  The waveforms generated by the accelerometer are 
representative of the texture of the terrain on which the vehicle is being driven.  For 
example, pavement will result in significantly less vertical displacement at 25 mph than 
gravel.   
 In order to adequately analyze the data generated by the accelerometer, the speed 
of the vehicle at the time of the accelerometer data capture is required.  This is necessary 
because vertical displacement is amplified with speed.  Without an awareness of the 
speed of the vehicle, confusion will arise between, for example, pavement at 60 mph and 
gravel at 15 mph.  Though pavement is generally smooth, high speeds will generate 
vertical displacements similar to that of a slower speed on a rough terrain such as gravel.  
Figure 10 shows a number of accelerometer data captures from various terrains at 
different speeds. 
 

 
Figure 10. The accelerometer panel shows the values sent by the accelerometer. 
 
 



5 The Road to Terrain Classification 
 Many obstacles were overcome in attempting to design a provably satisfactory 
classification algorithm for the terrain and precipitation requirements specified for the 
JIDOKA project.  Much may be learned from an analysis of the route we took in reaching 
our final classification procedure.  
 
 

5.1 Threshold Analysis with Systematic Data Samples 
 Our initial approach used the radar and the camera attributes (Wave Width, Wave 
Amplitude, and the RGB Average and Variance) to compute the Euclidean distance 
between a new instance and the existing classes (using 2 or more attributes combined).  
Using this approach, the average accuracy was 82.85% as shown in Table 3.  All the 
combinations were tried and the best are presented below.  Table 3 depicts the 
classification results from using Euclidean distance on data acquisitioned from the radar 
and camera.  Table 4 illustrates a confusion matrix expressing the satisfactory results 
generated from using the Euclidean distance of red average and red variance to 
discriminate gravel from other terrain types. 
 
 
 
Table 3.  Classification results from radar and camera data acquisition using Euclidean Distance. 
Using Both, Camera (RGB scaled) and Radar 

  Wet 
Concrete  

Dry  
Concrete 

Wet  
Gravel 

Dry  
Gravel 

Wet  
Sand 

Dry  
Sand  Accuracy 

Wet Concrete 71 9 0 0 25 0 67.61905 
Dry Concrete 0 100 0 0 4 1 95.2381 

Wet Gravel 0 0 79 26 0 0 75.2381 
Dry Gravel 0 0 20 85 0 0 80.95238 
Wet Sand 0 1 0 0 103 1 98.09524 
Dry Sand 0 15 0 0 6 84 80 

Average 
Accuracy 82.85714 

 
 
 
 Gravel is the only terrain that can be classified perfectly, since the classifier does 
not misclassify gravel and nothing else is misclassified as gravel, as seen in Table 3. 
However, this can be attributed to the red values from the Camera.  Table 4 shows how it 
is possible to get this perfect accuracy on the gravel classification using only red average 
and red variance.  Decreasing the dimensionality of classification as we did here with 
gravel is useful because the combined use of many attributes can be self-defeating, since 
some attributes can reduce the efficiency of others. 
 
 
 



Table 4.  Satisfactory discrimination of gravel using only red average and red variance. 

 Wet 
Concrete 

Dry 
Concrete 

Wet 
Gravel 

Dry 
Gravel 

Wet 
Sand 

Dry 
Sand Accuracy 

Wet Concrete 97 8 0 0 0 0 92.380 
Dry Concrete 12 52 0 0 24 17 49.523 

Wet Gravel 0 0 103 2 0 0 98.095 
Dry Gravel 0 0 5 100 0 0 95.2381 
Wet Sand 14 42 0 0 12 37 11.428 
Dry Sand 0 24 0 0 17 64 60.952 

Average 
Accuracy 67.936 

 
 
In these tests, the eight attributes used for classification are listed below: 

1. wave width 
2. wave amplitude 
3. red average 
4. red variance 
5. green average 
6. green variance 
7. blue average 
8. blue variance 

 
The categories for which classification was defined are as follows: 

1. wet concrete 
2. dry concrete 
3. wet gravel 
4. dry gravel 
5. wet sand 
6. dry sand 

 
 Based on the confusion matrices in Table 3, the results were very low.  Gravel 
was the only category classified satisfactorily using the red variance.  It was obvious that 
Euclidean distance was not good enough, and that new features were needed.  The next 
approach was to perform threshold analysis to find values for attributes that could be used 
to distinguish between categories.  The new attributes were identified by eyeballing the 
graph in Figure 11.  Three attributes, PointA, PointB, and PointC, were chosen based on 
visual assessment. and selecting points that provided the greatest distinction between 
categories.  These were defined as follows: 
 

• PointA is the point 160 of the wave form 
• PointB is the point 240 of the wave form 
• PointC is the point 360 of the wave form 

 
The results in Figure 11 show the category separation provided by each point. 



 
Figure 11.  Three attributes, PointA, PointB, and PointC, were chosen based on visual assessment. 
 
 
 An analysis of the each individual attribute was carried out.  The goal was to find 
the attribute that provides greatest discrimination of terrain and precipitation.  The 
following sections detail our findings. 

5.1.1 Distinguishing Gravel from Other Terrains 
 Distinguishing gravel from the other terrains is possible using the red variance of 
the camera pictures and a threshold of 3439.7183 (determined experimentally).  Table 5 
shows the confusion matrix and Figure 12 gives a better view of the difference among the 
terrains.  The set of points circled in green corresponds to gravel (wet and dry).  The set 
on the left is concrete and the one on the right is sand. 
 
Table 5.  Confusion matrix generated by using threshold analysis on red variance to classify concrete, 
gravel, and sand. 

RedVariance 
 Concrete Gravel Sand Accuracy 

Concrete 112 0 98 53.33333 
Gravel 0 210 0 100 

Sand 18 0 192 91.42857 

 
 



 
Figure 12.  Results from using threshold analysis on red variance to classify gravel.  Gravel values 
(dry and wet) are circled in green. 
 
 Red variance can discriminate gravel from the other terrains with 100 percent 
accuracy.  The distinguishing threshold was derived by taking the average of the lowest 
red variance value for a gravel sample and the highest value for a sample in the both the 
concrete and sand categories.  This provides enough of a buffer for adequate distinction 
between gravel and the other terrains.  Thus, anything having a red variance bigger than 
3439.7183, can be classified as gravel.  However red variance cannot distinguish between 
wet gravel and dry gravel. 

5.1.2 Wet Gravel vs. Dry Gravel 
 Red average is the best attribute to distinguish between wet gravel and dry gravel.  
However, it is not possible to reach 100 percent accuracy.  Figure 13 shows the results of 
using threshold analysis of red average to distinguish wet and dry gravel.  The wet gravel 
values are on the left side of the graph circled in green, while the values on the right 
represent dry gravel.  The threshold marked by the red line is a red average value of 
282.6675.  Using red average, there is 98 percent accuracy for telling wet gravel from dry 
gravel. 
 



 
Figure 13.  Results of using threshold analysis of red average to distinguish wet and dry gravel.  The 
wet gravel values are on the left side of the graph circled in green.  The values on the right represent 
dry gravel.  The threshold marked by the red line is a red average value of 282.6675.  This represents 
a 98% accuracy for telling wet gravel from dry gravel. 
 

5.1.3 Distinguishing Wet Concrete from Dry Concrete, Wet Sand or 
Dry Sand 

 PointC is the attribute that best separates wet concrete from the other classes.  
Figure 14 shows the differences between wet concrete and the other classes based on 
PointC.  In this figure, the wet concrete samples are circled.  Using the discriminating 
threshold of 1575.233, wet concrete can be classified with 100 percent accuracy. 
 



 
Figure 14.  PointC is used to distinguish wet concrete from dry concrete or sand.  Wet concrete 
values are circled in green.  The remaining values represent dry concrete and sand (wet and dry).  
The threshold is 1575.233.  The accuracy is 100% for wet concrete. 

5.1.4 Distinguishing Dry Sand from Dry Concrete and Wet Sand 
 The best attribute to discriminate dry sand from the other terrains, dry concrete 
and wet sand, is PointA.  All the samples of dry sand have a PointA value of less than 
1600 as shown in Figure 15, such that PointA provides an accuracy reading for 
distinguishing dry sand of 100 percent.   
 

 
Figure 15.  PointA is used to distinguish dry sand from dry concrete or wet sand.  Dry sand values 
are circled in green.  The remaining values represent dry concrete and wet sand.  The threshold is 
1600.  The accuracy is 100%. 



 

5.1.5 Distinguishing Dry Concrete from Wet Sand 
 To distinguish between dry concrete and wet sand, the discriminating attribute is 
also PointA.  Most of the dry concrete samples have a PointA value of below 1660.613.  
Figure 16 shows the difference between these dry concrete and wet sand.  There is 98 
percent accuracy for this distinction. 
 

 
Figure 16.  PointA is used to distinguish dry concrete from wet sand.  Dry concrete values are circled 
in green.  The remaining values represent wet sand.  The threshold is 1660.613.  The accuracy is 
98%. 
 

5.1.6 The algorithm 
 A classification procedure can be created based on the information obtained from 
the analysis of the attributes. The algorithm encompassing all the thresholds specified so 
far is described by the following flow chart: 
 



 
Figure 17.  Algorithm describing the initial threshold discriminator, Threshold_1. 
 

5.2 Threshold Analysis with Real-World Data Samples 
 Previously we presented an approach to classify pavement, gravel, and sand 
(either wet or dry).  We will refer to that approach as Threshold_1.  The samples or data 
used in generating Threshold_1 as presented in the previous section were taken inside 
(indoors) of a lab (building) in an attempt to generate controlled, systematic data.  The 
lab had artificial illumination and was surrounded by walls, thus creating significant 
discrepancies between this data and real-world samples.  In this section, we present the 
results of using the Theshold_1 approach with data that was taken outdoors.  Since the 
results of using Threshold_1 to classify outdoor data have lower accuracy than when used 
with indoor data, we present two modifications to increase the accuracy of classification 
with outdoor data. 
 
Table 6.  Results obtained from using Threshold_1 with real-world outdoor data.  There are 108 
samples for each road surface/precipitation pairing. 

 Wet 
Pavement 

Dry 
Pavement 

Wet 
Gravel 

Dry 
Gravel 

Wet 
Sand Dry Sand Accuracy 

Wet Pavement 0 8 0 57 6 37 0 
Dry Pavement 0 0 0 0 0 108 0 

Wet Gravel 0 0 0 108 0 0 0 
Dry Gravel 0 0 0 104 0 4 96.2963 
Wet Sand 0 18 0 0 3 87 2.77777 
Dry Sand 0 38 0 0 8 62 57.4074 

Average 
Accuracy 26.0802 

RedVar > 
3439.7183

RedAvg < 
282.6675 

Wet Gravel Dry Gravel 

PointC >
1575.233

Wet 
Pavement 

Dry Sand

PointA < 
1600 

PointA < 
1660.613

Dry 
Pavement 

Wet Sand

Radar & Camera 
Data  

Yes 

Yes 

Yes

Yes

Yes

No

No

No 

No 



 
Table 7.  Results obtained using Threshold_1 with systematic indoor data.  There are 105 samples of 
each surface/precipitation pairing. 

  Wet 
Pavement 

Dry 
Pavement 

Wet 
Gravel 

Dry 
Gravel 

Wet 
Sand 

Dry 
Sand Accuracy 

Wet Pavement 105 0 0 0 0 0 100 
Dry Pavement 0 103 0 0 2 0 98.09524

Wet Gravel 0 0 102 3 0 0 97.14286
Dry Gravel 0 0 3 102 0 0 97.14286
Wet Sand 0 2 0 0 103 0 98.09524
Dry Sand 0 0 0 0 0 105 100 

Average 
Accuracy 98.4127 

 
 
 Table 6 shows the results of using Thresholds_1 to classify outdoor data.  This 
may be compared to Table 7 which shows the results of using Thresholds_1 to classify 
indoor data.  The accuracy of this approach to classify real-world terrains is very low.  
Dry gravel is the only one that was recognized with a good accuracy (96.2963%). The 
resultant accuracy of the rest of the terrains is very low and some of them are 0 percent. 
The reason for those results is that the outdoor data is very different from the indoor data. 
 
 The following four subsections contain a brief analysis of the attributes used by 
the procedure with both indoor and outdoor data.  Subsection 5.2.1 contains a brief 
analysis of the red variance attribute originally, used to distinguish gravel from the rest. 
Subsection 5.2.2 contains a brief analysis of the red average attribute, used previously to 
distinguish wet gravel from dry gravel. Subsection 5.2.3 discusses the PointC attribute, 
used previously to distinguish wet pavement from dry sand, wet sand and dry pavement. 
Subsection 5.2.4 is about PointA, the attribute used to distinguish dry sand from wet sand 
and dry pavement, and dry pavement from wet sand.  Subsection 5.2.5 presents a 
modification to Thresholds_1 to classify outdoor data; the modified procedure is called 
Thresholds_Outdoors.  Subsection 5.2.6 presents a modification to classify outdoors data 
including dry and wet dirt. 

5.2.1 Red Variance (Indoors vs. Outdoors) 
 Recall Figure 12.  Results from using threshold analysis on red variance to 
classify gravel.  Gravel values (dry and wet) are circled in green.), which shows the red 
variance of all the indoors terrains.  When using the red variance with indoor data, it is 
very easy to distinguish the gravel samples from the others, since all the gravel samples 
have a red variance greater that 3439.7183.  But the case is not the same with outdoors 
samples.  Figure 18 shows the red variance of samples taken outdoors.  Most of the 
outdoor samples of gravel are above 3439.7183, however some of the wet pavement 
samples are above that threshold too. In other words, in this case red variance cannot 
completely discriminate gravel from the other terrains since it sometimes gets confused 
with wet pavement. 
 



 
Figure 18.  Results for using red variance threshold value of 3439.7183 for identifying gravel 
samples. The circled set is gravel (wet and dry).  The set to the left for the circle is pavement, and the 
one on the right is sand. 

5.2.2 Red Average (Indoors vs. Outdoors) 
 Originally, the best attribute to distinguish between wet gravel and dry gravel was 
red average.  Recall Figure 13 showing the discrimination capacity of red average with 
indoor data.  Using the threshold 282.6675 it was possible to get 97.14286 percent 
accuracy for both wet gravel and dry gravel (indoors). However this attribute is not good 
with outdoors data.  Figure 19 not only shows that both wet gravel and dry gravel 
(outdoors) are above that threshold, but it also shows that there is no good threshold to 
use. 
 



 
Figure 19.  Results for using red average threshold value of 282.6675 for discriminating wet and dry 
gravel samples. The threshold of 282.6675 derived from indoor samples is below all of the outdoor 
samples. It is therefore not possible to distinguish wet gravel from dry gravel using this attribute. 
The circled set is wet gravel.  The set to the right is dry gravel. 

5.2.3 PointC (Indoors vs. Outdoors) 
 PointC is the attribute that best discriminates wet pavement from the other 
terrains.  Recall Figure 14 which shows the differences among the wet pavement and the 
other terrains on PointC for indoor data.  Everything with a PointC value greater than 
1575.233 can be considered wet pavement.  However, this attribute does not work very 
well for outdoor data.  Figure 20 shows that all the samples are below the threshold, and 
there is no threshold that we can use. 
 



 
Figure 20.  PointC is not a good choice for discrimination when using outdoor data. The wet 
pavement set is the circled one. The sets on the right are the other terrains. All the samples are below 
the threshold (1575.233). 
 

5.2.4 PointA (Indoors vs. Outdoors) 
 The best attribute to discriminate dry sand from the other terrains (except gravel, 
which we could distinguish using the red variance) is PointA.  All the samples of dry 
sand have a PointA less than 1600.  Again, this attribute with that threshold does not 
work with outdoor data.  Figure 21 shows that for outdoor data, most of the dry pavement 
samples and some of the wet sand, and some of the dry sand samples are above it. 
 

 
Figure 21.  The PointA attribute with a threshold of 1600 is not good to distinguish dry sand from the 
others when using outdoor data. The dry sand set is the circled one. The samples on the left with a 
PointA greater than 1600 are wet pavement. 
 



 To distinguish between dry pavement and wet sand, the best discriminating 
attribute is PointA again for indoor data.  Most of the dry pavement samples are below 
1660.613. 
 

 
Figure 22.  The PointA and the 1660.613 threshold are not good to distinguish dry pavement from 
wet sand.  The dry pavement set is the circled one. The set on the right is wet sand. 
 
Figure 22 shows that for outdoor data both dry pavement and wet sand are below 
1660.613.  So this threshold is not good for discriminating purposes. 

5.2.5 Algorithm Adjustments for Real-World Data 
 The Threshold_1 procedure needs some modifications to do a good job with 
outdoor data.  Figure 23 shows a modification to this procedure that does better with 
outdoor data.  This new procedure is called Threshold_Outdoors. 
 



 
Figure 23.  Threshold_Outdoor: Classification procedure for real-world data set. 
 
 
 Table 8 shows the results of using Threshold_Outdoors to classify outdoor data.  
This procedure works very well with outdoor data.  The problem is that 10 percent of the 
wet gravel samples are classified as wet pavement and 26 percent of the dry gravel 
samples are classified as wet gravel.  That occurs because some of those dry gravel 
samples have a red variance greater than 3770.  Figure 24 illustrates this fact. 
 
 
Table 8. results of using Threshold_Outdoors to classify outdoors data 

  Wet 
Pavement 

Dry 
Pavement

Wet 
Gravel 

Dry 
Gravel 

Wet 
Sand Dry Sand Accuracy 

Wet Pavement 108 0 0 0 0 0 100 
Dry Pavement 0 108 0 0 0 0 100 

Wet Gravel 10 0 98 0 0 0 90.74074 
Dry Gravel 0 0 28 80 0 0 74.07407 
Wet Sand 0 0 0 0 108 0 100 
Dry Sand 0 0 0 0 0 108 100 

 Average 
Accuracy 94.1358 
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Figure 24.  Red Variance is a good attribute to distinguish wet gravel from dry gravel (outdoors). 
The circled samples are the dry gravel samples misclassified as wet gravel since they have a Red 
Variance grater than 3770. The set on the left is wet gravel and the one on the right is dry gravel. 
 

5.2.6 Adding Dirt 
 A requirement of the JIDOKA system was to distinguish dirt from the other road 
surfaces.  To distinguish dirt from the other terrains we made some modification to 
Threshold_Outdoors. The new procedure called Threshold_Outdoors_D is shown in 
Figure 25. 



 
Figure 25.  Threshold_Outdoor_D: Classification procedure for inclusion of Dirt samples. 
 
 In this new procedure, we use the red variance to distinguish dry dirt from sand 
and wet dirt and the Point100 attribute (a new attribute corresponding to the point 100 of 
the waveform from the radar) to distinguish dry sand from wet dirt.  The results of this 
procedure with all the terrains are showed in Table 9.  Results of using the 
Threshold_Outdoors_D procedure.)  The results are not as good as when there were only 
three road surfaces.  The problem is that for the radar, dirt is very similar to gravel, and 
for the camera, dirt is very similar to sand. 
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Table 9.  Results of using the Threshold_Outdoors_D procedure. 

  Wet 
Pave. 

Dry 
Pave. 

Wet  
Gravel 

Dry 
Gravel 

Wet 
Sand 

Dry 
Sand 

Wet 
Dirt 

Dry 
Dirt Accuracy 

Wet Pave. 108 0 0 0 0 0 0 0 100 
Dry Pave. 0 108 0 0 0 0 0 0 100 
Wet Grav. 10 0 98 0 0 0 0 0 90.74074 
Dry Grav. 0 0 28 80 0 0 0 0 74.07407 
Wet Sand 0 0 0 0 99 0 0 9 91.66667 
Dry Sand 0 0 0 0 0 101 7 0 93.51852 
Wet Dirt 0 0 0 0 1 38 69 0 63.88889 
Dry Dirt 6 1 22 4 2 0 0 73 67.59259 

Average 
Accuracy 85.18519

 
 
Table 10 shows the results of this last procedure eliminating the sand category and 
samples.  The results of eliminating the sand category are a little bit better, since all the 
wet dirt samples are classified correctly. 
 
Table 10.  Results of using the Threshold_Outdoors_D procedure without the Sand category and 
samples. 

  Wet 
Pavement 

Dry 
Pavement 

Wet 
Gravel 

Dry 
Gravel 

Wet 
Dirt Dry Dirt Accuracy 

Wet Pavement 108 0 0 0 0 0 100 
Dry Pavement 0 108 0 0 0 0 100 

Wet Gravel 10 0 98 0 0 0 90.74074 
Dry Gravel 0 0 28 80 0 0 74.07407 

Wet Dirt 0 0 0 0 108 0 100 
Dry Dirt 4 1 24 4 0 75 69.444 

      Average 
Accuracy 89.04321 

 
 
Figure 26 shows how different the red variance of dirt is with respect to the other terrains. 
Figure 27 shows the difference of all the samples for Point100.  Figure 28 shows the 
difference of Point100 between dry sand and wet dirt. 
 



 
Figure 26.  Red Variance (outdoors). The circled set is dirt, the first half is wet (left) and the second 
dry. The sets on the left are sand, gravel and pavement. All the thresholds used by the 
Threshold_Outdoors_D procedure are highlighted. 
 
 

 
Figure 27.  The Point100 attribute is used to distinguish dry sand from wet dirt. Here are shown all 
the samples from all the terrains. The set on the square is sand, the one on the right is dirt, and the 
one on the left is gravel. The circled set is pavement. 
 



 
Figure 28. The Point100 attribute is used to distinguish dry sand from wet dirt. The circled set is dry 
sand and the other is wet dirt. The threshold used is 800.  Although the classification is not perfect, 
Point100 was the best attribute for this discrimination. 
 
Several other points of the waves from the radar were analyzed, but none was as good as 
the ones used in this algorithm.  Figure 29 shows all the analyzed points. 
 

 
Figure 29.  Several other points of the waves from the radar were analyzed, but only Point100 and 
PointA (160) were used in this last algorithm. The points shown here are 50, 70, 100, 150, 200, 250, 
300, 350, 400, and 450. 



5.3 Road Surface Detection Using an Accelerometer 
 In this section, we present the results of using an accelerometer to detect road 
surfaces.  We can distinguish gravel from pavement with 98.94737 percent accuracy. 
 
Table 11.  Results obtained using accelerometer system to distinguish gravel from pavement. We 
classified 380 samples of each terrain at different speeds. 
 

 Gravel Pavement Accuracy
Gravel 375 5 98.68421 

Pavement 3 377 99.21053 
Accuracy 98.94737 

 
 
The accelerometer model M9E-USB is used on a 1993 Chevy Astro Van. It is mounted to 
the lower control arm, on the passenger side, via a specially made bracket so that the only 
added damping effect between the accelerometer and the road is the tire. Tire pressure 
will have an effect on the magnitude of the sensed acceleration but only to a relatively 
small degree if the tire is kept in the proper suggested pressure range. The M9E-USB is 
an accelerometer and data logger in a single package, which communicates to a host 
device through a standard USB connection. The unit contains a piezoelectric 
accelerometer, constant current power source, amplifier, filter, digital signal processor, 
data memory, and USB transceiver. The unit collects and transmits vibration data via a 
standard USB link. The data collection parameters are configured from a laptop. 

5.3.1 Sampling 
 The data sent by M9E-USB is available in g forces; it can be in the form of time 
trace or enveloped time trace.  The sampling rate we use is 10000 Hz.  So we receive 
10000 g’s in a second. We have tried our system with the car traveling to different speeds 
(10, 15, 20, 25 and 30 mph).  Table 12.  Wave form of examples of gravel and pavement. 
Each wave form represents a period of time of 7.6 sec. shows the waveforms on time 
domain of samples of pavement and gravel for a period of 7.6 seconds (76000 g’s) at the 
speeds mentioned above.  It is clear that for each speed the amplitude of the waveform of 
both road surfaces are different.  However pavement at 30 mph is very similar to gravel 
at 10 mph in amplitude.  Table 13 shows spectrum of the same samples.  The 
concentration of the lower frequencies on the spectrum of the gravel samples is bigger for 
all the speed cases. Looking at that feature of the spectrum we could distinguish 
pavement from gravel since even pavement 30 mph is different than gravel 10 mph 
(something that in the time domain was not quite possible to distinguish). 
 



Table 12.  Wave form of examples of gravel and pavement. Each wave form represents a period of 
time of 7.6 sec. 

 
 



Table 13.  Spectrum of the gravel and pavement examples on Table 2. 

 
 



Table 14.  Wave form of the g’s of gravel and pavement. Each wave form represents a period of time 
of 0.01 sec. 

 
 



Table 15.  Spectrum of examples of gravel and pavement on Table 5. 

 
 

5.3.2 The 10th of a second analysis 
 Since we are required to identify the road surface every 10th of a second, we made 
an analysis of segments with that period of time for all the speeds previously mentioned. 
We analyzed 76 segments for each combination of terrain and speed.  Table 16 
summarizes the distribution of the samples used in the analysis. 
 



Table 16.  Distribution of the samples or segments used on the analysis. 
Terrain\Speed 10 mph 15 mph 20 mph 25 mph 30 mph Total 
Pavement 76 76 76 76 76 380 
Gravel 76 76 76 76 76 380 
     Total  Samples 730 
 
 Each segment has only 1000 elements (g’s).  For each speed, the amplitudes of 
the waveforms of both terrains are different.  Although, as in the larger segments on 
Table 12, the amplitude of pavement at 30 mph is very similar to the amplitude of gravel 
at 10 mph.  However, their spectrums are different (as shown in Table 15). 
 

5.3.3 Time domain 
 Since we want to know how different the amplitudes of the samples are, we use 
the attribute Sum_Abs_Amplitude (the sum of the absolute value of all the g’s on the 
sample or segment) to compare those segments.  Figure 30 shows the 
Sum_Abs_Amplitude of all the samples grouped by speed.  We can see, in Figure 30, 
that for each speed tested, basically the samples of pavement have a 
Sum_Abs_Amplitude lower than the samples of gravel.  We can consider that all the 
samples having a Sum_Abs_Amplitude bigger than 117 are gravel samples (gravel safe 
zone), and that all the samples having a Sum_Abs_Amplitude smaller or equal than 497 
are pavement samples (pavement safe zone).  However, several samples of both gravel 
and pavement have a Sum_Abs_Amplitude bigger than 497 and smaller than 117 
(confusion zone).  Basically the samples on the confusion zone are gravel samples at 
speeds 15 mph and less and pavement samples at speeds equal or higher than 20 mph.  In 
total 316 samples out of 760 are on the confusion zone. 
 

 
Figure 30.  Analysis of Sum_Abs_Amplitude, it contains 76 samples for each speed and 316 samples 
out of 760 are on the confusion zone. 



5.3.4 Spectrum analysis 
 The spectrum of each sample contains 500 points.  We can observe, on Table 13 
and Table 15, two things; first the amplitude of lower frequencies is bigger than the 
amplitude of the higher frequencies.  Second, the ratio of low to high frequencies is 
higher for gravel samples than for pavement samples.  We defined the attribute 
FFTRatio as the ratio of low and high frequencies. FFTRatio =ValueA / ValueB , where 
ValueA is the sum of the amplitude of the first 55 points and ValueB is the sum of the 
point 56 to 170 of the spectrum for a given sample.  Figure 31 shows the ranges of 
ValueA and ValueB.  Figure 32, Figure 33 and Figure 34 show those 3 attributes for 
each sample.  In general, for pavement the range of FFTRatio decreases as the speed 
increases.  On the other hand, for gravel the FFTRatio is on the same range for all the 
speeds.  The shape of Figure 33 for ValueA is very similar to the shape of Figure 32.  To 
obtain the result on Table 11.  Results obtained using accelerometer system to distinguish 
gravel from pavement. We classified 380 samples of each terrain at different speeds., we 
use a procedure described in the next section that makes use of both attributes, FFTRatio 
and ValueA. 
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Figure 31.  Ranges for ValueA and ValueB, both used to calculate FFTRatio. 
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Figure 32.  FFTRatio of all the samples. FFTRatio decreases as the speed increases. 
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Figure 33.  ValueA of all the samples. 
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Figure 34.  ValueB of all the samples. 
 

5.3.5 The classifier procedure 
 We created a classifier based on FFTRatio and ValueA that can generate the 
results in Table 11.  This procedure classifies as gravel everything that has either ValueA 
> 2 or ValueA > 1.049 and FFTRatio > 4 and anything else is classified as pavement.  
Figure 35 shows this procedure. 
 

 
Figure 35.  Procedure to distinguish gravel from pavement using the accelerometer. 
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 ValueA is very similar to Sum_Abs_Amplitude. It has both, a gravel safe zone 
and a pavement safe zone. The gravel safe zone has 2 as the lower boundary and the 
pavement safe zone of ValueA is on the range 0 to 1.049 (Figure 36 shows both zones). 
The confusion zone is on the range 1.049 < ValueA < 2 and contains gravel samples at 
speeds 10 and 15, and pavement samples at speeds 20 and above.  The pavement samples 
on the confusion zone have an FFTRatio < 4 because of the speed (the higher the speed 
the lower the FFTRatio), and the gravel samples must have FFTRatio > 4 (Figure 37 
shows the thresholds on FFTRatio). Notice that must of the pavement samples with 
FFTRatio > 4 are on the lower speeds and they have a ValueA <= 1.049, so they are 
classified as pavement; and most of the gravel samples with FFTRatio < 4 have ValueA 
> 2, so they are classified as gravel. 
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Figure 36.  ValueA zones. 
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Figure 37.  Threshold of FFTRatio used on the classifier procedure. 
 



6 Classification 
 
 The classification process is decomposed into a preprocessing phase, a learning 
phase, and an execution phase.  The preprocessing phase occur in order to tame the vast 
amounts of data coming into the system by preserving only the values found useful in 
discriminating between terrain types.  The learning phase then uses these filter values to 
generate rules that will effectively classify the terrain type and the precipitation on the 
terrain.  The execution phase or the real-time terrain classification is the phase in which 
effective and real-time classification of terrain may ensue. 
 

6.1 Preprocessing: Extracting data of interest from the sensors 
 
 There is a plethora of data being supplied by the three sensing components of the 
JIDOKA architecture approximately every 10 milliseconds.  Of this vast amount of 
perpetual information, only a subset is necessary for distinguishing among the various 
types of terrains and the different precipitation possibilities that may exist.  The 
preprocessing phase extracts this subset of data from the sea of information being 
supplied by the sensors and forwards this filters data set to the classification phase. 
 The pulse radar supplies an analog signal that is then transformed into a digital 
waveform.  Of this digitized data, the actual information of interest is the echoed 
transmission, so the original transmission waveform is removed and discarded.   The 
echoed transmission then spans the next 640 points.  The filtered pulse radar data set is 
comprised of the first of these 640 points, and then every twentieth point until the 640th 
point is reached.  These 33 points are then passed to the classifier for terrain 
identification. 
 The original camera image has dimensions 240 by 360.  The camera will be 
mounted such that the center of the image should only contain the approaching terrain.  
Thus the central 80 by 110 pixels will be extracted from the original image.  These pixels 
will then be used to calculate the mean and variance of the red green blue color scale 
contained in the terrain.  These six data points will then be passed to the classifier in 
order to aide in terrain distinction. 
 The accelerometer returns sample set consisting of 250 samples per 10 
milliseconds.  For each sample set a variety of expressive values are calculated.  These 
values are the accumulated sum, the accumulated high frequency FFT values, and the 
accumulated low frequency FFT value. 
 For the accumulated sum, the absolute values all 250 amplitudes are averaged 
together to generate an average vertical displacement.  This value is useful in 
distinguishing terrains if the speed of the vehicle is equal for each terrain type being 
discriminated.  If the speeds change, then the FFT must be executed in order to observe 
the various frequencies represented in the data.   
 Once the FFT has been calculated, the waveform is divided into two sets, the first 
15 points of the FFT waveform and the final 39 points of the waveform.  The value called 
AccValueA is calculated by summing the amplitudes of the first 15 points of the FFT 
waveform, the higher frequencies represented in the data set.  Similarly, the value 



AccValueB is calculated by summing the amplitudes of the last 39 points of the FFT 
waveform, or the lower frequencies represented in the data set.  Once the two values are 
calculated, they are compared via the AccFFTRatio value which is defined as the ratio of 
AccValueA / AccValueB. 
 Once the data is filtered, the resulting values are more expressive of the 
discriminating aspects of terrain and precipitation necessary for classification.  Yet in 
order to generate effective classification, these values must be used for the training of the 
classification rules.  This training must persist until testing reveals satisfactory results to 
within the required accuracy.  This process of learning classification rules is detailed in 
the following section. 

6.2 Learning: Classification Rules 
 The learning phase of the JIDOKA classification process relies on the C4.5 
application (the C4.5 application is an actual implementation of the C4.5 algorithm by 
Ross Quinlan and builds Classification/Decision trees) for generating rules for classifying 
terrains from a sample data set.  The rule induction is based on a decision tree analysis of 
quantified characterization of the terrain provided by the three sensors, camera, radar and 
accelerometer.  The C4.5 application execution may be decomposed into two sequential 
processes, those of training and testing.  The training process actually generates the rules 
and the testing process implements those rules on an independent testing data set in order 
to quantify each rule’s discriminating capabilities so that appropriate rules may be 
elected. 

6.2.1 Training 
 Once the data has been filtered, it is then used to train the classification system.  
This training is defined by the generation of rules designed to exploit the distinctions 
between terrain types exposed in the data sets used for training.  These rules are created 
using a tree-based rule generation algorithm (C4.5) in which classes are characterizing by 
tree branches.  For example, if a distinguishing quality is that snow has very not mean 
values for the amount of red in the image, then a tree node will compare the mean red 
value as less than a certain low threshold.  The left hand branch of this node represents 
true outcomes to this comparison and the right hand branch represents false.  Thus, the 
left hand branch characterizes the class of snowy terrains.  The training process is 
described in more detail in Chapter 7. 

6.2.2 Testing 
 Once a set of rules is generated, these rules must be tested against independent 
data sets in order to assess whether they ensure adequate class discrimination.  This 
assessment is made via confusion matrices designed to describe the discriminatory 
potential of the rules generated from the training set. 
 Each rule is evaluated in terms of confidence, support and capture.  The 
confidence of a rule represents the accuracy with which the rule will correctly identify a 
particular terrain.  For example, if a rule correctly identifies 8 terrain tests as dry dirt and 
incorrectly identifies 2 terrain tests as dry dirt, then the rule has a confidence of 80%. 
 Support measures the percentage of training data for which the rule applies.  This 
metric is used to express how applicable the rule is to the problem.  For example, if a rule 



is only applicable in a single, rare situation, then its support will be a very low 
percentage, and indicates that the rule may not provide enough discrimination. 
 The capture metric conveys how good the rule is at identifying a specific class.  
This measurement will be highly dependent on the distribution of the values within the 
problem space.  For example, if all wet pavement data are close together in the domain 
space, then a rule may have a high capture rate. 
 In order to provide a concise understanding of the caliber of discrimination that a 
rule generates, all three of these metrics must be considered.  As an example, let us 
consider a rule that was created and tested with the following results. 
 

 Confidence Support Capture 
snow 100% 25% 100% 

 
The rule corresponding to the percentages is as follows: 
 

If CamRedVar < 43 then Species_name = snow. 
 
 This rule says that if the red variance data provided by the camera (CamRedVar) 
is less than 43, then the terrain (Species_name) is snow.  The 100% capture measurement 
means that this rule captures all of the snow terrain in the test data.  The support value 
conveys the fact that this rule applies to 25% of the test date.  The confidence value states 
that of all the test data for which the red variance is less than 43, all of them are snow.  
Together these results show that ¼ of the test data is of snow, and all data comprising this 
¼ partition is identified by the above rule.  Also, no test data that is not in this ¼ partition 
is classified as snow.  In the JIDOKA system, the confidence measurement is prioritized 
over support and capture values.  The process of testing is described in greater detail in 
Chapter 7. 
 

6.3 Real-Time Terrain Classification 
 Also referred to as the execution phase, the real-time terrain classification phase 
begins once testing has revealed satisfactory classification capabilities of the generated 
rule set.  The active JIDOKA terrain detection system may then be invoked with the 
specified degree of accuracy. 
 



 

PART TWO: System Learning 

7 Training and Testing 
 
 The process of training consists on two steps. First, collect samples of the desired 
terrains to identify, we recommend at least two hundred (as showed in the section 
“Saving Data”). And second, create the set of rules to discriminate one terrain from 
another, using the C4.5 application. Following those two steps, the system is able to learn 
how to classify a new type of terrain.  

7.1 Saving Data 
 Once the program is running and all the sensors are working, you can start to save 
samples of the current terrain by pressing the “Save Data” button located at the top left 
corner on the user interface (see next image). When the “Save Data” button is on, the 
program starts saving preprocessed data of the terrain from all the sensors.  
 

 
Figure 11: The “Save Data” button is located at the upper-left corner of the tab control. 
 
 The collected data is saved in a directory called “DATA” inside the JIDOKA 
directory (usually “C:\Jidoka\DATA). On the DATA folder there are three subfolders, the 
“all” folder (where the preprocessed data from all the sensors is saved), “Camera” folder 
(where pictures of the terrain are saved), and the “Classifier” folder (where the 
classification results are saved). Inside the “all” folder you will find files with the pattern 
Samples-*-*-*.txt as name, where the first * will replace the number of month, the 
second * the day and the third * is the minute where the data has been taken. The 
“Camera” folder you will find files with the pattern camera-*.bmp (where * is replaced 
by a number) as name, one file or picture for each sample of the terrain. Meanwhile on 
the “Classifier” subfolder you will find files with the pattern class-*_*_*.csv as name 
(the * are replaced as in the “all” subfolder), containing the preprocessed data of each 
sample of the terrain (attributes from each sensor).  
 



 
Figure 12: The DATA directory structure. 
 
 When you have the desired number of samples of the terrain (we recommend at 
least 250: 200 for training and 50 for testing), you can compile the files on the “all” 
directory using the program and add the data (in order) and pasting the data on the C4.5 
application. 
 
 Both folders, “all” and “Camera”, must be empty before starting to save data from 
another terrain. Once you have compiled the files for a specific terrain, you should move 
the files on the subfolders of the DATA directory. 
 

 
Figure 13: The “all” directory content. 
 
 Once you have samples of all the terrains you want to be able to distinguish, and 
after the compilation of the files on the “all” directory, you have to use the compiled files 
to create a set of rules using the C4.5 application. 
 
 



7.2 Invoking the C4.5 Application 
 
 The C4.5 is an MS Excel file that contains an implementation of the C4.5 
algorithm. This implementation was done by Angshuman Saha, and it processes the 
attributes from the set of sensors to create a set of rules that will be used by the classifier 
program. The Excel file (the one containing the application) has seven spread sheets or 
tabs. The first tab titled “ReadMe” contains a tutorial of the application and explains 
some concepts and the functionality. The tab titled “UserInput” is where you should set 
the parameters and options explained on “ReadMe” and then after load your training 
samples (explained later) you should click on the button “Build Tree” to generate the set 
of rules. The samples, previously connected (section 6.1), have to be loaded on the tab 
“Data”. The best way to do this is put first a set of data for each terrain, as training data 
and then put another set for each one, as training data; in that way you can validate the 
rules. The tabs “Tree” and “Node” show the resultant tree and the selected node 
respectively, after the process of building the tree is done. The “Result” tab present a 
summary of the data used and the must important a confusion matrix showing the 
accuracy of the rules in both the training and the testing data. Finally in the tab “Rules”, a 
rule summary table is showed including the support, confidence, capture (concepts 
explained on the “ReadMe” tab) and the rules themselves. 
 
 
 

 
Figure14: The tabs included on the C4.5 application. 
 
  
 The set of rules will enable the classifier to distinguish among the terrains that 
have been used to create the rules, meaning that you have to put samples for all the 
terrains that you want to identify.  



7.3 Creating Rules 
 
 On the “Data” tab, you have to load the content of the compiled files for each 
terrain. That means that for each terrain you should have a file containing the compiled 
attributes of each sample. For example, if you want to be able to distinguish among 
gravel, pavement, dirt, and snow; you have to have a compiled file for each terrain. 
Continuing with the example, if you took 250 samples for each terrain, each compiled 
filed should have 250 rows, with each row representing a sample. We recommend using 
200 samples (rows) of each terrain and 50 for training. It could be that the compiled files 
are tab separated text files, in which case you can open them using Excel and then select 
the first 200 rows and paste them in the “Data” tab of the C4.5 application. The first 
column of the compiled files corresponds to the “Point1” attribute, so you should paste 
the data on the “N” column on the “Data” tab. After the data is pasted you should add the 
name of the class (gravel, pavement, etc.) on the column labeled “Species_name” 
(column “M”) and a corresponding number of class on the column labeled “Species_No” 
(column L). After copying the 200 samples of the compiled files, you can add the 
remaining 50 samples of each terrain following the training data they are going to work 
as testing data. 
 

 
Figure 15: The “Data” spreadsheet. 



 When the “Data” spreadsheet is ready, you should go to the “UserInput” tab and 
do the following. First modify the parameter on the “Option 2” that says “Use last #### 
rows of the data as validation set” where #### has to be 200 for our example (50 for each 
terrain and 4 terrains). Second, click the “Build Tree” button to start the tree generation 
process. This process would take approximatley 30 minutes for our example in an Intel 
Pentium M laptop at 2.0 MHz. and 1GB of RAM. 
 

 
Figure 16: The “UserInput” spreadsheet 
 
 The application generates the decision rules. However, the rules are basically for 
viewing and gaining insight into the classification problem (the application has no 
capability of using the rules to classify new data points).  
 



7.4 Implementing Dynamically Generated Rules 
  
 After the set of rules is created you have to create the file “rulesFile3.txt”, the one 
that contains the rules used by the classifier. This file has to be placed on the JIDOKA 
folder (usually “C:\Jidoka\”). Each rule generated by the C4.5 application has three 
attributes Support, Confidence and Capture (as showed in figure 17). The rules have to be 
sorted by confidence (this attribute measures the accuracy of the rule.). After the sorting, 
the rule number zero has to be moved to the bottom. 
 
 

 
Figure 17: Rule summary table, generated by the C4.5 application. 



 
 Figure 18: Example of a rules file “rulesFile3.txt”. 
 
 The final rule file has to contain the Rule_ID followed by the rule. Each Boolean 
element of the rule has to be separated by tabs as showed in the figure 18. You have to ad 
“IF CamRedAvg >= 0 THEN Species_name =” to the Rule 0, since basically this rule 
does not have a head. Finally it is important that the names of the classes are as shown in 
Table 2. 
 
Table 3: Class names for the rules file “rulesFile3.txt”. 
 

Terrain Name for 
rule file 

Pavement Dry PD 
Pavement Wet PW 
Pavement Snow PS 
Pavement Ice PI 
Gravel Dry GD 
Gravel Wet GW 
Gravel Snow GS 
Gravel Ice GI 
Dirt Dry DD 
Dirt Wet DW 
Dirt Snow DS 
Dirt Ice DI 

 



 

PART THREE: System Assessment 

8 Results 
 The C4.5 application generates a set of rules with corresponding assessments of 
confidence, support and capture.  Within these rules, a single set of data may be classified 
as more than one type of terrain.  This ambiguity must be clarified by relying on the 
characteristics of the rule set.  In this section we discuss strategies for administering the 
rules to the data being gathered.  The results generated by each strategy are explained in 
the following subcetions.  Confusion matrices for all results are included. 
 Given the set of n rules generated by the C4.5 application, we needed to find a 
mechanism for applying the rules in an efficient manner that would optimize accurate 
classification.  We tried four approaches.  These are discussed below. 

8.1 The rule with highest confidence first 
 Our initial attempt was to sort the rules based on their confidence only, such that 
the first rule considered has the highest confidence of all rules in the set.  The classifier 
evaluates the rules in this order, and the first rule whose antecedent evaluates to true has 
the highest confidence of any rule in the rule set that will evaluate to true for this data.  
Hence, this rule will determine the terrain type.   
 In exploring the accuracy of this approach, the experiment consisted of 1029 
training data samples. Of each data sample, 39 different predictors or attributes are used 
for classification. Refer to section 6.1: Preprocessing: Extracting data of interest from 
the sensors for an explanation of the filtering of these predictor attributes. These 39 
attributes are extracted as 33 points from the radar data and 6 values from the camera 
data. This approach of sorting by confidence resulted in the successful classification of 
94.22% of the trained data.  A confusion matrix of the results is shown in Figure 38. 



 
Figure 38.  Results for rule analysis approach of sorting by rule confidence. 
 

8.2 Voting 
 In the voting approach, all rules in the rule set are evaluated.  If any rule evaluated 
to true, then that rule would essentially be voting for the terrain type that it classifies.  
These votes are then tallied, and the terrain type with the most votes wins.  So, the terrain 
type classified by the most rules that evaluate to true wins the election, and is thus the 
classified terrain for the data sample. 
 This approach did not perform as well as the previous approach of sorting by 
confidence.  The accuracy of voting was observed at 86.67%.  This deterioration was a 
result of the imbalance of rule distribution per terrain in the rule set.  For example, the 
snow terrain is classified based on only one rule, while there are 13 rules that classify 



dirt.  Yet, the one rule that classifies snow has a confidence of 100%, while the rules that 
classify dirt range from 25% to 98%.  So, for example, there may be a situation in which 
the one snow rule evaluates to true, and three low confidence dirt rules evaluate to true.  
In this case, the voting mechanism will classify the terrain as dirt even though the single 
snow rule had a much higher confidence simply because there were more dirt rules that 
evaluated to true than there were snow rules in the rule set.  See Figure 39 for a confusion 
matrix of the results for the voting approach. 

 

 
Figure 39.  Results for rule analysis approach of voting. 
 



8.3 Weighted Rules 
 In order to correct for the deficiency of the voting approach as described in the 
previous section, a weight assessment was incorporated into the voting mechanism.  Each 
rule was attributed a weight that was calculated based on the rule’s support, confidence 
and capture.  This weight is calculated by the following equation: 
 

CaptureConfidenceSupportWeight ××=  
 
 As in the voting approach, we evaluate all the rules such that each rule that 
evaluates to true is able to vote for the terrain type that it classifies.  In the weighted rule 
approach, though, each vote has a value equivalent to the weight as calculated by the 
above equation rather than having a value of one as the vote had in the voting approach. 
The experiments revealed an accuracy of 90.49% for the weighted rules approach. 
 

 
Figure 40.  Results for rule analysis of weighted rules approach. 



8.4 Normalized Weight 
 The weighted rules approach corrects for the voting approach’s deficiency of not 
incorporating support, confidence and capture into its assessment of the rules, but it still 
has the problem that each terrain is not equally represented in the number of rules that 
classify it in the rule set.  In order to correct for this, we propose normalizing the weights 
of each rule such that the sum of the weights of all rules that classify a certain terrain add 
up to 1.  Implementing this strategy will result in the equal representation based on rule 
count of each terrain in the rule set.  For example, since snow only has one rule in the 
rule set, this rule’s weight will be 1.  Similarly, since dirt has 13 rules that classify it, the 
sum of the weight for each of these rules will be 1. 
 
 More specifically, we first assigned a weight to each rule, using the product of the 
support, confidence and capture percentages as was used in the weighted rules approach.  
This weight is called SCC_WEIGHT.  Then for each class of terrain we summed the 
weights of all the rules that classify that terrain.  This sum is referred to as the  
SUM_CLASS_WEIGHT.  Now that we have a SUM_CLASS_WEIGHT for each class 
of terrain, we assign a new normalized weight to each rule.  This new rule weight is 
called the FINAL_WEIGHT.  The FINAL_WEIGHT is calculated as follow. 
 

WEIGHTCLASSSUM
WeightSCCWeightFinal

__
100__ ×

=  

 
This approach produced a classification accuracy of 90.78%. See Figure 41 for complete 
details. 



 
Figure 41.  Results for rule analysis of normalized weighted rules approach. 



 

9 Conclusions 
 In this research, we designed a road surface detection system that utilizes a 
camera, a pulse radar, and an accelerometer as sensor units for detecting the 
characteristics of the terrain on which a vehicle is driving.  This terrain detection 
capability is essential to attaining the greater JIDOKA vision of providing vehicles with 
computationally enhanced structural awareness.  The need for accurate terrain detection 
is due to the significant effects of terrain on the durability and reliability of a vehicle’s 
overall functional integrity.   
 Enabling satisfactory terrain detection presented quite a challenge.  Our research 
culminated in the application of the C4.5 algorithm to generate a rule set based on a 
training set of data samples.  These rules are then strategically evaluated in order to 
provide adequate classification. 
 The best results were generated by the rule analysis approach of ordering the rules 
by confidence, and then classifying based on the first rule that evaluates to true.  In other 
words, the rule with the highest confidence that evaluates to true is used to classify the 
terrain.  This approach produced an accuracy of 94.22%, which exceeded the next highest 
accuracy of an approach by 3.44%.  These results based purely on sensor data processing 
are exceptional.  The development of the JIDOKA vision is well on its way. 
 

9.1  Future Improvements to Terrain Detection 
 The results produced in the work are based entirely on the processing of sensor 
data.  It is easily conceivable that incorporating even basic contextual information into 
the classification algorithm will improve the accuracy of the system.  For example, 
adding an awareness of recent terrain classifications may assist in eliminating disparate 
classifications. 
 Another improvement may be the evolution of the rule set.  This may be 
implemented by reserving actual data and then periodically using this data as a training 
set in order to reorient the thresholds that delineate terrain types.  These renovations of 
the rules will never be drastic, because the accuracy of the new rule set is based on the 
classifications of the previous rule set, but periodically making small adjustments will 
maintain an accurate representation of the terrain by the rules. 


