
Consensus
Software
Robustness and Social Good

H istorically, a society is controlled by its
systems of law, economics, and politics.
Increasingly, modern societies are being

controlled by computer systems as well, and it is
not always obvious to which political philosophy
such systems might adhere. Moreover, there is a
danger if the systems contain errors and do not
behave correctly.

In this column I explore some far-reaching issues
of software development that lie at the intersection
of robust software and sociopolitical systems. These
two areas might seem unrelated — and most soft-
ware developers would likely be horrified to have
politics intrude on their programming efforts — but
the intersection occurs through these premises:

• Software systems administer and control much
of our societal infrastructure.

• People would appreciate and better accept that
control if they had input into the nature of the
control and the systems’ behavior.

• Designers can make software systems more
robust through redundancy, in which different
versions of software components might cover
for each other’s mistakes and limitations.

• If many people could contribute software to soci-
etal control systems, the systems might be more
robust and better represent people’s interests.

The need for redundancy and the need for wide-
spread participation can be mutually satisfying.

Societal Software Systems
The kinds of social systems I mean are exemplified
by those for are electricity production and auction
reputation. Running generators at a constant speed
can optimize electricity production for efficiency,

but this cannot realistically occur because the
demand for electricity is not constant. To even out
demand over time, consumers can defer nonessen-
tial electricity use to times when the demand is
less. For example, a consumer could choose to run
the clothes dryer at night when there is less indus-
trial need for power.

Writing a centralized control algorithm to man-
age power allocation to thousands of consumers’
diverse electrical devices would be extremely dif-
ficult and would no doubt annoy those who need-
ed to dry their clothes and would not be allowed
to do so. However, with incentives in place for
using electricity at off-peak times and penalties for
using it during high demand, individuals could
provide a type of distribution control that would
be more accurate; moreover, consumers would be
happier because the system would work the way
they wanted. In another example, when people buy
and sell items via auction sites such as eBay, they
develop reputations from the compiled opinions of
people they have dealt with through the sites. This
is a robust measure because fair opinions will
eventually overcome any unfair ones. Interesting-
ly, the users (rather than the software developers)
are responsible for the reputation system’s robust-
ness: the greater the user community’s participa-
tion, the greater the ratings’ accuracy.

A Research Agenda for Robust
Societal Software Systems
The above examples offer an admittedly utopian
view of robust software systems whose behavior is
a consensus of its clients’ and users’ wishes rather
than a reflection of a software developer’s person-
al bias. To realize that vision, we must answer the
following questions:

IEEE INTERNET COMPUTING 1089-7801/03/$17.00©2003 IEEE Published by the IEEE Computer Society MAY • JUNE 2003 91

Agents on the Web

Michael N. Huhns • University of South Carolina • huhns@sc.edu

• How can a wider range of people
participate in software develop-
ment and customization?

• How can we combine individual
components with faults and errors
into robust software systems?

• How can behavior be shared in a
manner similar to how the Web
enables information sharing?

• How can independently con-
structed autonomous components
reach mutual understanding and
consensus?

• What categories of software are suit-
able for consensus programming?

• How can we analyze and validate
consensus software?

For guidance into the form that a
consensus software system should take,
we can look to both programming
models and political models.1 With
object-oriented programming models,
computer software resembles and rep-
resents the real world more closely than
non-OOP paradigms, such as procedur-
al programming methodologies, which
typically represent mathematical ab-
stractions. (For example, a Fortran sub-
routine might compute a matrix
inverse, whereas an OOP module could
represent the class Automobile.)

Although object-based and, better,

agent-based software mimics the world,
it is not developed in this way. That is, a
small number of professional develop-
ers — not the “world” — produce the
software. When I visit Amazon.com, for
example, an agent with a model of me,
based on what I look at or have bought
previously, suggests items I might want
to purchase. Amazon’s software devel-
opers produce the model and, even
though it supposedly represents me, I
have no input in its configuration. Most
distressingly, if the model inaccurately
represents my interests and preferences,
there is no way I can correct it.

As another example, my employer
has a software and information model
of me as an instance of an Employee
class, but I did not contribute directly or
consciously to its construction. Instead,
all Employee models in my organiza-
tion were constructed centrally.

Software Development
Organized Politically
There is always a tension between the
order that comes with centralization
and the freedom that comes with
decentralization. This is reflected in
similar debates concerning privacy
versus security, prevention versus pro-
tection, and, more generally, free mar-
kets versus centralized economies.

Economic historian Douglass North
believed that institutions evolve
toward free markets, in which institu-
tions are conceptual structures that
coordinate people’s activities.2 In his
view, institutions comprise networks of
relationships, including all the skills,
strategies, and norms that the partici-
pants contribute. He believed the dri-
ving force behind the evolution of
institutions was self-interest.

During the current economic down-
turn, many organizations are facing
declining revenues and budget cuts. A
common, centralized response is an
across-the-board cut in salaries and
expenses, based on the view that each
employee should receive a minimum
salary. Conversely, employees’ individ-
ual self-interested views are that they
should receive the maximum salary
and that the company should make up
the deficit elsewhere. Extending this
view to all employees could lead to the
organization’s failure, and then no one
would receive any salary at all. But the
desire for increased salaries results in
a pressure for institutional growth, and
in this way everyone might eventual-
ly receive more.

In contrast, economist John Com-
mons viewed an institution as a set of
working rules that govern an individ-
ual’s behavior.3 The rules codify cul-
ture and practices and are defined by
collective bargaining. As a result, insti-
tutions evolve ideally toward democ-
racy. According to Commons’ view,
each Employee object in this exam-
ple would let its salary reflect the orga-
nization’s budget and the employee’s
particular contribution to the organi-
zation’s performance.

Specifying Preferences
As societies attempt to coordinate and
control their members’ use of utilities
and resources, individuals should have
means to influence the coordination
and control according to their prefer-
ences. Decisions can be made central-
ly or collectively, but individuals
would benefit from active systems that
could intercede on their behalf when
dealing with dynamic systems that

92 MAY • JUNE 2003 http://computer.org/internet/ IEEE INTERNET COMPUTING

Agents on the Web

Robustness through
multiagent-based

software redundancy

Consensus ontologies

Agent-based Web services
as a computing infrastructure

Widespread development
of consensus software

Robust software systems
Personalized sofware acting for

individuals in a society

(Outcomes)

Figure 1. Necessary research threads.Widespread development can produce
correct consensus software by taking advantage of research underway in
multiagent-based software redundancy, agent-based Web services, and
consensus ontologies.

require real-time decisions.4 Examples
of such institutions include banking,
distributing electricity, determining
routes for new roads, controlling traf-
fic, managing telecommunication net-
works, and designing buildings or
cities. Such societal services are
beyond personal services.

When individuals contribute to a
more accurate model of themselves and
a more accurate characterization of how
the systems they use should behave, the
society will be easier to understand,
more efficient, more productive, and
more satisfying, and its principles will
be better adhered to. People will be less
likely to subvert a societal principle,
such as conserve electricity, if they
helped formulate the principle.

A Possible Solution
Although there are formidable
research challenges in enabling con-
sensus-based social systems, many of
the necessary pieces are already in
place. Figure 1 shows some of the nec-
essary research threads in consensus
ontologies and multiagent-based soft-
ware redundancy and Web services.

First, I suggest using large-scale
systems of computational agents that
interact to achieve individual perfor-
mance objectives and compensate for
others’ mistakes or limitations.
Agents, unlike typical software com-
ponents, can become aware of other
agents via communication and inter-
action and have the potential to
achieve coherent cooperative behav-
ior. Just as multiagent-based systems
have successfully combined informa-
tion from disparate information sys-
tems, so too can they stitch together
disparate software components’
behaviors. More to the point, I have
previously described in this column
how multiple redundant agents can
produce increased system robustness.5

Second, the Internet and World
Wide Web have made it possible for
individuals from different societies and
cultures to share information. The
Semantic Web will make it possible for
computers to share not only informa-
tion, but also functionality. It, and

especially the forthcoming Web ser-
vices, will let functionality be widely
distributed, even when combined into
coherent systems. Extending these
results can provide ways for individu-
als to share behavior.

Third, to effectively interoperate,
individually contributed components
must interact, resolve conflicts, achieve
mutual understanding and coordina-
tion, and behave as intended. Previous
research6 has shown that a multiplici-
ty of ontology fragments, representing
the semantics of independent compo-
nents, can be related to each other
automatically (without using a global
ontology). This is possible through a
semantic bridge consisting of many
other previously unrelated ontologies,
even when there is no way to deter-
mine direct relationships among them.
The relationships among the ontology
fragments indicate the relationships
among the components the fragments
represent, enabling the information the
components provide to be organized
and understood. My research team
conducted an investigation of the
semantic bridge by relating small,
independently-developed ontologies
for several domains. A nice feature of
our approach is that common parts of
the ontologies reinforce each other,
while unique parts are deemphasized.
The result is a consensus ontology.

Finally, there is a relationship that
must be explicated between the soft-
ware systems that manage and con-
trol societal institutions, those
responsible for setting up and man-
aging those systems, and members of
society. This relationship is similar to
that in a publicly owned company, in
which shareholders vote to elect a
board of directors and decide on
high-level corporate policies that
employees enact.

Conclusion
Consensus software, as I define it here,
can provide both a solution and an
opportunity. It can help solve the com-
mon problem of incorrect software by
improving robustness, and it can
engender individual software cus-

tomization and personalization. That
is, it will enable a much wider range of
people to develop customized soft-
ware. This can lead to greater involve-
ment by a broader cross-section of
society and therefore greater accep-
tance of technology. It will help deliv-
er on the Internet’s promise of decen-
tralization with its concomitant
immunity to censorship, monopoly,
and unequal opportunity.

By combining on-going research in
consensus ontologies, agent-based
Web services, societies of multiple
software agents, and multiagent-based
software redundancy, the research
suggested herein would generate con-
sensus software. The resulting software
systems would be more likely to
behave as people want and expect.
Users would then more readily accept
the coordination that the systems pro-
duce and exert. It’s a revolutionary
approach, but it can result in revolu-
tionary improvements.

Acknowledgment
The US National Science Foundation supports

this work under grant no. IIS-0083362.

References
1. P.E. Agre, “P2P and the Promise of Internet

Equality,” Comm. ACM, vol. 46, no. 2, Feb.
2003, pp. 39–42.

2. D.C. North, Institutions, Institutional
Change, and Economic Performance, Cam-
bridge Univ. Press, 1990.

3. J.R. Commons, Institutional Economics: Its
Place in Political Economy, Univ. of Wis-
consin Press, 1934.

4. M.N. Huhns, V.T. Holderfield, and R.L.
Zavala Gutierrez “Achieving Software
Robustness Via Large-Scale Multiagent Sys-
tems,” Software Eng. for Large-Scale Multi-
Agent Systems, LNCS 2603, A. Garcia et al.,
eds., Springer-Verlag, 2003.

5. M.N. Huhns and V.T. Holderfield, “Robust
Software,” IEEE Internet Computing, vol. 6,
no. 2, Mar./Apr. 2002, pp. 78–80.

6. L.M. Stephens and M.N. Huhns, “Consensus
Ontologies: Reconciling the Semantics of
Web Pages and Agents,” IEEE Internet
Computing, vol. 5, no. 5, Sept./Oct. 2001,
pp. 92–95.

Michael N. Huhns is a professor of computer sci-

ence and engineering at the University of

South Carolina, where he also directs the

Center for Information Technology.

IEEE INTERNET COMPUTING http://computer.org/internet/ MAY • JUNE 2003 93

Consensus Software

