
Agents on the Web

Massive
Deliberation

A gents are proliferating on the Web, making
it conceivable that their collective reason-
ing ability might someday be harnessed for

robust decision-making. Projects such as
SETI@home (http://setiathome.ssl.berkeley.edu/),
which processes radio telescope signals, and Fold-
ing@Home (http://folding.stanford.edu/), which
analyzes protein folding, have demonstrated that
massive computational power can be brought to
bear on well-defined problems involving large
amounts of data and known solution algorithms.
The hope is that massive deliberation power can
soon help solve problems that require knowledge,
reasoning, and intelligence.

Until recently, working individually or in small
groups, agents across the Web could barely com-
municate and could only reason under conditions
of severely bounded rationality. Projects such as
Agentcities (http://www.agentcities.org) showed
that widespread heterogeneous agents could col-
laborate on specific predefined tasks and provide
diverse agent-based services. When the tasks are
dynamic, of long duration, and ill defined, how-
ever, success requires planning that is continual,
distributed, and accounts for the social fabric into
which the plans and their execution must fit.

Distributed Planning
The systems employed in future domains and their
environments will be much larger than those used
today. They might include hundreds or thousands
of distinct agents that have unique preferences on
how to perform multiple tasks. Because of these
preferences, and because agents might have diffi-
culty accurately sensing the environments, any
given task can have several possible outcomes.
Domain environments will also evolve rapidly, at
rates of change similar to those seen in everyday
human activity.

Given these assumptions, several natural con-
sequences exist. The state space for a planning
agent represents all possible views of the world

that an agent might have. In complex domains,
this state space will be extremely large, hindering
the use of centralized planning, and highly
dynamic, preventing development of good con-
tingency plans offline. There is also a high proba-
bility of agents encountering situations in the
environment that cannot be modeled beforehand.
An agent’s reasoning approach should be capable
of handling uncertain and conflicting information
and adapting at a rate similar to the environment’s
rate of change. Finally, because actions might have
multiple outcomes, planning algorithms must
account for each possible outcome and its likeli-
hood of occurrence.

By posing a planning problem as a Markov
decision problem (MDP), a designer can develop an
optimal policy over domain states, denoting opti-
mal actions to be performed in each state.1 With
the size of the domains, number of agents, and
number of actions that are proposed for future
problems, however, the standard MDP approach
does not scale as desired. We need an alternative
approach that can support planning in these types
of environments. One such approach is to use
localized decision-theoretic, continual planners.2

Localized planning distributes the search space to
individual agents, decision theory lets agents rea-
son over uncertain actions and states, and contin-
ual planning lets agents adapt rapidly to changes
in the environment and global goals.

Societal Agents
Humans, unlike current agent systems, are
extremely good at solving distributed planning
problems. Consider how smoothly traffic flows on
a normal workday, even though no central plan
exists to tell commuters how or where to drive.
One reason humans can plan and execute so well
is that we share values in the form of ethics and
norms that have evolved to maintain social order. 

Agent societies might maintain order and focus
through analogous ethics and norms, but they
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need a way of mapping these abstract
societal values to utilities that can be
expressed in a computational frame-
work that an agent can use. 

Human societal laws are expressed
as abstract concepts and qualitative
statements. Accurately expressing such
concepts in a computational frame-
work requires a methodology for map-
ping shared abstract principles to pref-
erences over world states and utilities
over actions, as shown in Figure 1.
Agents can then use decision theory in
their negotiations to evaluate the
expected utility of proposed actions
and resource usage. A fundamental
concept underlying planning objec-
tives is relative preference over the
possible outcomes of a plan. These
preferences let an agent rationally
choose the plan that it believes best
achieves its goals. Utility theory pro-
vides a framework for representing
preferences and reasoning quantita-
tively over such preferences, but it will
also be desirable in certain problem
domains to assess the preferences
qualitatively. Integrating distributed
planning with the social values con-
cept described earlier will enable
dynamic, rational, and massively dis-
tributed planning and plan execution
at multiple levels of granularity.3

Planning Framework
At the University of South Carolina,
we are developing a cooperative dis-
tributed initiative framework that
allows global coordination to emerge
from the interaction of agents that
plan using local knowledge.4 This dis-
tributed cooperative framework, Eplan, 

• distributes the planning search
space to individual agents through
localized planning,

• lets agents use decision theory to
reason about uncertain actions and
states,1 and

• enables continual planning that lets
agents adapt rapidly to changes in
environment and objectives.2

The framework is implemented
through a local planning architecture

in each agent, guidance in planning
from shared abstract principles, and
multiagent interactions from which
distributed planning emerges. Figure 2
depicts a local planning agent’s mini-
mum architecture, which we divide
into four components: a belief system,
a planning system, an execution sys-
tem, and a synchronization manager.

Belief System
The belief system maintains the
agent’s current view of the world. Each
agent maintains beliefs over the states
of its resources and effectors. A
resource, such as fuel or battery power,
is consumed during execution, while
an effector, such as the wheels or grip-
per of a robot, actually performs
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Figure 1. Mapping from shared abstract principles to utility functions.To imple-
ment shared ethics and norms, agents map abstract social principles to personal
preferences, which are then used to define action utilties during plan generation.

Planner ActionQueue

Influence
diagram

Temporal
reasoner

Schedule

Philosophical
principles

Synchronization
manager

Belief manager

Sensors

Schedule manager

Executive

Effectors
Beliefs

Figure 2. Local planner architecture.A local planning agent’s minimum architec-
ture includes four components in the EPlan framework.



actions. The agent also includes sen-
sors that return knowledge it might
require about its environment. Because
the sensors might provide ambiguous
or inaccurate information, sensory
information passes through a belief
management system before the agent
stores it as beliefs. The belief manage-
ment system, which is domain specific,
maps sensory inputs to a probability
distribution over states representing
the agent’s beliefs.

Planning System
The planning system consists of a
dynamic decision network, a planner
control mechanism, a queue of actions
to be performed, a temporal reasoner
for predicting action durations, and a
schedule in which actions are mapped
to specific execution start times.

The dynamic decision network is the
foundation of the planning system
because it lets an agent reason about
actions. A dynamic decision network
(DDN) is a graphical data structure that
models the state of the world over time
and typically represents a small num-
ber of connected time slices. In each
time slice, a set of variable nodes rep-
resents the state of the world in terms
of probability distributions, a decision
node represents the actions available
to an agent, and a utility node defines
expected utilities over the possible
states of the world. The agent’s current
beliefs about the world are set as evi-
dence in the first time slice of a DDN.
This is accomplished by setting the
probability distribution of the relevant
variable nodes such that the state that
corresponds to the agent’s belief has
probability one and all other states
have probability zero.

Given this information, the expect-
ed utility of performing each possible
action can be calculated and the agent
can reason over which activity has the
highest expected utility. This reason-
ing is based on both domain knowl-
edge and the abstract social principles
to which the agent adheres.

Once the agent selects this action,
the dynamic decision network can pre-
dict the effects of its execution on the

world. By iteratively propagating pre-
dicted world states into the next time
slice of the decision network, the agent
can generate multiple steps in a plan. 

Our architecture’s planner drives
iterations of the dynamic decision net-
work. The planner obtains the agent’s
beliefs to serve as initial evidence,
stores each action the decision network
generates in the action queue, and then
executes the next dynamic decision
network iteration. The planner process
can be triggered in four different ways: 

• initial planning when the agent is
first instantiated, 

• replanning if the agent is nearing
execution of the complete set of
actions generated for the current
horizon, 

• replanning if beliefs change, or 
• replanning if the execution of a

current task is taking longer than
expected and conflicts with anoth-
er scheduled action’s start.

The n steps generated from the dynam-
ic decision network are stored in order
in an action queue. After all n actions
have been generated, the agent uses a
domain-specific temporal reasoner to
estimate the duration of each action,
and then schedules them appropriately.

Execution System
The execution system consists of a
schedule manager, an executive, and
domain-specific effectors. The sched-
ule manager responds to the agent’s
clock and transfers actions to the exec-
utive when the scheduled time for an
action arrives. Depending on the
action to be performed, the executive
then initiates the domain-specific low-
level actions required for execution.

Synchronization Manager
Our framework isolates the four core
tasks in the planning process — updat-
ing beliefs, removing a task from the
schedule to start execution, signaling
task completion, and executing the
actual planner — through the ordering
of their execution. The synchronization
manager allows the tasks to be per-

formed in the order it receives them,
but ensures that only one planning task
is executed at a time. This guarantees
consistency in the planning process
and prevents planning tasks from
interfering with each other. Without
synchronization, the schedule manager
might spawn actions from an incom-
plete schedule, or the planner might
include partially updated beliefs as evi-
dence in the dynamic decision network.

Cooperative Interaction
The architectural infrastructure that
supports collaborative planning and
execution has three core stages: coali-
tion formation, coalition plan devel-
opment, and commitment manage-
ment. Coalition formation is spawned
when an agent cannot perform a
required task, perhaps because it does
not have the required capabilities or
cannot access some required resource.
The formation is similar to many other
collaboration-formation protocols
(such as the contract net5) and requires
discovery, proposal, and reply. In the
discovery phase, a requesting agent
searches for an appropriate task agent
to perform a required task. We can
implement discovery through several
mechanisms, including broadcast mes-
sages, a directory service, or direct
knowledge of an agent’s capabilities. 

After locating a task agent, the
requesting agent sends a proposal that
includes necessary constraints for suc-
cessfully completing the proposed task.
The task agent reviews the proposed
task plan and constraints and evaluates
the utility and its ability to schedule the
task’s performance. If the task agent
believes executing the task is benefi-
cial, it replies with an acceptance that
marks entry to the coalition plan devel-
opment stage. Otherwise, the task agent
sends a rejection, causing the request-
ing agent to search for other task
agents or to reexamine its own plan.

During coalition plan development,
agents negotiate to integrate their sub-
plans and avoid conflicts. The integra-
tion of subplans lets agents work
around potentially damaging interac-
tions between their actions. Agents
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then finalize coalition plans through
decision-theoretic commitment man-
agement coupled with social principles
of commitment. Commitment man-
agement is included in decision theo-
retic planning by assigning extra costs
to actions that keep the agent from
fulfilling a commitment.

Under this planning framework,
each agent’s goal is to generate small
dynamic plans that fit individual needs
in a larger emergent plan, rather than
build components of an explicit over-
all plan. A global approach to reach-
ing global goals emerges from local
interactions among agents. This glob-
al plan, however, is never required to
be explicitly defined and known to the
agents, allowing this approach to scale
to very large and complex problems.
Figure 3 depicts how a plan develops
through agents’ local interactions. The
use of decision-theoretic maximum
utility planning, together with shared
principles, helps lead agents to select
actions that support the emergence of
coherent and coordinated interactions,
while implicitly acting as filters to pre-
vent actions that are least likely to
help achieve global and individual
goals or are harmful to the society.

Conclusion
This distributed planning methodolo-
gy provides a step toward a future in
which numerous agents can robustly
and effectively work together to solve
large problems. The potential applica-
tions of such an architecture are wide-
spread, both on and off the Internet.
The future of the “cognitive Web” and
its services promises to open up never-
before-seen support for collaborative
reasoning and decision-making. Large
numbers of agents could interact to
solve difficult reasoning problems and
agent assistants could participate in
agent communities to efficiently and
robustly accomplish user goals. Prin-
cipled agents enforcing ethics in sen-
sitive domains could drive e-govern-
ment. Off the Web, applications of this
framework could extend from the
practical realization of coordinated
Mars rovers to the creative task of

developing coordinated and competi-
tive gaming agents.
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Figure 3. Emergent global planning through local interactions. Science agents
develop an implicit global plan while interacting with task requests and commit-
ments during local planning.


