
Constructing Consensus Ontologies for the Semantic

Web: A Conceptual Approach

LARRY M. STEPHENS, AUROVINDA K. GANGAM, and
MICHAEL N. HUHNS {stephens,gangam,huhns}@engr.sc.edu
Department of Computer Science and Engineering, University of South Carolina,
Columbia, SC, 29208, USA

Abstract. Organizational knowledge typically comes from numerous independent
sources, each with its own semantics. This paper describes a methodology by which
information from large numbers of such sources can be associated, organized, and
merged. The hypothesis is that a multiplicity of ontology fragments, representing
the semantics of the independent sources, can be related to each other automatically
without the use of a global ontology. That is, any pair of ontologies can be related
indirectly through a semantic bridge consisting of many other previously unrelated
ontologies, even when there is no way to determine a direct relationship between
them. The relationships among the ontology fragments indicate the relationships
among the sources, enabling the source information to be categorized and orga-
nized. An evaluation of the methodology has been conducted by relating numerous
small, independently developed ontologies for several domains. A nice feature of
the methodology is that common parts of the ontologies reinforce each other, while
unique parts are deemphasized. The result is a consensus ontology.
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1. Introduction

Corporate information searches can involve data and documents both
internal and external to the organization. The research reported herein
targets the following basic problem: a search will typically uncover a
large number of independently developed information sources—some
relevant and some irrelevant; the sources might be ranked, but they
are otherwise unorganized, and there are too many for a user to in-
vestigate manually. The problem is familiar and many solutions have
been proposed, ranging from requiring the user to be more precise
in specifying search criteria, to constructing more intelligent search
engines, or to requiring sources to be more precise in describing their
contents. A common theme for all of the approaches is the creation,
use, and manipulation of ontologies for describing both requirements
and sources [4, 8, 12, 14, 23, 20, 27, 30, 34, 36, 37, 40].

Unfortunately, ontologies are not a panacea unless everyone adheres
to the same one, and no one has yet constructed an ontology that is
comprehensive enough (in spite of determined attempts to create one [1,

c© 2004 Kluwer Academic Publishers. Printed in the Netherlands.

Stephens-et-al.tex; 5/02/2004; 15:33; p.1



2 STEPHENS, GANGAM, and HUHNS

21, 33], such as the Cyc Project [22], underway since 1984). Moreover,
even if one did exist, it probably would not be adhered to, considering
the dynamic and eclectic nature of the Web and other information
sources.

There are three approaches for relating information from large num-
bers of independently managed sites: (1) all sites will use the same
terminology with agreed-upon semantics (improbable), (2) each site
will use its own terminology, but provide translations to a global on-
tology [9, 17] (difficult, and thus unlikely), and (3) each site will have
a small, local ontology that will be related to those from other sites
(described herein). We hypothesize that the small ontologies can be
related to each other automatically without the use of a global ontology.
That is, any pair of ontologies can be related indirectly through a se-
mantic bridge consisting of many other previously unrelated ontologies,
even when there is no way to determine a direct relationship between
them. Our methodology relies on sites that have been annotated with
ontologies [28]; such annotation is consistent with several visions for the
Semantic Web [5, 6, 18]. The domains of the sites must be similar—else
there would be no interesting relationships among them—but they will
undoubtedly have dissimilar ontologies, because they will have been
annotated independently.

Some researchers have attempted to merge a pair of ontologies in
isolation, or merge a domain-specific ontology into a global, more gen-
eral ontology [38]. Others have used this merging approach as a means
for constructing a large global ontology [10]. Recently progress has been
made in determining semantic similarity among separately developed
entity classes [29] and refining the semantics of concepts in a thesaurus
[16]. However, to our knowledge, no one has previously tried to recon-
cile a large number of closely related, domain-specific ontologies. We
have evaluated our methodology by applying it to a large number of
independently constructed ontologies; our preliminary results were first
reported in [32]

2. The Information Interchange Problem

People need information in order to make decisions. The information
can come from a variety of sources, and is assembled dynamically and
uniquely for each specific problem. Also, the information must be fused
and presented coherently, with inconsistencies identified and possibly
resolved. Standards and conventions, such as XML, can help in making
sources syntactically consistent. However, the information will likely be
represented and conceptualized differently at each source.
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Figure 1. In response to a user’s request, agents assemble information from Web
sites and other sources, each having its semantics defined by a different ontology,
possibly represented in a formalism such as the OWL Web Ontology Language [11]

To address this, efforts are underway to standardize DTDs and
XMLSchemas for various domains, based on ontologies. People devel-
oping Web pages will refer to these ontologies and use the concepts in
the XML tags on their pages. Users will request groups of agents to
assemble information from many sources, including Web pages. Agents
will access the Web pages and be able to understand their content1,
because the ontologies provide the semantics for the tags used on the
pages (see Figure 1).

A problem of semantic reconciliation will arise in two ways: (1) an
individual source might refer to more than one ontology, and (2) Web
pages retrieved from different sources will likely be based on different
ontologies. In both cases, agents trying to form a coherent picture
must be able to relate concepts that are explained in terms of different
ontologies [35]. This requires that the ontologies be either merged or
related.

In relating a given Web page to an ontology, we have found that
the Web page typically has many concepts that are not included in the
ontology. The concepts could be ignored, with the result that agents will
not be able to access and use them, the ontology could be augmented to
include them, or other ontologies could be found that already include
them. The first approach loses semantics, the second requires the ability
or permission to extend an existing ontology, and the third, generally
the best, still requires relationships to be established among the several
ontologies chosen to represent the Web page.

For example, a user, interested in a comparison of the conductivity
of aluminum versus copper wire, might initiate a simple search on the
term “conductor.” A standard search engine could return a ranked
list of 1,980,000 Web pages, as GoogleTM recently did, some of which
would concern orchestra and railroad conductors. The methodology
we describe below would construct a merged ontology from the small
ontologies associated with each of the first 100 or so pages. The merged
ontology, centered on the term “conductor” and revealing the three
mostly disjoint sub-ontologies for its three word senses, would be pre-
sented to the user, as shown in Figure 2. Based on this, the user could

1 By understand, we mean that valid or reasonable inferences can be made about a
concept, where the results of the inferencing are not explicitly represented a priori.
For example, if a Web page describing a Taurus specifies it as an instance of a
Sedan in a MotorVehicle ontology, and if this ontology describes a Sedan as a kind
of PassengerVehicle, then it can be inferred that a Taurus is a PassengerVehicle.
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Figure 2. A merged ontology refines the domain concepts needed by users to satisfy
their requests

Figure 3. Ontologies can be made to relate to each other like pieces of a jigsaw
puzzle

select a node to retrieve a page, or iterate by selecting a node from
which to initiate a refined search.

3. Reconciling Independent Ontologies

In agent-assisted information retrieval, a user will describe a need to
his agent, which will translate the description into a set of requests,
using terms from the user’s local ontology. The agent will contact on-
line brokers and request their help in locating sources that can satisfy
the requests. The agents must reconcile their semantics in order to
communicate about the request. This will be seemingly impossible if
their ontologies share no concepts. However, if their ontologies share
concepts with a third ontology, then the third ontology might provide
a semantic bridge to relate all three. Note that the agents do not have
to relate their entire ontologies, only the portions needed to respond to
the request.

The difficulty in establishing a bridge will depend on the semantic
distance between the concepts, and on the number of ontologies that
comprise the bridge. Our methodology is appropriate when there are
large numbers of small ontologies—the situation we expect to occur in
large and complex information environments. Our metaphor is that a
small ontology is like a piece of a jigsaw puzzle, as depicted in Figure 3.
It is difficult to relate two random pieces of a jigsaw puzzle until they
are constrained by other puzzle pieces. We expect the same to be true
for ontologies.

Two concepts can have the following seven mutually exclusive rela-
tionships between them: subclass, superclass, equivalence, partOf, has-
Part, sibling, or other. If a request contains three concepts, for example,
and the request must be related to an ontology containing 10 concepts,
then there are 7 × 3 × 10 = 210 possible relationships among them.
Only 30 of the 210 are correct, because each of the three concepts in
the request has exactly one correct relationship with each of the 10
concepts in the source’s ontology.

The correct ones can be determined by applying constraints among
the concepts within an ontology, and among multiple ontologies. Once
the correct relationships have been determined, we make use of equiva-

Stephens-et-al.tex; 5/02/2004; 15:33; p.4



CONSTRUCTING CONSENSUS ONTOLOGIES FOR THE SEMANTIC WEB 5

lence and sibling or, where those do not exist, the most specific super-
class or partOf.

In Figure 3, the ontology fragment on the left is represented as
partOf(Wheel, Truck), while the one on the right is represented as
partOf(Tire, APC). There are no obvious equivalences between these
two fragments. The concept Truck in the first ontology could be re-
lated to APC in the second by equivalence, partOf, hasPart, subclass,
superclass, or other. There is no way to decide which is correct. When
the middle ontology fragment partOf(Wheel, APC) is added, there is
evidence that the concepts Truck and APC, and Wheel and Tire could
be equivalent.

This example exploits the existence of the relation partOf, which
is common to all three ontologies. Other domain-independent rela-
tions, such as subclassOf, instanceOf, and subrelationOf2, will be neces-
sary for the reconciliation process. Moreover, the reflexivity, symmetry,
asymmetry, transitivity, irreflexivity, and antisymmetry properties are
needed for relating occurrences of the relations to each other [31].
Domain concepts and relations can be related to each other by con-
verse/inverse, composition, (exhaustive) partition, part-whole with 6
subtypes [7, 39], and temporal attitude. There must be some minimum
set of these fundamental relations that are understood and used by all
local ontologies and information system components.

In attempting to relate two ontologies, a system might be unable
to find correspondences between concepts because of insufficient con-
straints and similarity among their terms. However, trying to find
correspondences with other ontologies might yield enough constraints
to relate the original two ontologies. As more ontologies are related,
there will be more constraints among the terms of any pair, which is
an advantage. It is also a disadvantage in that some of the constraints
might be in conflict. We make use of the preponderance of evidence to
resolve these statistically.

4. Experimental Methodology

We conducted experiments in three domains. We asked one group of 54
graduate students in computer science to construct a small ontology for
the Humans/People/Persons domain, a second group of 28 students to
construct a small ontology for the Buildings domain, and a third group
of 25 students to construct a small ontology for the Sports domain.

2 Examples of subrelations are (1) on is a subrelation of above in spatial relations,
(2) daughterOf is a subrelation of childOf in familial relations, and (3) cityLocation
is a subrelation of countryLocation in geographic relations.
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Figure 4. A typical small ontology used to characterize an information source about
people (all links denote subclasses)

The ontologies were written in OWL [11] and were required to contain
at least 8 classes with at least 4 levels of subclasses; a sample ontology
is shown in Figure 4. In this and all other figures the directed link is
from superclass to subclass.

We merged the files in each of the three domains using all syntac-
tic and semantic information available in the component ontologies.
Our system merges the component files one-at-a-time into a resultant
merged file. For each node in the resultant file, we maintain a reinforce-
ment value, which indicates how many times the node has been matched
as ontologies are merged. We also maintain reinforcement values for
class-subclass links. The details of the methodology are presented in
Section 5 and the results in Section 6. The methodology includes

− string matching for node names, including plural-pairs.

− checking for antonyms and synonyms,

− making the algorithm commutative,

− removing circularities in the merged ontologies,

− incorporating disjoint-class definitions, and

− identifying noun “classifiers,” such as “Apartment” in “Apart-
mentBuilding” to determine subclass relationships.

5. Ontology-Merging Techniques

Our objective is to make use of all of the syntactic or semantic in-
formation that is available to achieve the best possible merger of the
component ontologies. The syntactic information available is the names
of the nodes, for which we employ various string-matching techniques.
The semantic information includes the semantics associated with a
subclass link in the ontologies, prefixes that indicate antonyms, and
evolving synonym sets.

5.1. Substring Matching

Our principle technique for merging two ontologies relies on simple
string and substring matching. The name of a node from one ontology
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is systematically compared to each of the nodes from another ontology
using the following prioritized rules:

− If an exact match is found, then the comparisons cease and a value
of 1.0 is assigned as a match.

− If the node names are antonyms of each other, then the merg-
ing attempt is aborted. We detect antonyms formed by prefixes
such as anti, dis, im, in, non, and un. In general, antonym check-
ing prevents some mergers and produces a correspondingly larger
number of total classes compared to uninformed string match-
ing. Antonyms are a convenient way to subdivide concepts or
domains into subconcepts and opposites, and were widely used
in the student-produced ontologies. For example, it is typical that
“People” might be divided into “Students” and “NonStudents,” or
“Citizens” and “NonCitizens.”

− If the names are not identical, then we check for plural pairs that
follow the traditional rules of grammar such as building–buildings,
calf–calves, knife–knives, and thesis–theses. The match value is set
to 1.0 as if the node names were identical.

− If the shorter string is wholly contained at the end of the longer
string, then the nodes are not merged but the node with the shorter
string name is asserted to be a super class of the node having the
longer name. The use of noun classifers is discussed further in
Section 5.7. For example, the string “Animal” matches the end of
the string “WildAnimal,” so “Animal”is assumed to a superclass
of “WildAnimal.”

− Otherwise, the match value is based on the extent to which the
leading substring of the shorter name matches the leading sub-
string of the longer name. For example, the first five characters of
“Animal” and “Animate” are identical, and a match value of 5/7
= 0.71 is assigned.

The best match for each node is found, and if its match value exceeds
a threshold value (set at 0.50 for our experiments), a successful match is
declared. The merging technique works inter ontology, not intra ontol-
ogy. For example, in the final ontology for the “People” domain, there
are distinct classes for “Animal” and “Animate”—strings that would
be expected to merge—because one of the component ontologies made
a distinction between the two concepts.
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Figure 5. The best substring match common to both Student and Rodentia is dent,
an undesirable match.

Figure 6. Many-to-one matching examples in which the ontology on left is merged
into the ontology on right. The result depends on the order of merging–an undesir-
able effect. The numbers in parentheses indicate the reinforcement of a node after
merging

We investigated using “dot-plot” matching [24]; however, dot-plots
matches were not restrictive enough to give good results for cases in-
volving the interior portions of the strings. For example, “Student”
partially matches with “Rodentia” (Figure 5).

5.2. Merged-Name List and Synonyms

For each node, we maintain a list of all names that nave been merged in
reinforcing the concept. Originally this was done to allow a progression
of name variations to merge; however, now we use it to confirm that
node merges make sense. This “synset” approach disclosed that the
dot-plot string matching was too inexact, permitting, for example,
the successive “wandering” matches of Agent, Student, Entity, and
Rodentia.

We also initialized synsets for some of the nodes with synonyms
obtained from WordNet [26]. The use of synonyms increases the num-
ber of nodes that are merged and increases node reinforcement values.
For example, from WordNet we include the synonyms “Person” and
“Human,” which would not have been found using string-matching
techniques.

5.3. Many-to-One Node Merging

Our original algorithm sought a best match for each node on the left
with at most one from the right; however, a node in the right-hand
ontology might match many nodes from the left. In Figure 6, in which
the ontology on the left is merged into the ontology on the right,
the resultant ontology depends on the order of merging. In the top
portion of the figure, the discriminating semantics between “Animals”
and “Animate” is lost.

5.4. One-to-One Node Merging

In one-to-one node merging, the nodes in one ontology merge with the
best matched node from the other, regardless of the order of merging.
For example, if two nodes from the left-hand ontology match with

Stephens-et-al.tex; 5/02/2004; 15:33; p.8



CONSTRUCTING CONSENSUS ONTOLOGIES FOR THE SEMANTIC WEB 9

Figure 7. One-to-one merging prevents several distinct nodes from collapsing onto
a single node in the resultant ontology. For this merging order, the many-to-one
technique would have produced an ontology with the leaf node “Animal” refinforced
by 3.

Figure 8. Cycle removal eliminates the link between “Person” and “Animal.” The
weakly reinforced link between “Thing” and “Person” might be removed as shown
in Figure 9.

a single node in the right-hand ontology, then only the best pair is
matched; the other node is not merged, as shown in Figure 7. Although
the nodes “Animals” and “Animate” both match well with “Animal,”
only “Animals” is merged with “Animal.” If the order of merging is
reversed (as in the bottom portion of Figure 6), then the number of
nodes remains the same; however, the name of a merged node might be
different. To avoid differences in names of merged nodes, we maintain
a list of all names that have been merged for a given node, as discussed
in Section 5.2.

With one-to-one merging, the amount of merging is less than for
the many-to-one algorithm—an effect that generally produces a slightly
larger merged ontology than the many-to-one technique; however, the
merging is now commutative.

5.5. Cycle Removal

Cycles can appear in the final merged ontology if, via a direct subclass
link or transitive closure, node A is both a subclassOf and superClassOf
node B. Several of our student-produced ontologies had conflicting in-
formation that created cycles. When cycles are detected, they must
be removed, either automatically or by seeking user intervention. Our
algorithm removes the weakest reinforced link in a cycle and ensures
that there is at least one path from all nodes to the root node. See
Figure 8.

5.6. Transitive-Closure Link Removal

We considered removing from our merged ontologies all transitive clo-
sure class-subclass links, and reinforcing the remaining links. For exam-
ple, if A has subclass B and B has subclass C, then it appears needless
to assert explicitly that A has subclass C. Figure 9 shows the result
of removing the weakly reinforced, redundant link from “Thing” to
“Person” in Figure 8 and reinforcing the other links.

However, this approach can introduce results that clearly violate
a “consensus” in a merged ontology. Suppose the links from A to B
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Figure 9. The direct link between “Thing” and “Person” in the merged ontology of
Figure 8 is removed, and the remaining links are reinforced.

Figure 10. The consensus is that the concept “Women” is more strongly linked to
“Humans” than “Female.” Removing the direct link from “Humans” to “Women”
and reinforcing remaining links violates that consensus. Node and link reinforce-
ments are shown in parentheses.

and B to C have reinforcement values that are much less than the
reinforcement of the direct link from A to C. Removing the direct
link and reinforcing the remaining links gives the impression that the
consensus supports the weakly reinforced links. Our conclusion was to
abandon the procedure and leave link reinforcement values unchanged.
The relationships among “Humans,” “Female,” and “Women” in Fig-
ure 10, which are taken from our results, illustrate how using transitive
closure can violate a clear consensus.

5.7. Noun Classifiers

Nouns are sometimes used as adjectives to restrict the meaning of other
nouns. For example, the term “office building” suggests a special type
of “building,” and it is reasonable to infer that “office building” is a
subclass of “building,” even if the link is not explicit in an ontology. We
have not fully automated this process, and use a hand-generated list of
nouns that could be the target of classifiers in the domain of the on-
tologies. In addition, we use the heuristic of matching the shorter string
name (the superclass) to the end of the longer string (the subclass) as
noted in Section 5.1.

The identification of noun-noun pairs is not straightforward if there
is no space or hyphen separating the nouns. WordNet does not recognize
the string “OfficeBuilding” but easily finds the meaning of “office build-
ing” or “office-building.” Ontology builders need a set of conventions
for entering knowledge. We prefer the use of “camel-case,” which allows
words to be easily extracted. Without conventions for representing com-
pound words, extraction becomes very difficult. From “warmblooded-
animal,” one might extract “war,” “warm,” “arm,” “blood,” “loo,”
“ode,” “animal,” “ma,” and “mal” to name a few.

6. Discussion of Results

In the Humans/People/Persons ontology domain the component on-
tologies described 864 classes, while the merged ontology contained
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Figure 11. A portion of the ontology formed by merging 54 independently con-
structed ontologies for the domain Humans/People/Persons. The entire ontology
has 389 concepts related by 696 subclass links.

Figure 12. The consensus ontology for the “Humans” domain formed by merging
concepts with common subclasses and superclasses from 54 component ontologies.
The resultant ontology contains 20 concepts related by 25 subclass links.

389 classes in a single graph with a root node of the OWL concept
owl:Thing. All of the concepts were related, i.e., there was some re-
lationship (path) between any pair of the merged concepts (see Fig-
ure 11).

Next, we constructed a consensus ontology by counting the num-
ber of times classes and subclass links appeared in the component
ontologies when we performed the merging operation. For example,
the class “Human” and its matching classes appeared 53 times (one of
the 54 students used the term “Sapiens(Man),” which failed to match
the other nodes). The subclass link from Mammals (and its matches)
to Humans (and its matches) appeared 10 times. We termed these
numbers the “reinforcement” of concepts and links. We then removed
from the merged ontology any classes or links that were not reinforced
above a threshold level.

Finally, we applied an equivalence heuristic for collapsing classes that
have common reinforced superclasses and subclasses: if all reinforced
subclasses of X are also reinforced subclasses of Y, and all reinforced
superclasses of X are also reinforced superclasses of Y, then equivalence
holds between X and Y. This heuristic is similar to an inexact graph
matching technique such as [25].

Figure 12 shows the collapsed consensus ontology for the domain of
“Humans,” now containing 20 classes related by 25 subclass links. All
nodes are reinforced at least 5 times and all links, except as noted, rein-
forced at least 3 times. The weakly reinforced links “Female–Women”
and “Male–Men” could be omitted but are included to illustrate the
transitive closure trade-off.

Figures 13 and 14 show the results for the domains of “Buildings”
and “Sports,” which are based on 28 and 25 component ontologies,
respectively. For these two domains, the reinforcement threshold for
concepts and links is 3.

A consensus ontology is perhaps the most useful organization for
information retrieval by humans, because it represents the way most
people view the world and its information. For example, if most people
wrongly believe that crocodiles are a kind of mammal, then most people
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Figure 13. The consensus ontology for the “Building” domain contains 23 concepts
and 26 links. “Office” is considered both “NonResidential” and “Commercial.” The
concepts “Plant” (a subclass of “LivingThing”) and “Factory” (a subclass of Non-
LivingThing) appear in different branches of the ontology. The merged ontology is
derived from 28 component ontologies.

Figure 14. The final consensus ontology for the “Sports” with 18 concepts and 20
links. “Soccer” is classified slightly more strongly as a subclass of “Sports” rather
than “OutdoorSports.”

would find it easier to locate information about crocodiles if it were
placed in a mammals grouping, rather than where it factually belonged.

The information retrieval measures of precision and recall are based
on some degree of match between a request and a response. The length
of a semantic bridge between two concepts can provide an alternative
measure of conceptual distance and an improved notion for relevance
of information [2, 3, 15]. Previous measures relied on the number of
properties shared by two concepts within the same ontology, or the
number of links separating two concepts within the same ontology [13].
These measures not only require a common ontology, but also do not
take into account the density or paucity of information about a concept.
Our measure does not require a common ontology and is sensitive to
the information available.

Although promising, our experiments and analysis so far are prelim-
inary and ongoing. We used the following simplifications:

− We did not make use of properties of the classes, as would a
complete implementation of subsumption.

− Our string-matching algorithm did not use a thorough morpho-
logical analysis to separate the root word from its prefixes and
suffixes. We do, however, handle singular and plural noun forms
in most cases, and discriminate between antonym pairs.

− We used only subclass-superclass information, and have not yet
made use of other important relationships, notably partOf as sug-
gested in Figure 3.

We are addressing some of these limitations in our continuing re-
search. Moreover, our hypothesis, that a multiplicity of ontology frag-
ments can be related automatically without the use of a global ontology,
appears correct, but our investigation is continuing according to the
following plan:

− We are improving the algorithm for relating ontologies, based on
methods for partial and inexact matching, making extensive use
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of common ontological primitives, such as subclass and partOf.
The algorithm will take as input ontology fragments and produce
mappings among the concepts represented in the fragments. It
will use constraints among known ontological primitives to control
computational complexity. Some of these details are presented in
Appendix A.

− We are developing metrics for success in relating ontologies, based
on the number of concepts correctly related, as well as the num-
ber incorrectly matched. The quality of a match will be based
on semantic distance, as measured by the number of intervening
semantic bridges.

7. Conclusion

Imagine that in response to a request for information about a particular
topic, a user receives pointers to more than 1000 documents, which
might or might not be relevant. The technology developed by our re-
search would yield an organization of the received information, with
the semantics of each document reconciled. This is a key enabling tech-
nology for knowledge-management systems. The technique could be
applied off-line by search engines such as GoogleTM , thereby providing
ontologies that do not exist today for refining queries.

Our premise is that it is easier to develop small ontologies, whether
or not a global one is available, and that these can be automatically and
ex post facto related. We are determining the efficacy of local annotation
for Web sources, as well as the ability to perform reconciliation qualified
by measures of semantic distance. The results of our effort will be (1)
software components for semantic reconciliation, and (2) a scientific
understanding of automated semantic reconciliation among disparate
information sources.
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Appendix A: Heuristics for Merging Component Ontologies

Using the relations of Section 3, our methodology is embodied in the
following algorithm, similar to one used for plausible inferencing among
Cyc relationships [19]:

Given ontologies A and B, both based on the OWL specification
[11], having nodes nA(i), i = 1, 2, . . . , N and nB(k), k = 1, 2, . . . ,M
and relationship arcs rA(i1, i2) and rB(k1, k2),

− Perform string matching among nA(i) and nB(k),∀i, k, to deter-
mine candidate matches

− Perform synonym matching among nA(i) and nB(k),∀i, k, to de-
termine additional candidate matches

− Discard matches where nA(i1) matches nB(k1) and nA(i2) matches
nB(k2), but rA(i1, i2) is inconsistent with rB(k1, k2); matches that
remain are presumed to represent the relation equivalence3

The algorithm can be made more intelligent with the use of the
following steps:

− Add additional relations

• If nA(i) ≡ nB(k)∧
nA(j) is a subclass (superclass/hasPart/partOf)4 of nA(i)
then nA(j) is a subclass (superclass/hasPart/partOf) of nB(k)

• If nA(i1) ⊆ nA(i2) ⊆ nA(i3) ∧ nB(k1) ⊆ nB(k2) ⊆ nB(k3) ∧
nA(i1) ≡ nB(k1) ∧ nA(i3) ≡ nB(k3)
then the relation between nA(i2) and nB(k2) is either sibling,
subclass, superclass, or equivalence

• If nA(i1) partOf nA(i2) partOf nA(i3)∧nB(k1) partOf nB(k2)
partOf nB(k3) ∧ nA(i1) ≡ nB(k1) ∧ nA(i3) ≡ nB(k3)
then the relation between nA(i2) and nB(k2) is either sibling,
partOf, hasPart, or equivalence5

3 The relation equivalence is denoted by ≡.
4 The relation subclass is denoted by ⊆.
5 This relation cannot be subclass (superclass), because if nA(i2) ⊆ nB(k2), then

at least one of the equivalence relations nA(i1) ≡ nB(k1) or nA(i3) ≡ nB(k3) must
instead be subclass (superclass).
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− Considering an additional ontology C introduces constraints that
enable relations to be added as follows:

• If nA(i1) ≡ nC(j1) ∧ nC(j2) ≡ nB(k2) ∧ nA(i1) ⊆ nA(i2) ∧
nB(k1) ⊆ nB(k2)∧nC(j1) ⊆ nC(j2)∧ there are no known re-
lationships between nA(i1) and nB(k1) ∧ there are no known
relationships between nA(i2) and nB(k2)
then the relationship between nA(i1) and nB(k1) and nA(i2)
and nB(k2) is either sibling, subclass, superclass, or equiva-
lence

• If nA(i1) ≡ nC(j1)∧nC(j2) ≡ nB(k2)∧nA(i1) partOf nA(i2)∧
nC(j1) partOf nC(j2)∧ there are no known relationships be-
tween nA(i1) and nB(k1)∧ there are no known relationships
between nA(i2) and nB(k2)
then the relationship between nA(i1) and nB(k1) and nA(i2)
and nB(k2) cannot be other.

Appendix B: An Example Input Ontology in OWL

<?xml version="1.0" ?>
<rdf:RDF
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xmlns:xsd="http://www.w3.org/2000/10/XMLSchema#"
xmlns:owl="http://www.w3.org/2002/07/owl#"
xmlns:exd="http://www.w3.org/TR/@@/owl-ex-dt#"
xmlns:dex="http://www.w3.org/TR/@@/owl-ex#"
xmlns="http://www.w3.org/TR/@@/owl-ex#">
<owl:Ontology rdf:about="">

<owl:versionInfo>$Id: student1.rdf,v 1.1 2002/07/29
15:33:03 huhns Exp $</owl:versionInfo>

<rdfs:comment>People Domain Ontology</rdfs:comment>
<owl:imports

rdf:resource="http://www.w3.org/2002/07/owl" />
</owl:Ontology>

<owl:Class rdf:ID="Living Things">
<rdfs:label>Living Things</rdfs:label>

</owl:Class>

<owl:Class rdf:ID="Animals">
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<rdfs:subClassOf rdf:resource="#Living Things"/>
</owl:Class>

<owl:ObjectProperty rdf:ID="LifeSpan">
<rdfs:domain rdf:resource="#Animals"/>

</owl:ObjectProperty>

<owl:Class rdf:ID="Plants">
<rdfs:subClassOf rdf:resource="#Living Things"/>

</owl:Class>

<owl:Class rdf:ID="Humans">
<rdfs:subClassOf rdf:resource="#Animals"/>

</owl:Class>

<owl:ObjectProperty rdf:ID="Age">
<rdfs:domain rdf:resource="#Humans"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="Sex">
<rdfs:domain rdf:resource="#Humans"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="religion">
<rdfs:domain rdf:resource="#Humans"/>

</owl:ObjectProperty>

<owl:Class rdf:ID="Non-humans">
<rdfs:subClassOf rdf:resource="#Animals"/>

</owl:Class>

<owl:Class rdf:ID="Asians">
<rdfs:subClassOf rdf:resource="#Humans"/>

</owl:Class>

<owl:Class rdf:ID="NorthAmericans">
<rdfs:subClassOf rdf:resource="#Humans"/>

</owl:Class>

<owl:Class rdf:ID="Others">
<rdfs:subClassOf rdf:resource="#Humans"/>
<rdfs:comment>
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People from all other continents
</rdfs:comment>

</owl:Class>

</rdf:RDF>
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