
View from the Cloud
Editor: George Pallis • gpallis@cs.ucy.ac.cy

2 Published by the IEEE Computer Society 1089-7801/14/$31.00 © 2014 IEEE IEEE INTERNET COMPUTING

Cloud-Based Software
Crowdsourcing
Wei Tek Tsai • Arizona State University

Wenjun Wu • Beihang University

Michael N. Huhns • University of South Carolina

In addition to providing large-scale, highly available computational resources,

clouds also enable a new methodology for software development via

crowdsourcing, in which crowd participants either collaborate or compete

to contribute software. Using a crowd to develop software is predicted to

take its place alongside established methodologies, such as agile, scrum, pair

programming, service-oriented computing, and the traditional waterfall.

C rowdsourcing software development, or
software crowdsourcing,1 is an emerging
software engineering approach. Software

development has been outsourced for a long
time, but using a cloud to outsource it to a crowd
of developers is new. We’ve found that all soft-
ware development tasks can be crowdsourced,
including requirements, design, coding, testing,
evolution, and documentation. Software crowd-
sourcing practices blur the distinction between
users and developers, and follow the cocreation
principle — that is, a regular user becomes a code-
signer, codeveloper, and comaintainer. This is a
paradigm shift from conventional industrial soft-
ware development, with developers distinct from
users, to a crowdsourcing-based, peer-production
software development, in which many users can
participate.

A cloud provides a scalable platform with suf-
ficient resources, including computing power and
software databases, for a large crowd of devel-
opers. With emerging cloud software tools such
as DevOps (a portmanteau of development and
operations) and large-scale software mining, a
cloud significantly reduces the amount of man-
ual labor needed to set up software production
environments and empowers peer developers to
perform software crowdsourcing tasks efficiently
in design, coding, and testing.

Based on its organizational style, software
crowdsourcing can be either competitive or col-
laborative. In competitive crowdsourcing, only
 winning participants are rewarded. TopCoder
(www.topcoder.com), an online programming con-
test site, is an example of this approach. In col-
laborative crowdsourcing, people cooperate with
each other on various aspects, including funding,
concept development, user interface design, code,
test, and evaluation. AppStori (www.appstori.com)
represents this approach. The process design (such
as activities, duration, and number of participants),
support infrastructure, and software projects are
different for these two approaches.

Crowdsourcing Development
Processes
Crowdsourcing can be incorporated into con-
ventional software development processes such
as waterfall or agile and can contribute to any
software development phase.2 It can be used with
most design techniques, such as object-oriented,
service-oriented, and user-centered design (UCD);
software-as-a-service (SaaS); and formal methods.
For example, TopCoder directly supports the fol-
lowing process: conceptualization, specification,
architecture, component production, application
assembly, certification, and deployment. Each can
be crowdsourced competitively.

IC-18-03-VftC.indd 2 26/03/14 6:37 PM

Cloud-Based Software Crowdsourcing

MAY/JUNE 2014 3

Crowdsourcing Goals
Crowdsourcing’s benefits accrue from
organizations attempting to achieve
the following goals:

•	 Quality software. Such software
comes from competent participants
who try to outdo their peers in sub-
mitting innovative concepts, design,
code, or tests.

•	 Rapid acquisition. Crowdsourcing
organizers can post a competition
hoping to find that something sim-
ilar has already been developed.

•	 Talent identification. An organizer
might be interested in identify-
ing talented developers, as dem-
onstrated by their performance in
competitive efforts.

•	 Cost reduction. A crowdsourcing
organizer can acquire software at
a low cost owing to the need to
pay only winners, and could even
pay below-market costs, given that
participants might seek reputation
rewards rather than monetary ones.

Other goals include solution diver-
sity, idea creation, broadening par-
ticipation, marketing, and participant
education, such as encouraging people
to use or learn specific tools. To ensure
a good outcome from software crowd-
sourcing, organizations can leverage a
cloud infrastructure to accelerate the
process of setting up the development
environment and enabling distrib-
uted and large-scale development by a
highly dynamic community.

The turnout for a software crowd-
sourcing event varies due to crowd-
sourcing’s open and online nature. A
project with a high reward will attract
a relatively large number of crowd
workers. Moreover, computational
overhead and data traffic for differ-
ent software development tasks lead
to spikes in the resources that crowd-
sourcing activities require. To address
this issue, cloud-based software
crowdsourcing combines advantages
of both paradigms: pay-for-use and
pay-for-performance. An elastic cloud

computing resource lets crowdsourc-
ing organizers cope with fluctuations
in the numbers of participants as well
as computational workloads that occur
with crowdsourcing competition activ-
ity. For example, the largest crowd-
sourcing site for data analytics, Kaggle
(www.kaggle.com), adopted Windows
Azure to run software services and
host crowdsourcing contests.

Industrial Software
Crowdsourcing
Several websites have been estab-
lished to support crowdsourcing, such
as TopCoder, uTest (www.utest.com),
AppStori, oDesk (www.odesk.com),
and mob4hire (www.mob4hire.com).
Furthermore, most of the industrial
software giants are actively engaged
in crowdsourcing, including Microsoft
and Oracle. Microsoft used crowd-
sourcing for Windows 8 development
by starting blogs,3 crowdsourcing
mobile devices for Windows 8, and
offering US$100,000 for security test-
ing.4,5 Oracle also adopted crowd-
sourcing for its customer relationship
management projects.6

Architecture and Models
The distributed development of a
software system by a crowd requires
the guidance of a reference architec-
ture and models for the development
process.

Software Crowdsourcing
Architecture
Different software crowdsourcing pro-
cesses can have different needs, but
also share some commonalities. Such
common themes for software crowd-
sourcing processes include

•	 a cloud service management dash-
board for system administra-
tors and software crowdsourcing
organizers;

•	 collaboration and communication
tools, such as a distributed black-
board system where each party
can participate in discussions;

•	 participant ranking and recom-
mendation tools; and

•	 software development tools for
modeling, simulation, code editing
and compilation, design notation
and documentation, and testing;

•	 cloud payment and credit man-
agement tools; and

•	 a repository of software devel-
opment assets, such as modules,
specifications, architectures, and
design patterns.

All these elements are encapsu-
lated in the reference architecture for
a cloud-based software crowdsourcing
system (Figure 1). Metaphorically, we
can regard this architecture as synergy
between two clouds — machine and
human — toward the ultimate goal of
developing high-quality and low-cost
software products. With the properly
specified platform-as-a- service (PaaS)
recipes, software project managers can
establish a customized cloud software
environment to facilitate the following
software crowdsourcing process:

1. A manager uses software net-
working and collaboration tools
to design a reward mechanism to
motivate crowd workers. Depend-
ing on the software product’s
value and the development scale,
a project manager can specify
the appropriate budget to attract
as many talented developers as
possible and provision comput-
ing resources to sustain their
activities.

2. The manager uses project manage-
ment tools to coordinate devel-
opment tasks among the crowd
workforce by ranking individuals’
expertise and matching their skills
with the different task levels and
types.

3. Toward a specific software project,
a manager sets up a virtual sys-
tem platform with all the neces-
sary software development gears
to assist crowd workers with
their tasks.

IC-18-03-VftC.indd 3 26/03/14 6:37 PM

View from the Cloud

4 www.computer.org/internet/ IEEE INTERNET COMPUTING

4. Both the platform and its workflow
can operate elastically to yield
cost-efficient resource utilization.

We discuss the cloud tools in detail in
a subsequent section.

Software Crowdsourcing Models
We can characterize software crowd-
sourcing in terms of the crowd size,
software scale and complexity, devel-
opment processes, and competition
or collaboration rules. Formal models
for designing and modeling software
crowdsourcing can have the follow-
ing foundations:

•	 Game theory. The nature of contests
in competition-based crowdsourc-
ing can be analyzed via game the-
ory. For example, we can determine
the reputation reward value based
on the number of participants and
the reward price; participants are
often willing to compete to gain
reputation rather than receiving a
reward price determined accord-
ing to a Nash equilibrium.2 Even
the Prisoner’s Dilemma game can

be viewed in terms of crowdsourc-
ing (www.dellingadvisory.com/
blog/2013/4/10/crowdsourcing-
the-prisoners-dilemma).

•	 Economic models. Economic com-
petition models provide strategies
and incentives to generate crowd
participating, and reward-structur-
ing rules for organizers to maxi-
mize crowdsourcing returns. The
recently developed contest theory7
introduces new mathematical tools,
such as all-pay auction, to describe
the synergy among individual
efforts, competition prize structure,
and product quality.

•	 Optimization theory. Due to the
competitive and dynamic nature of
software crowdsourcing processes,
coordinating unstable virtual
teams, optimizing the partition and
allocation of development tasks,
and balancing costs, time, and
quality can be challenging. Thus,
the organizer of a crowdsourced
software development effort could
apply a search-based software
engineering approach8 to address
optimization problems.

By using platforms that incorporate
open source software repositories, such
as Github and commercial crowdsourc-
ing sites, we can conduct experiments
to understand software crowdsourc-
ing’s nature and validate theories. Such
experiments must model tasks, work-
ers, and costs for effort and resources.
We can verify various worker ranking,
incentive, and matching algorithms to
simulate possible virtual team forma-
tion, and to isolate design factors. Both
professional engineers and students
can be involved in experiments, and
investigators can document and make
available ontologies of these models,
so that others can design new experi-
ments, collect data, and exchange
ideas. Several platforms are available,
including OW2 Open Source Commu-
nity and Trustie (http://forge.trustie.
net). Simulation techniques, such as
NetLogo, that are based on multiagent
systems can also play a role in model-
ing software crowdsourcing behavior.

Cloud Tool Support
Given software crowdsourcing’s dis-
tributed nature, it needs a powerful

Figure 1. Reference architecture for cloud-based software crowdsourcing. We regard it as a synergy between two clouds —
machine and human — toward the ultimate goal of developing high-quality and low-cost software products.

Requirements
analysis

System
design

Coding and
integration

Test and
deployment

TaskTaskTaskTaskTask

Crowd
workforce Cloud software platform

Project
management tools

Social networks
and collaboration

tools

Software
development tools

PaaS recipe

• Backup & recovery
• Monitoring
• Instantiating
• Redundancy
• Description• Expertise

• Experience
• Marching
• Ranking
• Rewarding
• Funding

IC-18-03-VftC.indd 4 26/03/14 6:37 PM

Cloud-Based Software Crowdsourcing

MAY/JUNE 2014 5

development environment to facili-
tate software design, coding, test, and
deployment across distributed and
heterogeneous infrastructures. All
community members should be able
to access the same software develop-
ment environment customized for a
specific project. Moreover, numerous
submissions from community mem-
bers must be quickly screened, evalu-
ated, reviewed, and integrated. Thus,
software crowdsourcing efforts require
enhancements to common software
development tools for coding, testing,
and deployment to support automatic
project building, integration, perfor-
mance analysis, and security check-
ing. By leveraging cloud computing’s
elastic resource provisioning and
virtual appliances, crowdsourcing
practitioners have started to develop
the evaluation pipeline to automate
testing and review for quality, secu-
rity, and coverage, as well as coding
standards. A cloud-based integrated
development environment (IDE) must
have the following features (Table 1
summarizes the various tools).

Software Development Tools
An IDE for crowdsourcing integrates
tools for requirements, design, coding,
compilers, debuggers, performance
analysis, testing, and maintenance. For

example, cloud software configuration
tools such as Chef (www.opscode.com/
chef/) and Puppet (http://puppetlabs.
com) let community members estab-
lish their own virtualized development
environments. MapReduce-based log-
management tools, such as PaperTrail
(http://papertrailapp.com), support
large-scale system log administration
and analysis, and help community
members resolve software problems
and enhance system reliability using
log messages.

Social Networks and
Collaboration Tools
Facebook, Twitter, wikis, blogs, and
similar Web-based tools let partici-
pants communicate for sharing and
collaboration. For example, organiz-
ers can use Facebook profiles to form
a virtual crowdsourcing team, even
if the participants don’t know each
other. A collaborative blackboard-
based platform can let participants
see a common area and suggest ideas
to improve the solutions posted there.

Project Management Tools
Crowdsourcing project management
should support project cost estimation,
development planning, decision mak-
ing, bug tracking, and software reposi-
tory maintenance, all specialized for

the context of the dynamic developer
community. In addition to these regu-
lar functions, it must incorporate rank-
ing, reputation, and award systems
for both products and participants.
For example, TopCoder introduces a
sophisticated ranking scheme, similar
to sport tournaments, to rank commu-
nity members’ skills in software devel-
opment. Community members often
decide to participate in a specific con-
test if they know the ranking of the
participants already enrolled.

Ecosystem for Software
Crowdsourcing
Both collaboration- and competition-
based software crowdsourcing have
ecosystems with significant economic
implications. These ecosystems cre-
ate jobs and establish career paths for
developers. They also let organizations
start new projects, secure funding, iden-
tify talent, and create new products. For
example, Apple’s App Store, a website
for iOS applications, has an ecosys-
tem with 150,000 contributors and has
accumulated more than 700,000 iOS
applications in its four years of opera-
tion. People contribute their innovations
for reputation or money via the store’s
micropayment mechanism. With such a
large community, several community-
based, collaborative platforms have

Table 1. Cloud tools for supporting software crowdsourcing.

Cloud tool type Name Characteristics

Software development tools Chef/Puppet Streamlines the environment configuration for cloud-oriented
software development and testing

PaperTrail Supports large-scale system log administration and analysis

CloudIDE Web-based IDE that simplifies and integrates cloud software
development

Social networking and
collaboration tools

Confluence A team-based collaboration tool for content creation and
sharing

Project management tools CloudSpoke on Topcoder A crowdsourcing website for cloud development that ranks
developers’ skills and organizes contests for development tasks

Github A project hosting website that supports collaborative software
development, and can serve as code repository for cloud-based
software crowdsourcing

Trustie An online software development site that integrates project
hosting, social networking, and programming education

IC-18-03-VftC.indd 5 26/03/14 6:37 PM

View from the Cloud

6 www.computer.org/internet/ IEEE INTERNET COMPUTING

been created as incubators, and one
such incubator is AppStori, an online
crowd-funding community in which
people can collaborate to develop
iOS apps.

TopCoder, founded in 2001, simi-
larly has an ecosystem with a global
workforce of more than 500,000
members. Recently, TopCoder and
CloudSpokes (www.cloudspokes.com),
which has 72,000 registered mem-
bers with expertise in cloud software,
merged to form the largest crowd-
sourcing community for cloud-based
software development. About 1,100
CloudSpokes projects have been
posted online to motivate developers
to work on the major cloud platforms,
such as Amazon Web Services and
Force.com.

Crowdsourcing also needs to focus
on workers to keep them happy as the
world enters a worker-centered crowd-
sourcing society. Essential features of
a crowdsourcing platform should show
past performances and assign proper
ratings based on metrics developed by
the relevant communities.

Team organization is also impor-
tant in crowdsourcing, and teams
can be self-organized by community
or recommendation. Crowdsourcing
communities must have objective
governing rules to arrange bidding,
matching, job security, career paths,
project management, and often phys-
ical environments for participants.
Trust among team members is impor-
tant because teams might be formed
by people who don’t know each other,
and it’s necessary to manage trust via
multiple strategies such as ranking,
recommendation, displayed previ-
ous products, and recorded dialogue.
Furthermore, a crowdsourcing plat-
form must inform workers whom they
work for and what their role in the
development effort will be.

Crowdsourcing Roadmap
A recent workshop presented the fol-
lowing four-level roadmap for software
crowdsourcing.9

Level 1
The first level is characterized by indi-
vidual developers, well-defined mod-
ules, small size, limited development
time span (less than a few months), qual-
ity products, and current development
processes such as the ones by AppStori,
TopCoder, and uTest. Coders are ranked;
websites contain online repository
crowdsourcing materials; participants
can rank software; and crowdsourcing
platforms have communication tools
such as wikis, blogs, and comments, as
well as software development tools such
as an IDE, testing, compilers, simula-
tion, modeling, and program analysis.

Level 2
At the second level are teams of peo-
ple (< 10) and well-defined systems;
medium sized system to be developed,
with medium development time (sev-
eral months to less than one year), and
adaptive development processes with
intelligent feedback in a common cloud
platform where people can freely share
thoughts. At this level, a crowdsourcing
platform supports an adaptive develop-
ment process that allows concurrent
development processes with feedback
from fellow participants; intelligent
analysis of coders, software products,
and comments; multiphase software
testing and evaluation; big data ana-
lytics, automated wrapping of soft-
ware services into SaaS, annotations
with terms from an ontology, and cross
references to DBpedia, and Wikipedia;
automated analysis and classification
of software services; and ontology
annotation and reasoning, such as link-
ing those services with compatible I/O.

Level 3
The third level has teams of people
(< 100 and > 10), a large well-defined
system, long development time (< 2
years), and automated cross-verifi-
cation and cross-comparison among
contributions. A crowdsourcing plat-
form at this level contains automated
matching of requirements to existing
components, including matching of

specifications, services, and tests; and
automated regression testing.

Level 4
The fourth level consists of a multina-
tional collaboration of large and adap-
tive systems. A crowdsourcing platform
at this level might contain domain-
oriented crowdsourcing with ontology,
reasoning, and annotation; automated
cross-verification and test-generation
processes; and automated configura-
tion of the crowdsourcing platform. It
might also restructure the platform as
SaaS with tenant customization.

Pilot Software
Crowdsourcing Projects
The University of South Carolina
recently started a cloud-based crowd-
sourcing project to produce the control
software for an office robot. The robot
behavior will follow a three-step pro-
cess: perceiving, reasoning, and acting,
commonly known as a PRA architec-
ture. Specifically, perceiving occurs
using ultrasonic sensors to detect walls
and obstacles. Moving to an office is an
action that requires reasoning using data
collected in the perceiving subsystem. A
crowd consisting of students and fac-
ulty will develop software for the robot
at the granularity of a behavior. The
goal is to show that the crowd size need
not be large. Developers can act auton-
omously and collaboratively. To ensure
interoperability, software produced will
be stateless services, so that they can
be independent of each other, and each
module will expose a service specifica-
tion so that specifications can be for-
mally reasoned. Furthermore, software
development will be done using a com-
mon IDE, a cloud-based repository (such
as Bitbucket or GitHub), and a Ubuntu
Linux platform; testing can occur either
in the cloud or on the actual robot.

Cloud-based software crowdsourc-
ing is a new approach for low-cost,

rapid software development, and the
existence of large ecosystems has shown

IC-18-03-VftC.indd 6 26/03/14 6:37 PM

Cloud-Based Software Crowdsourcing

MAY/JUNE 2014 7

that this approach is viable. Moreover,
it is a ripe area for research on how a
crowd of anonymous developers can
produce coherent models, analyses,
simulation components, experimental
results, and a support environment.
Many research directions are possible,
including theoretical models, optimi-
zation methods, infrastructure support
features, and social issues, with a clear
roadmap.

Acknowledgments
The ideas in this article were inspired by par-

ticipants at the recent Dagstuhl Workshop on

Cloud-Based Software Crowdsourcing.9

References
1. W. Wu, W.T. Tsai, and W. Li, “Creative

Software Crowdsourcing: From Com-

ponents and Algorithm Development

to Project Concept Formations,” Int’l

J. Creative Computing, vol. 1, no. 1, 2013,

pp. 57–91.

2. W. Wu, W.T. Tsai, and W. Li “An Evaluation

Framework for Software Crowdsourcing,”

Frontiers of Computer Science, vol. 7, no. 5,

2013, pp. 694-709.

3. S. Thomas, “Microsoft Launches Crowd-

sourcing Blog for Windows 8,” Meme-

burn, 16 Aug. 2011; http://memeburn.

com/2011/08/microsoft-launches-crowd-

sourcing-blog-for-windows-8/.

4. S. Simpson, “Crowdsource Your Next

Windows 8 Device?” Windows RT Source

blog, 10 June 2013; www.winrtsource.

com/2013/06/10/crowdsource-your-next-

windows-8-device/.

5. L. Bell, “Microsoft Offers a $100,000 Bug

Bounty for Cracking Windows 8.1,” The

Inquirer, 20 June 2013; www.theinquirer.

net/inquirer/news/2276303/microsoft-

offers-a-usd100-000-bug-bounty-for-

cracking-windows-81.

6. A. Diana, “Oracle Integrates Crowdsourc-

ing into CRM,” InformationWeek, 16 Mar.

2011.

7. L.C. Corchón, “The Theory of Contests: A

Survey,” Rev. of Economic Design, vol. 11,

no. 2, 2007, pp. 69–100.

8. M. Harman, “The Current State and Future

of Search Based Software Engineering,”

Proc. IEEE Future of Software Eng. (FOSE

07), 2007, pp. 342–357.

9. M.N. Huhns, W. Li, and W.-T. Tsai, “Cloud-

Based Software Crowdsourcing (Dagstuhl

Seminar 13362),” Dagstuhl Reports, vol. 3,

no. 9, 2013, pp. 34–58; doi: 10.4230/

DagRep.3.9.34.

Wei-Tek Tsai is a professor at Arizona State

University. His research interests include

software as a service, service-oriented

computing, and crowdsourcing. Tsai has a

PhD in computer science from the Univer-

sity of California, Berkeley. He’s a member

of IEEE. Contact him at wtsai@asu.edu.

Wenjun Wu is a Professor at Beihang Univer-

sity. His research interests include crowd-

sourcing, cloud computing, and eScience.

Wu has a Ph.D. in Computer Science from

Beihang University. He’s a member of

China Computer Federation (CCF). Contact

him at wwj@nlsde.buaa.edu.cn.

Michael N. Huhns holds the NCR Professorship

and is chair of the Department of Computer

Science and Engineering at the University

of South Carolina. He also directs the Cen-

ter for Information Technology. Huhns has

a PhD in electrical engineering from the

University of Southern California. He is

a senior member of ACM and a fellow of

IEEE. Contact him at huhns@sc.edu.

Selected CS articles and columns
are also available for free at http://

ComputingNow.computer.org.

IC-18-03-VftC.indd 7 26/03/14 6:37 PM

