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This paper describes a new approach to the production of robust software. We �rst moti-

vate the approach by explaining why the two major goals of software engineering|correct

software and reusable software|are not being addressed by the current state of software

practice. We then describe a methodology based on active, cooperative, and persistent

software components, i.e., agents, and show how the methodology produces robust and

reusable software. We derive requirements for the structure and behavior of the agents,

and report on preliminary experiments on applications based on the methodology. We

conclude with a roadmap for development of the methodology and ruminations about

uses for the new computational paradigm.
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1. Introduction

Computing is in the midst of a paradigm shift. After decades of progress on rep-

resentations and algorithms geared toward individual computations, the emphasis

is shifting toward interactions among computations [34, 50]. The motivation is

practical, but there are major theoretical implications. Current techniques are

inadequate for applications such as ubiquitous information access, electronic com-

merce, and digital libraries, which involve a number of independently designed and

operated subsystems. The metaphor of interaction emphasizes the autonomy of

computations and their ability to interface with each other and their environment.

Therefore, it can be a powerful conceptual basis for designing solutions for the above

applications.

Unfortunately, the �eld of software engineering has been progressing slowly. This

should not be surprising, for three reasons:

1. Software systems are the most complicated artifacts people have ever at-

tempted to construct
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2. Software systems are (supposedly) guaranteed to work correctly only when

all errors have been detected and removed, which is infeasible in light of the

above complexity

3. The e�ect of an error is unrelated to its size, i.e., a single misplaced character

out of millions can render a system useless or, worse, harmful.

1.1. Progress in Software Engineering

Software engineering concerns both the process of producing software and the soft-

ware that is produced. The major goal for the software is that it be correct, and

the major goal for the process is that it be conducted eÆciently. One fundamental

approach to meeting these goals is to exploit modularity and reuse of code. The

expectations are (1) that small modules are easier to debug and verify, and therefore

more likely to be correct, (2) that small modules will be more likely to be reused,

and (3) that reusing debugged modules is more eÆcient than coding them afresh.

A few examples of software engineering practice based on this approach are the

following [4]:

� Parameterized subroutines provide code reuse within an application

� Libraries of subroutines encourage code sharing across applications

� Object-oriented methods allow tailoring of library routines via inheritance and

polymorphism

� Client/server paradigms, such as the world-wide web, ODBC, OLAP, and

SQL databases, permit sharing of data across platforms

� Remote procedure calls, such as Sun's Java RMI and Microsoft's COM, enable

code to be shared across platforms

� Transaction processors, such as Tuxedo and Encina++, enable transactions

to be shared

� Distributed object technologies, such as OMG CORBA and Microsoft's .NET,

allow sharing of tailorable code across platforms.

Programming paradigms have evolved from machine language in the 1950's,

procedural programming in the 1960's, structured programming in the 1970's, and

object-based and declarative programming in the 1980's. In the 1990's, methods

for structuring collections of objectswere developed, including frameworks, design

patterns, scenarios, and protocols.

However, software has not kept pace with the increased rate of performance for

processors, communication infrastructure, and the computing industry in general

[30]. Whereas processor performance has been increasing at a 48% annual rate

and network capacity at a 78% annual rate, software productivity has been grow-

ing at a 4.6% annual rate and the power of programming languages and tools has

been growing at an 11% annual rate. CASE tools, meant to formalize and promote

software reuse, have not been widely adopted [20]. By a di�erent metric, the indus-

try standard for good commercial software is approximately six defects per KLOC

(thousand lines of code), and this rate has held constant for decades [14].
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The procedural and declarative approaches to programming su�er from being

primarily line-at-a-time techniques, with a basis in functional decomposition. Ob-

ject technology improves these by replacing decomposition with inheritance hierar-

chies and polymorphisms. It enables design reuse of larger patterns and components

[2]. However, inheritance and polymorphism are just as complex and error prone

as decomposition, and the great complexity of interactions among objects limits

their production and use to a small community of software engineers. By focusing

on encapsulating data structures into objects and the relationships among objects,

it supports a data-centric view that makes it diÆcult to think about sequences of

activity and data
ow. Scenarios overcome this diÆculty by depicting message se-

quences and threads of control, but they are not well supported by current object

languages. Table 1 summarizes the major features of existing software paradigms,

and the features promised by the multiagent-based approach described below.

Table 1. Features of Programming Languages and Paradigms (from [30])

Procedural Object Multiagent

Concept Language Language Language

Abstraction Type Class Service

Building Block Instance, Data Object Agent

Computation Model Procedure/Call Method/Message Perceive/Reason/Act

Design Paradigm Tree of Procedures Interaction Patterns Cooperative Interaction

Architecture Functional Inheritance and Managers, Assistants,

Decomposition Polymorphism and Peers

Modes of Behavior Coding Designing and Using Enabling and Enacting

Terminology Implement Engineer Activate

1.2. A New Software Paradigm

We believe it is time to consider a completely di�erent approach to software systems.

We propose one based on the (intentionally provocative) recognition that

� errors will always be a part of complex systems

� error-free code can at times be a disadvantage

� where systems interact with the complexities of the physical world, there is a

concomitant power that can be exploited.

We suggest an open architecture consisting of redundant, agent-based modules [6].

The appropriate analogy is that of a large, robust, natural system. We motivate

our approach by means of the following four examples.

1.2.1. Example 1: Avoiding Deadlocks and Livelocks

Sometimes, when two people approach each other on a narrow sidewalk, they move

from side-to-side in unison a few times until they �nd a way to pass. Now, imagine

two robots in a similar situation: if they are each programmed identically and

accurately, then they might move in unison and be deadlocked forever. If, however,

one had a small 
aw in its programming, then it would eventually act di�erently

and break the deadlock.
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Fig. 1. Robots meeting in a hallway might move in unison and \livelock," unless one operates

di�erently than the other

This example illustrates a key concept: errors can sometimes make a system

more robust. Individual components do not have to be perfect, if there are a suÆ-

cient number of them, if their capabilities are basically sound, and if their respon-

sibilities overlap.

Such deadlock behavior is actually quite common-it can occur anytime two pro-

cesses access a common resource, e.g., when two applications attempt to update a

database or communicate over a channel at the same time. When the possibility

of the deadlock is known in advance, a solution is to deliberately introduce uncer-

tainty into one or both of the processes; this is the basis for con
ict resolution in

the CSMA/CD Ethernet protocol.

1.2.2. Example 2: Forming a Circle

Consider asking a group of children to form a circle. This they will be able to do,

relatively independent of the number of children, their sizes, and their ages, without

requiring any further directions as to who should stand where. The formation of

the circle will be robust with respect to the removal or addition of children. It

will even accommodate a few children who do not understand the request. This

\circle algorithm" succeeds because each element of the solution is intelligent and

autonomous, and possesses basic knowledge of the problem domain. Each element

is not, however, required to be perfect.

Contrast this with a conventional approach to developing software for arrang-

ing items in a circle. A programmer would �rst de�ne classes for the items, with

attributes describing their size and shape. The programmer would then construct

a central control module that, using trigonometry, would compute the precise lo-

cations for each of the items. The control module would have to be written to

accommodate an arbitrary number of items having a variety of sizes and shapes.

Changing any one of the parameters would require the control module to recompute

the locations of all items. More signi�cantly, changing the way in which the shape

or size of an item is de�ned would require the control module to be rewritten. (For

example, if the control module expected items to be de�ned in terms of their length

and width, then it would have to be modi�ed to handle items de�ned in terms of

their radius.)
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Fig. 2. Children (and autonomous agents) can be a robust circle-forming algorithm

1.2.3. Example 3: Navigating on Mars

Consider an autonomous vehicle roaming on Mars. There is a very simple algorithm

that enables the vehicle to maneuver around obstacles [33]: when an obstacle is

encountered, the vehicle

1. Backs up 1 meter

2. Turns clockwise 90 degrees

3. Moves forward 1 meter

4. Turns counterclockwise 90 degrees

5. Goes forward on its original course.

Although in theory it appears that the vehicle can easily become trapped, in practice

the vehicle is able to wriggle through any con�guration of obstacles that it can

physically �t between, because it cannot move exactly 1 meter or turn exactly 90

degrees. Its errors in these motions give it the variability it needs to move eventually

in just the right way to go around an obstacle. Surprisingly, attempts to increase its

precision not only increase its complexity, but also make it more likely to become

trapped. In essence, reducing errors can make a system less robust.

1.2.4. Example 4: Business Software Objects|Avoiding a Pay Cut

As a more general and fundamental example, most business software components are

intended to be models of some real object within the business, such as an employee.

A problem is that, unlike the entities they represent, conventionally implemented

components are passive. Why is this a problem? If someone accidentally reduced
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Fig. 3. A robot navigating on Mars can wriggle between obstacles via a very simple algorithm

that takes advantage of errors in its movement through the environment

the salary of an employee by 50%, a conventional software component would not

protest. Like real employees, agents implemented as components with the extra

ability to take action would not allow such accidents. As we describe next, agents

can also do a lot more.

2. Interaction-Based Software Development

The behavior of any system depends on its construction and the environment in

which it operates. When the system contains a number of components that interact

with each other and a complex environment, the behavior can be diÆcult to predict

and control. Traditional software interfaces are rigid. Often the slightest error in the

implementation of a component can have far-reaching repercussions on the behavior

of the entire system. However, the output of a component may be erroneous because

of its malfunctioning, its environment being out of its design range, or an erroneous

input from another component. Traditional approaches for software or hardware

fault tolerance are rigid in that they use �xed means, e.g., averaging or voting, to

correct errors.

By contrast, we are developing an approach in which the interactions among

components are de�ned in a more robust manner using higher-level abstractions

such as social commitments and team intentions. These abstractions enable us

to design the components to be more 
exible toward their inputs and outputs.

Moreover, in real-life situations, a component may be forced to release results that

are almost certainly erroneous|it may lack the time and resources to await de�nite

inputs and to process them properly. Our approach can handle these situations
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naturally, whereas traditional approaches are incapable of even representing such

situations.

Our approach presupposes that the components are able to enter into social

commitments to collaborate with others, to change their mind about their results,

and to negotiate with others. They must be long-lived (to even detect errors that

manifest later in the execution) and persistent (to resolve them). In other words,

the components are interacting agents functioning in teams. The agents can detect

not only errors, but also opportunities in general. They can volunteer to take

advantage of those opportunities, to form teams, negotiate solutions, and enact

them in a persistent manner. One risk with such systems is that their persistence

may get them into livelocks where interactions prevent progress. It is essential that

the agents be able to explore their way out of livelocks. Interestingly, \errorful"

behavior by some members of the team can facilitate this exploration, especially in

complex environments where the concurrently executing mix of agents is determined

dynamically.

Our approach is based on a number of important tenets:
Interaction Persistent action

Teamwork founded on social commitments Negotiation

Exploration Error tolerance and exploitation for robustness

Although some of these tenets are shared with some recent approaches, e.g., aspect-

oriented and agent-oriented programming [40, 3], no existing approach captures all

of them. It appears desirable to try to exploit their synergistic mix.

2.1. Requirements for a New Class of Applications

Thanks to ongoing advances in computer systems, new classes of applications are

evolving. These applications require a number of important properties beyond

traditional approaches.

� Disintermediation (the direct association between users and their

software [39]). Providing a user with seamless access to and interaction with

remote information, application, and human resources requires a distributed

active-object architecture [52].

� Dynamic composability and execution. A system should execute as a

set of distributed parts, but the resources required will be mostly unknown

until run-time: this requires an infrastructure to enable their discovery and

composition as needed.

� Interaction. There might be subtle and critical patterns of interaction among

the components, but the speci�c interactions may be unknown until run-time,

and may vary: this requires that the patterns of interaction be explicitly

represented and reasoned with. There is recent, signi�cant work on the power

of interactions [1, 48].

� Error tolerance and exploitation. As the deployed systems become in-

creasingly complex, they should not only tolerate, but where possible exploit,

errors in their components.
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Two major convergences now give us the means to address the above require-

ments. First, large information environments dealing not only with information,

but also with the physical world are available to provide crucial computing and

communication resources, as well as ready contact with reality. Second, technical

advances in computer science provide a foundation for agent architecture and lan-

guages. These advances go hand-in-hand, because the existence of the expanding

infrastructure changes the trade-o�s in carrying out the dictates of the science.

A recent computing paradigm is based on Java, and the ability it provides for

users and applications to download the speci�c functionality they want at the mo-

ment they request it. In particular, Java Beans possess two interfaces: one that

governs the interaction of a bean with its environment at run-time, and a second

that describes the behavior of the bean to developers at program-creation or com-

pile time. DCOM provides a similar capability for COM objects. Such capability

is leading to the rise of a software-component industry, which will produce and

then distribute on demand the components that have a users' desired functionality

[57]. Each user can be presented with a unique customized environment. However,

because of this uniqueness, how can component providers be con�dent that their

components will behave properly [5]? This is a problem that can be addressed by

agent-based components that actively cooperate with other components to realize

the user's goals and that express their behavior in terms of their intentions and

commitments.

2.2. Agent-Based Software

Programming based on teams of agents will build on results generated by a large

number of researchers. In particular, e�orts under the DARPA CoABS program

for developing middle agents, wrappers, and agent communications form one of

the foundations for our work. We extend the e�orts into a complete programming

paradigm with a formal semantics. Our extensions and formal semantics are based

on the work on agent-oriented programming by Shoham, Wooldridge, and Jennings

[40, 54, 53, 55, 21].

A wide variety of software programs have been developed that are characterized

as software agents [18]. One category of such agents focuses on the interaction

between a user and a computing environment. A second category of agent-based

software is focused on the interaction among computing agents. The basic issues

addressed concern interoperability among geographically distributed agents exe-

cuting on heterogeneous platforms. There are two di�erent approaches for com-

munication among the agents. The procedural scripting approach causes execu-

tion of a remote task by sending a procedural script for interpreted execution at

the remote site. Examples of this approach, termed agent mobility, are Voyager

[http://www.objectspace.com/products/voyager/] and Aglets [29]. The declarative

approach takes the view that only a declarative description of the task should be

sent to the remote site. An example of this approach is ACL [12].

What we are developing di�ers from current work in software agents in that
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� We are not researching new agent capabilities per se

� We are not developing an agent-based system for some new application domain

� We are investigating how agents can be the fundamental building blocks for

the construction of general-purpose software systems, with the anticipated

bene�ts of robustness and reuse

� We are characterizing agents in terms of mental abstractions, and multiple

agents in terms of their interactions:

Mental abstractions for agents are beliefs, knowledge, desires, goals, and intentions,

whereas multiagent abstractions are

� Social: about collections of agents

� Organizational: about teams and groups

� Ethical: about right and wrong actions

� Legal: about contracts and compliance

These abstractions matter because modern applications go beyond traditional

metaphors and models in terms of their dynamism, openness, and trustworthiness.

They involve virtual enterprises and electronic commerce, such as in manufacturing

supply chains and autonomous logistics, community-ware and social interfaces, and

problem solving by collaborative groups. The architecture of future information

systems will be agent-oriented, as shown in Figure 4.

Techniques for creating and maintaining societies of autonomous active objects

(agents) will be useful not only for large open information environments, but also

for large open physical environments. For example, new eÆciencies in logistics

could result from considering each supply item being deployed to be intelligent

(implemented via a \smart card") with a local goal to reach a destination and an

ability to take advantage of a global distribution system.

Such information environments are too complex to be centrally developed or

controlled. The only alternative is for intelligence to be embedded at many places

to provide distributed management. Each locus of intelligence is an autonomous

agent that must be long-lived (to execute unattended for long periods), adaptive

(to explore and learn about its environment), and social (to interact with others to

leverage knowledge and capabilities, so as to achieve individual as well as collective

goals). Composed as they are of active social entities, multiagent systems are ideally

suited to the challenges of software development described above. Teams, with

di�erent members playing speci�c roles and cooperating to achieve some higher

end, emphasize the social and organizational aspects of multiagent systems.

2.3. System Redundancy and Adaptation

In some circumstances, robustness in the presence of errors is governed by redun-

dancy. That is, if each software module is deemed to be behaving either correctly

or incorrectly, then two modules with the same intended functionality are suÆ-

cient to detect an error in one of them, and three modules are suÆcient to correct
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Fig. 4. Architecture for an agent-oriented information system, indicating collaborations among

users, applications, and resources

the incorrect behavior. Fundamentally, the amount of redundancy required is well

speci�ed by information and coding theory. Exemplifying this, HP Labs has built

a massively parallel computer with 220,000 known defects, but it still yields correct

results [7]. As long as there is suÆcient communication bandwidth to �nd and use

healthy resources, it can tolerate the defects. Allowing so many defects enables the

computer to be built cheaply.

Similarly, a National Research Council committee last year, in addressing the

problem of software security, published a report called Trust in Cyberspace, which

advocated the \Theory of Insecurity." The theory suggests that acceptably secure

systems can be built out of components that have known vulnerabilities and security

holes [25].

When software modules exhibit more complex behavior, then deeper reasoning

is needed to determine whether or not the behavior is correct. This requires agents

to communicate their intentions and commitments. They can then be monitored

to determine if they have acted according to their intentions and have kept their

commitments. Activating a group of agents then becomes a type of nondeterministic

programming.

Self-adaptive software [28] evaluates its own behavior and changes the behavior
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when the evaluation indicates that it is not accomplishing what the software is

intended to do, or when better functionality or performance is possible. This implies

that the software has alternative ways of accomplishing its purpose, along with

enough knowledge of its construction and awareness of its current operation to

enable e�ective changes to be made at runtime. Self-adaptive software requires

components to maintain models of themselves and the other components with which

they might interact [23]. In a control-system metaphor, runtime software is treated

like a factory, with a monitoring and control facility that manages the factory to

improve its performance [27].

Intentional programming attempts to coordinate the cooperation of indepen-

dently developed abstraction objects, termed intentions. Intentions are not executed

at runtime, but are called at programming time [41, 49].

2.4. Agent Capabilities

Figure 4 illustrates how agents might represent, i.e., act on behalf of, various kinds

of passive or non-agent like components and entities in an environment, and how

they might interact to provide next-generation services to users and applications.

Success in this requires that

� Agents stay aware of their own roles, capabilities, and weaknesses by main-

taining a model of themselves

� Agents stay aware of their team by maintaining models of its members and

their roles

� Agents maintain models of other teams in which they might play a role

� Agents learn from interactions about the goals, capabilities, and intentions of

other agents

� Agents rely on commitments from other agents, and maintain commitments

to other agents

2.5. Ontologies: Modeling Objects, Resources, and Agents

A key to enabling agents to interact productively is for them to construct and

maintain models of each other, as well as the passive components in their environ-

ment. Unfortunately, the agents' models will be mutually incompatible in syntax

and semantics, not only due to the di�erent things being modeled, but also due to

mismatches in underlying hardware and operating systems, in data structures, and

in usage. In attempting to model some portion of the real world, information models

necessarily introduce simpli�cations that result in semantic incompatibilities.

Ontologies appear to be well suited for reconciling heterogeneous semantics. We

have been developing mediating mechanisms based on domain-speci�c ontologies

to yield the appearance and e�ect of semantic homogeneity among agents at the

knowledge level [35]. However, if there are n entities in the environment, then each

would need a model of each of the other entities, resulting in n(n � 1)=2 models

that must be maintained. This is infeasible for large domains. We solve this via
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two means. First, agents maintain and advertise models of themselves, resulting

in a total of n models. Second, we consider the source of the models. How should

one agent represent another, and how should it acquire the information it needs to

construct a model in that representation?

This has, we believe, a simple and elegant answer: the agent should presume

that unknown agents are like itself, and it should choose to represent them as it

does itself. Thus, as an agent learns more about other agents, it only has to encode

any di�erences that it discovers. The resultant representation can be concise and

eÆcient, and has the following advantages:

� An agent has a head start in constructing a model for a just-encountered

agent.

� An agent has to manage only one kind of model and one kind of representation.

� The same inference mechanisms it uses to reason about its own behavior

can reason about the behaviors of other agents; an agent trying to predict

what another will do has only to imagine what it itself would do in a similar

situation.

� As information about other agents is acquired through observations and in-

teractions, models of them can be updated, and will diverge from the default.

We portray an agent as a rational decision-maker that perceives and interacts

with its environment. Agents are rational in the context of all other agents, be-

cause they are aware of the other agents' constraints, preferences, intentions, and

commitments and act accordingly.

3. Semantics

If agents are constructed modularly, the challenge is in specifying and generating the

right interactions. We term our approach interaction-oriented programming (IOP),

and include in it high-level abstractions and techniques that capture the structure

of the desired interactions. We identify three layers of IOP, from lower to upper:

� Coordination, which enables the agents to operate in a shared environment

� Commitment, which re
ects the agents' obligations to one another, capturing

their social structure and the norms governing their behavior

� Collaboration, which supports reaching agreement, forming and maintaining

teams, and performing complex joint activities.

Informal concepts, such as competition, often have variants that may be classi-

�ed into di�erent layers. For example, bidding in an auction requires no more than

coordination, whereas commerce involves commitments, and negotiation involves

protocols for collaboration.

Pieces of the above layers have been studied in distributed computing, databases,

and distributed arti�cial intelligence (DAI), but usually not from a programming

perspective. The distributed computing and database work focuses on narrower
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problems of synchronization, and eschews high-level concepts such as social com-

mitments [11]. Thus it is less 
exible, but more robust, than the DAI work. Our

contribution will be in enhancing and synthesizing ideas into a framework [31] that

is rigorous yet 
exible.

The next section provides insights into how we are achieving such a framework.

In particular, we are providing abstractions for agents that enable them to be spec-

i�ed at the level of intentions [8], commitments, and organizations.

4. Preliminary Results and Discussion

In preliminary experiments, we have constructed a large group of agents, each im-

plemented as a concurrently executing Java thread and interacting through a base

class environment. The agents each have an understanding of what a circle is, what

it means to be part of a circle, where the nearest agents are located, and an es-

timate of how close the group is to being in a circle. The agents have the ability

to reason about where they should be on a circle and the direction they should

move to get there. They also have the ability to help move nearby agents that

do not seem to be moving properly or in the right place. Into this environment,

we have introduced a few agents that do not have the ability to become part of a

circle without help or are stationary. The group overcomes this and produces an

acceptable circle. We have anecdotal evidence, via one comparison, that such an

implementation can be constructed more rapidly and robustly than a conventional

object-oriented implementation in C++.

4.1. Generic Agent Architectures

To implement systems such as the circle algorithm, the agent components must

have an application programming interface (API) known to each other and must

support agent-abstraction features that enable and foster the coordination, com-

mitment, and collaboration layers described above. Further, an understanding of

the architecture of an agent is a prerequisite for successful implementation [26, 36].

To better communicate the requirements for the implementation of agents who will

participate in one of our systems, we provide UML diagrams for agent architectures

[45]. However, before we describe these diagrams, we need to review implementa-

tions for the basic features of agents. Consider the architecture in Figure 5 for a

simple agent interacting with an environment [38].

This architecture describes a simple agent that senses its environment, decides

upon an action based on what it has sensed, and then carries out the action through

its e�ectors. Note that the sensory input can include received messages and the

action can be the sending of messages.

In order to construct an agent, we have to know what one is in more detail [17].

In particular, if we are going to construct one using conventional object-oriented

analysis and design techniques, we should know in what ways an agent is more

than just a simple object. The features of an agent that are relevant from an
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Fig. 5. The architecture of a simple reactive agent

implementation standpoint are unique identity, proactivity, persistence, autonomy,

and sociability [51]. We consider each of these features in turn.

An agent inherits its unique identity simply by being an object. To be proactive,

an agent must be an object with an internal event loop, such as any object in a

derivation of the Java thread class would have. Simple pseudocode for an event

loop, where events arrive from a sensing of the environment, is

Environment e;

RuleSet r;

while (true) f

state = senseEnvironment(e);

a = chooseAction(state, r);

e.applyAction(a);

g

Notice that this is an in�nite loop, which provides the agent with persistence

as well. If agents were ephemeral, then it would be diÆcult for them to converse

with one another and they would be, by necessity, asocial. Additionally, persistence

makes it worthwhile for agents to learn about and model each other. For agents to

gain the bene�ts of such modeling, they need to be able to distinguish one agent

from another, and thus must possess unique identities.

Autonomy for an agent is akin to free will for a person. It enables an agent to

decide its actions for itself. For an agent constructed as an object with methods,

autonomy can be implemented by declaring all of the methods private. With this

restriction, only the agent can invoke its own methods, under its own control, and

no external object can force the agent to do anything it does not intend to do. Other

objects can communicate with the agent by creating events or artifacts, especially

messages, in the environment that the agent can perceive and react to.

Sociability is achieved by enabling an agent to converse with other agents. The
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Fig. 6. Agents must be able to react to various types of inputs from their environment

conversations, normally conducted by sending and receiving messages, provide op-

portunities for agents to coordinate their activities and cooperate, if so inclined.

This can be achieved by generalizing the input class of objects an agent might

perceive to those shown in Figure 6.

The input the agent receives can be either a piece of sensory information, a

message from another agent, or an event de�ned by the agent. Events are simply

\reminders" that the agent sets for itself. For example, an agent that wants to wait

�ve minutes for a reply would set an event to �re after �ve minutes. If the agent

receives the reply before the event, then it can disable the event. If it receives the

event, then it knows it did not receive the reply in time and can proceed accordingly.

The UML diagram in Figure 7 provides a general framework for implementing

a belief-desire-intention (BDI) architecture [37] using an object-oriented language

[10, 24]. Some illustrative pseudocode follows:

Agent::run() f

Environment e;

e.run(); start environment in its own thread

while (true) f

I = chooseIntention();

if (I.execute()) // true if goal was achieved

D.remove(I.goal); gg

Environment::run()f

for (a 2 Agent) f

while (true) f

a.B.incorporateNewObservations(getInput(w));

if ( !a.currentIntentionIsApplicable() )

a.stopCurrentIntention();

sleep(timeInterval); ggg
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The agent's run method consists of �nding the best applicable intention (plan)

and executing it to completion. If the intention returns true, it means the goal

was achieved, so the goal is removed from the desire (goal) set. If the environment

thread �nds that an executing intention is no longer applicable and calls for a stop,

the intention will promptly return from the execute() call with a value of false.

Notice that the environment thread modi�es the agent's set of beliefs. The belief

set needs to synchronize these changes with any changes the intentions make to the

beliefs.

4.2. Behaviors and Activity Management

Most popular agent architectures include a set of behaviors and a method for

scheduling them. A behavior is distinguished from an action in that an action

is an atomic event, while a behavior can span a longer period of time. In multi-

agent systems, we can also distinguish between physical behaviors that generate

actions, and conversations between agents that generate communicative acts. We

can consider behaviors and conversations to be classes inheriting from an abstract

activity class. We can then de�ne an activity manager responsible for scheduling

activities.

A complete agent-based system also requires an infrastructure to provide for

message transport, directory services, and event noti�cation and delivery. These are

usually provided as operating system services or, increasingly, in an agent-friendly

form by higher level distributed protocols such as Jini, Bluetooth, and FIPA's (the

Foundation of Intelligent Physical Agents) emerging standards.

4.3. The Team-Oriented Paradigm

Using an architecture such as that described above, a developer will program and

activate a team by resolving who (role) will do what (subtask), when (coordination),

how (capabilities), where (resources or location), and why (team plan and external

requirements) [15, 44]. In addition, there are the aggregate matters of how many

agents are to be assigned to each role and how much resources are needed. The

main steps are agent creation (compilation), team con�guration (linkage), and team

activation (execution).

The above matters presuppose an agent factory with rich protocols for discovery

and software con�guration that inherently accommodate 
exibility through negoti-

ation. In a general setting, the agents could join and activate teams with minimal

programmer intervention. Their negotiated commitments to one another would lead

to coordinated and coherent action by the entire team even as the membership of

the team evolves and some members behave imperfectly.

We believe that implementing software as a large number of intelligent, but

not perfect agents will be successful. Our approach imposes requirements on the

structure and behavior of the agents, and facilitates a formal semantics. We will

supply the metamodel, architecture, and formal semantics to realize this approach.
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Agen t

B : Belie fSet
D : Des i reSet
P : Inte ntionSet
I : Intenti on
e : Environm ent

run()
cu rrentIntentionIsOK() : boolean
s topCur rentInten tion( )
ch ooseInten tion( )

Environm ent

a : Agent
thread : Thread

getInput(Agent) : BeliefSet
takeAction(Agent, Action)
run()

Beli efSet

incorporateNewObs (BeliefSet)

Belief

IntentionSet

ele m ents  : Vector

getAppli cab le(DesireSet, BeliefSet) : Inte nti onSet

Intention

a : Agent
e : Environm ent
priority : int
goal : Desire

satis fies (Des ire) : boolean
execute(Agent) : boolean
context(BeliefSet) : boolean
s topExecuting()

Des ireSet

elem ents  : Vector

getApplicable(BeliefSet) : Des ireSet
add(Des ire)
rem ove(Des ire)

Des ire

type : String
priority : int

context(BeliefSet) : boolean

 Fig. 7. Diagram of a belief-desire-intention architecture for an agent
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Research prototypes are being developed using an iterative process called User-

Centered Software Engineering.

5. Conclusion

We have proposed and begun developing a new software development paradigm|

a cooperative paradigm|based on interacting agents, active objects, and active

wrappers of legacy components. The resultant methodology and language, termed

interaction-oriented programming, represent signi�cant extensions of earlier method-

ologies, with greater expressive power, di�erent conceptual foundations, such as the

beliefs held by the components, and new modeling techniques.

Techniques for creating and maintaining societies of autonomous active objects

(agents) will be useful not only for large open information environments, but also

for large open physical environments. For example, such techniques would yield new

eÆciencies in logistics: by considering each item of material to be an intelligent en-

tity (possibly via a "smart card") whose goal is to reach a destination, a distribution

system could manage more complicated schedules and surmount unforeseen diÆcul-

ties. Languages are required for creating and maintaining such environments|an

interaction-oriented programming language satis�es this requirement.

Just as today almost anyone can create a web page and contribute information

to the Web, so the proposed paradigm will enable anyone to create and contribute

customized components to software applications [43]. We are in the midst of a trend

toward disintermediation|the direct association between users and their software|

that enables people to be responsible for their own computing, often without formal

training or the support of professional intermediaries. This is healthy, but an in-

frastructure such as we propose is needed that can

� Analyze component interoperability and then cope with incompatibility

� Support the dynamic recon�guration of loosely confederated processes and

agents

� Monitor and manage persistent autonomous processes (extending the notion

of daemons).

It is claimed that the major impediment to the realization of component-based

development is quality of the components [32]. The proposed paradigm mitigates

this through massive redundancy, leading to increased robustness. (A system that

is stuck and making no progress can try one of its less popular alternatives.)
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