
Concurrent Multiple-Issue Negotiation for
Internet-Based Services

Jiangbo Dang and Michael N. Huhns

University of South Carolina
Columbia, SC 29208 USA

{dangj, huhns}@sc.edu

Abstract. Negotiation is a technique for reaching mutually beneficial
agreement among autonomous entities. A concurrent negotiation problem
occurs when one entity is negotiating simultaneously with several other entities
to reach agreement. In the context of Internet-based services, we present a
protocol to support concurrent negotiation over multiple issues. By extending
existing negotiation protocols, our described protocol enables both service
requestors and service providers to manage several negotiation processes in
parallel. The protocol allows the negotiation participants to make durable
commitments to reduce the occurrence of a decommitment situation. Since
colored Petri nets have greater expressive power than finite state machine and
support for concurrency, we use them to represent our negotiation protocol and
facilitate our analysis of desirable properties. More importantly, our protocol
can be analyzed for deadlock, liveness and other faults by using the existing
colored Petri nets tools.

1. Introduction
Negotiation is a process by which autonomous entities communicate and compromise
to reach agreement on matters of mutual interest, while maximizing their individual
utilities. In e-commerce, Web services, and on-line supply chains, the participants use
negotiation about the properties of the services they request and provide to enter into
binding agreements and contracts with each other. To meet the requirements of the
participants, multiple issues including both functionality issues and quality issues,
e.g., response time, cost, price, need to be taken into account.

In an Internet-based service environment, it is very likely there are multiple service
requestors and providers negotiating simultaneously. Researchers are interested in
concurrent negotiation because (1) it is both time efficient and robust when an entity
(a software agent herein) negotiate with multiple other entities to choose the best
offer, and (2) it is essential when an agent requests a service involving multiple
agents, as in a supply-chain problem.

In a many-to-many negotiation, each agent is involved in possibly many
negotiations with different participants at the same time, so the overall negotiation is
many-to-many among the agents. However, each individual negotiation involves just
two agents, so it is bilateral. We herein refer to the entire negotiation process as
many-to-many bilateral negotiation. In this paper, we consider a competitive
environment and assume the agents are self-interested and know only their own

Concurrent Multiple-Issue Negotiation for
Internet-Based Services 2

Formatted: Font: Bold, Complex
Script Font: Bold, Do not check
spelling or grammar

negotiation preferences. Based on the two-phase commit protocol [1] from database
transaction theory and the extended contract-net protocol [2], we present a negotiation
protocol to support many-to-many negotiation where many agents negotiate with
many other agents simultaneously [3].

Petri nets are a graphical and mathematical modeling tool applicable to many
systems. They are a promising tool for describing and studying information
processing systems that are characterized as being concurrent, asynchronous,
distributed, and parallel [4]. Since colored Petri nets (CPNs) support for concurrency
and have greater expressive power than finite state machines (FSMs), we propose the
use of colored Petri nets as a modeling language for our concurrent negotiation
protocol.

This paper advances the state of the art in the following ways. First, most existing
protocols for concurrent negotiation do not deal with issues such as negotiation
consistency and decommitment situation where agents tend to drop their
commitments in a contract when they find a better offer later. Second, most CPN-
based conversation models do not deal with concurrent negotiation processes in a
competitive service-oriented environment. In contrast, this paper (1) introduces a
concurrent negotiation protocol that enables both service requestors and providers to
engage in several negotiation processes simultaneously; (2) describes a negotiation
process that reduces the bias and the number of decommitment situations; (3)
formulates and analyzes the protocol using colored Petri net technologies; and (4)
explores the use of colored Petri nets in modeling and analyzing communication
interaction.

Presented in the context of Internet-based services, the remainder of the paper is
organized as follows. Section 2 discusses related work. Section 3 describes the
negotiation protocol and Section 4 details the algorithms. Section 5 analyzes the
property of the proposed protocol theoretically. Section 6 discusses further issues
related to concurrent multiple-issue negotiation and Section 7 concludes

2 Related Work
Negotiation for services involves a sequence of information exchanges among parties
to establish a formal agreement among them, whereby one or more parties will
provide services to one or more other parties. Therefore, concurrent negotiation is
necessary for an Internet-based service domain.

By considering negotiation as a distributed constraint satisfaction problem, [5]
presents a framework to support one-to-many negotiation by coordinating a number
of concurrent one-to-one negotiations and allowing several possible negotiation
strategies for a coordinator. However, issues arising in many-to-many negotiation,
such as consistency, coordination, and decommitment risk, are too difficult to be
handled by this framework.

Nguyen et al. [6] present a heuristic model for coordinating concurrent negotiation
and an integrated commitment model, which enable agents to reason about when to
commit or decommit. However, their model is obviously biased in favor of the buyer.
To mitigate the problem, they allow the seller to decommit, stray from its
commitment, by paying a pre-computed decommitment penalty, and then both buyer

Deleted: Concurrent Multiple-Issue
Negotiation for Internet-Based Services

Concurrent Multiple-Issue Negotiation for
Internet-Based Services 3

Formatted: Font: Bold, Complex
Script Font: Bold, Do not check
spelling or grammar

and seller can renege on the previous deal. Incorporating seller decommitment into
their model has no advantage, because in one-to-many negotiation there are no other
buyers for a seller, so it has no incentive to decommit and will never do so rationally.
On the other hand, breaking a commitment is always a hard decision to make, because
more issues beyond a decommitment penalty usually need to be considered, such as
reputation and user feedback.

In [2], an extended version of the contract-net protocol is presented to support
concurrent negotiation processes for a task contractor. It is efficient and failure
tolerant compared to the basic contract-net protocol. However, it does not allow
counterproposals, which are very important in negotiations involving time constraints,
especially when multiple issues are involved.

The value of a conversation-based approach is largely determined by the
conversational model it uses [7]. Petri nets are a well known graphical and
mathematical modeling tool and have been applied in modeling agent communication
interactions [4, 7]. In [8], researchers apply message sequence charts to specify the
interaction between organizations by using Petri nets to model the workflow inside
the organization.

3 Negotiation Protocol

3.1 A Motivating Example

To illustrate our protocol, we present a motivating GetStockQuote scenario, where a
service requestor a1 wants to obtain a stock quote from a service provider. Figure 1
shows that a1 locates two service providers, b1 and b2, that meet its functionality
requirements, so a1 starts two negotiation processes, one for each provider, to find the
one that provides better service with lower cost. If b1 is already negotiating with
another potential service requestor a2, b1 will negotiate with a1 and a2 at the same time
to determine which one will make a better offer. Most existing protocols cannot
handle this situation properly. In some protocols, for example, if b1 is one of the
providers negotiating with a1 concurrently, b1 must wait until all a1’s negotiation
threads end. Even if b1 has reached an agreement with a1 earlier, a1 can still reject it;
it is not finalized until a1 has finished all its negotiation threads. These protocols bind
b1 to a one-sided commitment and cause b1 to lose time and reduce its chances of
reaching a contract with other agents. The protocols are biased in favor of a1, but still
cause a1 the trouble of a likely decommitment to the previously agreed proposals, and
lead to the loss of utility (decommitment penalty) and reputation that would harm an
agent interested in long-term cooperation and gains.

By considering the two-phase commit protocol and the extended contract-net
protocol, we introduce two phases of accept and reject into the alternating offers
protocol [9] to support concurrent multi-issue negotiation. During a negotiation
session, an agent can use a number of messages when communicating with its
opponent. The negotiation performatives are defined in Table 1 and illustrated by our
GetStockQuote scenario.

Messages Descriptions
propose A requestor initiates the negotiation by proposing

Deleted: Concurrent Multiple-Issue
Negotiation for Internet-Based Services

Concurrent Multiple-Issue Negotiation for
Internet-Based Services 4

Formatted: Font: Bold, Complex
Script Font: Bold, Do not check
spelling or grammar

an offer for a service.
counter-propose An agent offers a new proposal in response to the

previous proposal.
formally-propose An agent formalizes its pre-accepted proposal.
pre-accept An agent temporarily accepts a proposal.
pre-reject An agent temporarily rejects a proposal.
accept An agent accepts a proposal.
reject An agent rejects a proposal.

Table 1. Negotiation Performatives
In multi-issue negotiation, different agents have different preferences over the

negotiation issues. Their preferences are usually represented in the form of their
utility functions with issues as variables. For the alternating offer protocol, an agent
makes an offer that gives it the highest utility at the beginning of the negotiation, and
then incrementally concedes by offering its opponent a proposal that gives it lower
utility as the negotiation progresses.

Let a and b represent the negotiating agents and I a set of n negotiation issues,
where I={I1,I2,…In}. Given Ob->a,k representing an offer from b to a at negotiation
round k, we define a’s utility as Ua(Ob->a,k). Agent b’s utility is defined similarly.

Definition 1: In a negotiation where agent a negotiates with a set of agents B={b1,
b2,…,bn} concurrently, agent bi’s offer Obi->a,k is better than agent bj’s offer Obj->a,k iff
Ua(Obi->a,k)>Ua(Obj->a,k).

Definition 2: In a negotiation where agent a negotiates with a set of agents B={b1,
b2, , bn} concurrently, agent bi’s offer is acceptable to agent a at round k if
(1) Ua(Obi->a,k) >= Ua(Oa->bi,k+1) and (2) Ua(Obi->a,k) = argmax Ua(Obj->a,k) for

Bbj ∈ ,where argmax function return the max value from a set.
As shown in Figure 1, a requestor agent a1 locates two provider agents, b1 and b2,

and then initiates two negotiation threads simultaneously by sending them its
proposal. After evaluating the received proposal, b2 sends its counter-proposal to a1.
Although b1 is negotiating with another requestor agent a2 when it receives a1’s
proposal, b1 sends its counterproposal to a1, since b1 has not yet reached any
agreement with a2. After evaluating it, a1 finds that b2’s counterproposal is acceptable
and pre-accepts it. a1 will pre-reject other counterproposals at the same time. b1
receives the pre-reject from a1 and the pre-accept message from a2, so b1 sends the
formal-proposal to a2 and pre-rejects all other requestors. While pre-accepted b2 sends
a1 its formal-proposal, other pre-rejected agents send their counter-proposals to a1. a1
accepts b2 and rejects all other providers, if b2’s formal-proposal is still acceptable.
Similarly, a2 sends the accept message to b1 and the reject message to other providers.

Deleted: Concurrent Multiple-Issue
Negotiation for Internet-Based Services

Concurrent Multiple-Issue Negotiation for
Internet-Based Services 5

Formatted: Font: Bold, Complex
Script Font: Bold, Do not check
spelling or grammar

Provider b2

counter-propose

pre-accept

formally-Propose

Requestor a1 Provider b1

propose

counter-propose

pre-reject

pre-reject

reject

Requestor a2

counter-propose

counter-propose

pre-accept

formally-propose

accept

propose

accept

propose

counter-propose

Fig. 1. A Concurrent Negotiation Sequence Diagram

3.2 Colored Petri Nets

In an Internet-based environment, service requestor and provider agents need to
comply with an interaction protocol in order to negotiate successfully. It is important
for the protocol itself to be correct, unambiguous, complete, and verifiable. The
ability to express correct protocols depends on the specification language or tool used
to model the protocol. FSMs can express a variety of protocols in a conceptually
simple and intuitive way. However, they are not adequately expressive to model more
complex interactions, especially those with some degree of concurrency. Petri nets
(PNs) were originally defined in answer to the limited modeling power of finite-state
models. They provide the benefits of FSMs while allowing greater expressivity and
concurrency. This is our motivation for adopting PNs as an alternative mechanism.

A Petri net is a directed, bipartite graph whose nodes represent the possible states
and actions of a process and whose arcs represent possible transitions among states
and actions. Concurrency is provided by the presence of multiple tokens that move
through the graph and indicate its current status. In a colored Petri net, each token is
extended with a value referred to as color, which is a schema or type specification.

CPNs have great value for modeling a concurrent protocol since they provide: (1) a
relatively simple and precise formal model, (2) an intuitive graphical representation,
(3) full expressiveness with explicitly represented states, (4) support for concurrency,
and (5) a firm mathematical foundation for investigating and verifying properties [8].

3.3 Negotiation Protocol

Figure 2 describes the concurrent negotiation protocol for services. For simplicity,
some constraints such as time-out and exception handling have been omitted from the
figures. The service requestor (state 1) initiates a negotiation process from place 1 by
sending an initial proposal to the service provider. The provider evaluates it (place 2)
and if this proposal is acceptable, the provider pre-accepts it (place 4); otherwise, it
counter-proposes (place 3). Two entities send counter-proposals back and forth before
they find an acceptable offer (places 2 and 3). A provider may pre-reject a proposal if
it has pre-accepted another requestor or has been pre-accepted by another requestor
(place 5). The pre-accepted requestor sends its formal proposal to the provider (place
6). If this formal proposal is acceptable, it is accepted by the provider (place 12).

Deleted: Concurrent Multiple-Issue
Negotiation for Internet-Based Services

Concurrent Multiple-Issue Negotiation for
Internet-Based Services 6

Formatted: Font: Bold, Complex
Script Font: Bold, Do not check
spelling or grammar

Otherwise, this proposal is pre-rejected (place 5) and the requestor can send an
improved counterproposal (place 7), which could be pre-accepted by the provider
(place 4) or rejected finally (place 13).

Two-phase commitment of (pre-accept and accept) and the corresponding two-
phase rejection (pre-reject and reject) are necessary to deal with concurrent
encounters. With this protocol, the concurrent negotiation process has two stages. In
stage one, service entities exchange counter-proposals after service requestors initiate
the negotiations. Once an entity receives an acceptable proposal, the entity announces
that the negotiation stage two begins by sending pre-accept to the entity who sent the
acceptable proposal and sending pre-reject to the rest of the negotiating opponents. In
stage two, the negotiation enters a process similar to a last-round first-price auction.
The pre-accepted entity sends back its formal proposal while other pre-rejected
entities send their counterproposals for their final tries. If the former proposal is still
acceptable, it will be accepted formally and other offers will be rejected to end the
negotiation. Otherwise, it will be prejected (detail is discussed in Section 5). In Figure
2, state 1, 2, 3 belong to negotiation stage one, and the rest states belong to
negotiation stage two.

In this section we use colored Petri nets as the modeling tool and present our
negotiation protocol with the negotiation performatives in Table 1. In this model, a
colored token has an attached data value, which may be of arbitrary complex type.
Color sets determine the possible values of tokens. Usually a language called CPN
ML is used to make CPN declarations. The CPN color set is defined in Table 2.

Table 2. Color Set Declaration

The CPN-ML descriptions in Table 2 give a formal way to express the negation
process in the system. The messages used are based on our proposed negotiation
performatives. The type AGENTNAME is defined as a string, and AGENTTYPE is
defined as an enumeration type containing two possible values: requestor and
provider. STATUS indicates different negotiation status, i.e., f1 denotes the first
negotiation stage in which none of the agents is pre-rejected or pre-accepted yet, f2-

color PERFORMATIVE = with propose | counter-propose | formally-propose | pre-reject |
pre-accept | reject | accept;

color AGENTNAME = string;
color AGENTTYPE = with requestor | provider
color STATUS = with f1 | f2- | f2+
color ID = product AGENTTYPE * AGENTNAME * STATUS;
color VALUE = with float | int | string ;
color CONTENT = list VALUE;
color MESSAGE = product PERFORMATIVE * ID * ID * CONTENT * ROUND;
color ROUND = int

var m : Message;
var p, q : PERFORMATIVE;
var c, d : CONTENT;
var s, r : ID;
var k : ROUND;

fun acceptable(c: CONTENT);

Deleted: Concurrent Multiple-Issue
Negotiation for Internet-Based Services

Concurrent Multiple-Issue Negotiation for
Internet-Based Services 7

Formatted: Font: Bold, Complex
Script Font: Bold, Do not check
spelling or grammar

denotes the status in which one agent has pre-rejected other agents, while f2+ denotes
the status in which one agent has pre-accepted another agent. The type ID is defined
as the product of the types AGENTNAME and AGENTTYPE, and STATUS. The
CONTENT type represents the possible negotiation offer in a multi-issue negotiation
and is defined as a list of values of integer, real, or string types. We also define
several variables with the declared types and a Boolean function acceptable(), which
takes a CONTENT variable as the argument and produces a true/false value as
explained in Definition 2.

The states of a CPN are represented by places, drawn as ellipses or circles. Each
place has an associated type (color set) determining the kind of data that the place
may contain. The colors of a CPN can be arbitrarily complex, e.g., a message with
fields of integer, real, string, and list as we defined in Table 2. The type of a place is
written to the lower left or right of the place. The type definitions for places are
omitted since all places have the same type: MESSAGE.

requestor proposes

provider counter-proposes

requestor counter-proposes requestor pre-accepts

provider pre-accepts

6

provider formalizes

requestor accepts

requestor formalizes

provider accepts

requestor pre-rejects

12

1

requestor pre-accepts

provider pre-rejects

provider pre-accepts

provider counter-proposesrequestor counter-proposes

requestor rejectsprovider rejects

13

4

7

2

5

3

8

11

9

10

 Success

Failure

requestor pre-rejectsprovider pre-rejects

1' (proposal, a, b, v, 0)

(p,s,r,c,k)

[p=propose | counter-propose,
 r.status=f1,
 acceptable(c)=false]

(p,s,r,c,k)

(p,s,r,c,k)

[p=propose,
 r.status!=f1,
 acceptable(c)=false]

[q=counter-propose,
 s.status=f1,
 acceptable(d)=false]

[q=counter-propose,
 s.status!=f1,
 acceptable(d)=false]

[q=formally-propose,
 acceptable(d)=false] [p=pre-accept]

[q=counter-propose,
 acceptable(d)=true]

[p=formally-propose,
 acceptable(c)=true]

[q=formally-propose,
 acceptable(d)=true]

[p=pre-reject][q=pre-reject]

[p=counter-propose,
 r.status=f2-,
 acceptable(c)=false]

[p=counter-propose,
 acceptable(c)=true]

[q=pre-accept]

[p=formally-propose,
 acceptable(c)=false]

[q=counter-propose,
 acceptable(d)=true][p=propose,

 acceptable(c)=true]

[p=counter-propose,
 s.status=f2-
 acceptable(c)=false]

(q,r,s,d,k)

(p,s,r,c,k)

(p
,s

,r,
c,

k)

(q,r,s,c,k)

(q,r,s,c,k)

(q
,r,

s,
c,

k)

(q
,r,

s,
c,

k)

(p,s,r,c,k)

(p,s,r,c,k)

(p,s,r,c,k)

(p
,s

,r,
c,

k)
(q

,r,
s,

c,
k)

(p,s,r,d,k)

(p
,s

,r,
d,

k)

(p,s,r,d,k)

(p,s,r,d,k)

(q
,r,

s,
d,

k)

(q,r,s,c,k) (p,s,r,d,k)

(p
,s

,r,
c,

k)

(p,s,r,c,k)

(p,s,r,c,k)

(q
,r,

s,
c,

k)

(q,r,s,c,k)

(p
,s

,r,
d,

k)
(q

,r,
s,

d,
k)

(q,r,s,d,k)

(q,r,s,d,k)

(p,s,r,d,k)

(p
,s

,r,
d,

k)

(q,r,s,d,k)

(q,r,s,d,k)

(q,r,s,d,k)

(q,r,s,d,k)

(q,r,s,d,k)

Fig. 2. Colored Petri Net for Concurrent Negotiation
A state of a CPN is called a marking. It consists of a number of tokens distributed

on the places in the CPN. The tokens that are present on a particular place are called
the marking of that place. Each token carries a value (color), which belongs to the
type of the place on which the token resides. As an example, a possible marking of
the place 1 is 1’(propose, a, b, v, 0). This marking contains one token with value
MESSAGE=(propose, a, b, v, 0), where the performative is propose, sender agent is
a, receiver agent is b, and offer is a list named v at round k=0. By convention, the
symbol prime (`) denotes the number of appearances of the token. An initial marking
is used to describe the initial state of the system and is written on the upper left or
right of the place by convention. In our CPN, the place 1 has an initial marking
consisting of a single token with the value [propose, a, b, v, 0]. Initially, the remaining
places contain no tokens.

Deleted: Concurrent Multiple-Issue
Negotiation for Internet-Based Services

Concurrent Multiple-Issue Negotiation for
Internet-Based Services 8

Formatted: Font: Bold, Complex
Script Font: Bold, Do not check
spelling or grammar

Transitions represent the actions of a CPN and are drawn as rectangles. In order for
a transition to be enabled in a marking, it must be possible to bind data values to the
variables appearing on the surrounding arc expressions and in the guard of the
transition such that: (1) each of the arc expressions evaluate to tokens that are present
on the corresponding input place; and (2) the guard (if any) is satisfied [10]. The
transition (requestor propose) has five variables: p of type PERFORMATIVE, s of
type ID, r of type ID, c of type CONTENT, and k of type ROUND as shown in Table
2. We assign data values to the variables of the transition (requestor propose) by
creating the following binding: proposalp ← , as ← , br ← , vc ← , 0←k . In
addition to the arc expressions, it is possible to attach a list of Boolean expressions
(with variables) to each transition. The list of Boolean expressions is called a guard. It
specifies that we only accept bindings for which all Boolean expressions evaluate to
true. As an example, the transition (provider counter-propose) uses a guard with three
Boolean expressions: [p=proposal|counter-proposal, r.STATUS=f1,
acceptable(c)=false]. The result is true only if all expressions are true. The meanings
of the expressions are strightforward, except the operator ‘.’ is used to extract
STATUS information from a variable of type ID in the arc expression r.STATUS.

An occurrence of the transition (provider counter-propose) removes a token with
value (propose, a, b, v, 0) from the place 2 and adds a token to the output place 3. The
values of the tokens removed from an input place are determined by evaluating the
arc expression on the corresponding input arc. Similarly, the values of tokens added to
an output place are determined by evaluating the arc expression on the corresponding
output arc. After evaluating the guard, the transition (provider counter-propose)
updates the token by changing the performative to counter-propose, switching the
sender and receiver, updating its offer, and incrementing the round k.

An execution of a CPN is described by an occurrence sequence. It specifies the
markings that are reached and the steps that occur. In the initial marking, the
transition (requestor propose) is enabled in a binding. Hence, the occurrence sequence
can be continued. This leads to a new marking in which one of the transitions
(provider counter-propose, provider pre-accept, and provider pre-reject) is enabled by
evaluating the binding and guard values. An infinite occurrence sequence is an
occurrence sequence consisting of an infinite number of markings and steps. An
infinite occurrence sequence corresponds to a non-terminating execution of the
system. We analyze the termination property of our protocol below.

Note that Figure 2 models concurrent pairwise negotiation between a service
requestor and a provider. With our proposed protocol, both service requestors and
service providers can manage several negotiation processes in parallel. In addition,
the negotiation protocol is encoded inside arc expressions and guards, but the agent’s
negotiation algorithm is not specified in the above figure, and is described in the next
section.

4 Negotiation Algorithm
With the defined color set and convention, we illustrate the proposed negotiation
mechanism for service requestors in Figure 3. A service requestor initiates a
negotiation process by sending a proposal to the corresponding providers.

Deleted: Concurrent Multiple-Issue
Negotiation for Internet-Based Services

Concurrent Multiple-Issue Negotiation for
Internet-Based Services 9

Formatted: Font: Bold, Complex
Script Font: Bold, Do not check
spelling or grammar

EvaluatingCounterProposal deals with all counterproposals in phase one. It evaluates
the counterproposals from the providers and sends pre-accept, pre-reject, or counter-
propose regarding the evaluation result. EvalutingCounterProposal2 evaluates all
counterproposals in phase two. It sends pre-accept to the sender if its proposal is
acceptable; otherwise it sends reject. EvaluatingFormalProposal evaluates the
formal-proposal from the pre-accepted entity. It sends accept if the formal proposal is
acceptable and pre-reject otherwise. The CPN diagram for a service provider is
similar to Figure 3 except it starts with a ReceiveProposal transition that leads to an
Evaluating place, which is equivalent to EvaluatingCounterproposal in Figure 3.

Com m unication Channel

R
ec

ei
ve

 D
at

a

P re-AcceptedReceive
pre-accept form ally-propose W aitingResp

ToFormalProposal

Pre-rejectedReceive
pre-reject counter-propose W aitingResp

ToCounterProposal

[q=pre-accept]

Start propose W aiting

Evaluating
CounterProposal

Receive
counter-proposal pre-reject W aitingResp

ToPreReject

[q=pre-reject]

counter-propose

pre-accept

[q=counter-propose, s.status=f1, acceptable(d)=false]

Evaluating
CounterProposal2

Receive
counter-proposal

pre-accept

Rejected

reject

Evaluating
Form alProposal

Receive
form al-proposal pre-reject

Accepted

accept
Receive

reject

Receive
accept

W aitingResp
ToPreAccept

[q=counter-propose, s.status!=f1, acceptable(d)=false]

[q=counter-propose, acceptable(d)=true]

(p,s,r,c,k)

1' (proposal, a, b, v, 0)

(p,s,r,c,k)

(q,r,s,d,k)

(p,s,r,c,k)

[q=counter-propose,
s.status=f1]

[q=counter-propose,
s.status!=f1]

[q=form al-propose]

[q=reject]

[q=accept]

(q,r,s,d,k)

[q=counter-propose, acceptable(d)=true]

[q=counter-propose, s.status=f2-, acceptable(d)=fa lse]

[q=form al-propose, acceptable(d)=false]

[q=form al-propose, acceptable(d)=true]

Fig. 3. Colored Petri Net for a Service Requestor

Since we assume that the agents are self-interested, it is possible for an agent to
propose a very good offer in phase one in order to scare off its competition and then
send a lower formal-proposal later. Although it likely is bested by other agents’
counterproposals, we enforce a negotiation strategy that avoids this situation. Any
formal-proposals worse than their pre-accepted proposals will be peremptorily
rejected. The best offer from the received counterproposals will be pre-accepted as a
replacement in this case.

Deleted: Concurrent Multiple-Issue
Negotiation for Internet-Based Services

Concurrent Multiple-Issue Negotiation for
Internet-Based Services 10

Formatted: Font: Bold, Complex
Script Font: Bold, Do not check
spelling or grammar

5 Theoretical Analysis
An important peroperty of a negotiation protocol is whether it can guarantee that any
negotiation process following the protocol will eventually terminate.
Termination Property: Given a set of service requestors A and a set of service
providers B, a negotiation process engaged by the entities from A and B using our
concurrent protocol ends after a finite number of steps.

Proof: From Figure 2, we can see that three loops can occur during the negotiation
process: (1) a loop on states 2 and 3; (2) a loop on states 5, 7, 4, 6, and (3) a loop on
state 8, 11, 9, and 10. To prove that the protocol will end in a finite number of steps,
we must prove that none of the three loops could have an infinite number of steps.

(1) In loop 2-3, service entities exchange counterproposals by the alternating offer
protocol in which an entity has to concede to offer deals that are more likely to be
accepted by its opponents, if it prefers an agreement to the conflict deal. These
principles apply to all concurrent negotiation threads. Many existing mechanisms can
guarantee agents will keep making progress during the negotiation. With a pre-
defined minimum hop, one entity will eventually pre-accept the counter-proposal
from its opponents and exit from the loop (1) or time out. Also, an agent can be pre-
rejected out of the loop (1) when its opponent pre-accepts one of its peers from
another concurrent negotiation thread.

(2) In loop 5-7-4-6, the pre-rejected requestor sends its new counterproposal to the
provider and is pre-accepted; however, its formal proposal is then pre-rejected and the
requestor has to send a new counterproposal. Let us assume a service provider b
negotiates concurrently with a set of n service requestors: a pre-accepted requestor a0
and a set }{' 0aAA −= of n-1 pre-rejected requestors. After the provider receives

the formal proposal from a0 and the counterproposals from 'A , let ai be the one with
the best offer from 'A . By comparing the offers from a0 and ai, we have:

(a) If)()(
0 babbab OUOU

i →→ ≤ , requestor a0 will be accepted and reach state

12; all requestors from 'A will end with rejections and reach state 13. The
negotiation ends

(b) If)()(
0 babbab OUOU

i →→ > , requestor a0 will be pre-rejected and reach state
5, requestor ai will be pre-accepted and enter state 4, and all other agents are rejected
and out of the loop. There are only ai and a0 left. The negotiation ends if one of them
can overbid the other in two consecutive rounds. An infinite loop occurs when ai and
a0 keep overbidding each other alternately by a tiny amount. It can be prevented by
defining a minimum increment ε or enforcing a time constraints on the protocol.
Since both sides would be better off if they can reach a contract earlier, the provider
should consider the time factor for proposals received in phase two. For example,
before comparing two proposals, a time discount function 1)(<kδ (e.g., a
normalized function whose value decreases exponentially with the time) can be
applied to the counter-proposal that needs to evolve two more states to be a formal-
proposal. Therefore, the counter-proposal needs to overbid the formal-proposal more
to overrule it along the time and negotiation will end in a finite number of steps.

Deleted: Concurrent Multiple-Issue
Negotiation for Internet-Based Services

Concurrent Multiple-Issue Negotiation for
Internet-Based Services 11

Formatted: Font: Bold, Complex
Script Font: Bold, Do not check
spelling or grammar

As described in [7], CPNs can be checked for a variety of properties. Given a CPN,
we might be interested in reachability: does the initial marking result in the correct
negotiation result? We can perform a liveness test: does the negotiation process enter
a “dead” state in which no further activity can occur? Colored Petri nets are
accompanied by a number of techniques and tools for formal analysis and verification
of such properties.

6 Concurrent Negotiation Issues
With this protocol, the concurrent negotiation process can be performed at two levels:
The upper level (a coordinator) is responsible for coordinating all the threads and
solving conflicts among them. The lower level (negotiation threads) deals directly
with the various opponents and is responsible for deciding what counterproposals to
send and what proposal to pre-accept. In each round, the threads report their status to
the coordinator, and the coordinator updates the status of the other threads and uses
the progress in one thread to alter the behavior of the agent in the other threads.

A commitment is a symmetric relationship that binds the participants in a
negotiation. One-sided commitemen problems occurs when one party, e.g., service
requestor, negotiate with several service provider candidates in parallel, after reaching
an agreement with one provider, requestor continues negotiating with other providers
and renege to the previous agreement if it finds a better offer later. Figure 2 shows
that our protocol is neutral to both service requestors and service providers.
Therefore, our protocol can eliminate the decommitment situations that arise in one-
sided commitment.

In negotiation phase two, a service agent hosts a procedure that is similar to a last-
round first-price auction. Since it is the final try for those pre-rejected agents to stay
in the negotiation, it makes truth-telling about the reserve offer the dominant strategy
for agents whose counterproposals are close to their reserve offers. At this time, they
do not want to lose by providing an offer worse than the reserve offer and they do not
want to win the negotiation with negative gains by providing an offer better than the
reserve offer. Therefore, this protocol makes the negotiation more efficient.

7 .Conclusion
This paper investigates concurrent negotiation in a competitive environment and
formulates a negotiation protocol with CPN technologies. There are several possible
directions for future work. First, we will further investigate the effect of this protocol
on an agent’s negotiation strategy and develop a precise commitment model. Second,
we can extend this protocol to support negotiation for a composed service with
different service agents under constraints such as QoS and dependency issues among
agents.

Deleted: Concurrent Multiple-Issue
Negotiation for Internet-Based Services

Concurrent Multiple-Issue Negotiation for
Internet-Based Services 12

Formatted: Font: Bold, Complex
Script Font: Bold, Do not check
spelling or grammar

References
[1] J. Gray, "Notes on Data Base Operating Systems," in Operating Systems, An

Advanced Course, vol. 60. London, UK: Springer-Verlag, 1978, pp. 393--
481.

[2] S. Aknine, S. Pinson, and M. F. Shakun, "An Extended Multi-agent
Negotiation Protocol," presented at International Conference on Autonomous
Agents and Multi-agent Systems, New York, USA, 2004.

[3] J. Dang and M. N. Huhns, "An extended protocol for multiple-issue
concurrent negotiation," presented at AAAI 2005, Pittsburgh, PA, 2005.

[4] T. Murata, "Petri Nets: Properties, Analysis and Applications," Proceedings
of the IEEE, pp. 541--580, 1989.

[5] I. Rahwan, R. Kowalczyk, and H. H. Pham, "Intelligent agents for automated
one-to-many e-commerce negotiation," presented at the Twenty-Fifth
Australasian Conference on Computer Science, Melbourne, Victoria,
Australia, 2002.

[6] T. D. Nguyen and N. R. Jennings, "Reasoning about commitments in
multiple concurrent negotiations," presented at the 6th International
Conference on E-Commerce, Delft, The Netherlands, 2004.

[7] R. S. Cost, Y. Chen, T. Finin, Y. Labrou, and Y. Peng, "Using Colored Petri
Nets for Conversation Modeling," in Issues in Agent Communication, F. D.
a. M. Greaves, Ed.: Springer-Verlag: Heidelberg, Germany, 2000, pp. 178--
192.

[8] W. M. P. v. d. Aalst, "Interorganizational workflows: An approach based on
message sequence charts and petri nets," Systems Analysis, Modeling,
Simulation, vol. 34, pp. 335--367, 1999.

[9] M. J. Osborne and A. Rubinstein, A Course in Game Theory: The MIT Press,
1994.

[10] K. Jensen, Coloured Petri Nets, vol. 1, Second ed: Springer, 1996.

Deleted: Concurrent Multiple-Issue
Negotiation for Internet-Based Services

