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ABSTRACT 
This paper describes an architecture for enabling robust 
autonomous decision making and task execution.  A key feature 
of the architecture is that agent behavior is constrained by sets of 
agent societal laws similar to Asimov's laws of robotics.  In 
accordance with embedded philosophical principles, agents use 
decision theory in their negotiations to evaluate the expected 
utility of proposed actions and use of resources.  This results in 
planning and task execution that is dynamic, rational, distributed, 
occurs at multiple levels of granularity, and can be trusted.  We 
report on our initial investigations of agent architectures that 
embody philosophical and social layers.  Our investigations have 
included the effect of misinformation among cooperative agents 
in worth-oriented domains, and active countermeasures for 
dealing with the misinformation.  We examine the agents’ use of 
philosophical principles for mission preeminence and rational 
progress towards goals. 

Categories and Subject Descriptors 
I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence 
– multiagent systems.  

General Terms 
Reliability. 

Keywords 
Philosophy for agents, agent architectures, robust systems. 

1. INTRODUCTION 
The improvements in Internet-based software agents that are 
underway at many laboratories and corporations are fulfilling the 
promise of personalized, friendly Web services. The 
improvements come at a cost, however—greater implementation 
complexity. Thus, as we gradually rely more on the improved 
capabilities of these agents to assist us in networked activities 
such as e-commerce and information retrieval, we also understand 

less about how they operate.  
Abstraction is the technique we use to deal with complexity. What 
is the proper kind and level of abstraction for complex software 
agents? We think it will be reasonable to endow agents with a 
philosophy. Then, by understanding their philosophies, we can 
use them more effectively.  
For example, consider future NASA missions. As they become 
longer, more complicated, and farther away, the software systems 
controlling them will of necessity become larger, more intricate, 
and increasingly autonomous. Moreover, the missions must 
succeed in the face of uncertainties, errors, failures, and 
serendipitous opportunities. While small, well-specified systems 
with limited types of known external interactions can be proved 
correct, consistent, and deadlock-free via formal verification, such 
conditions do not hold for network-based systems. We will 
basically have to trust the systems, so there should be a principled 
basis for our trust.  
Unfortunately, constructing large error-free software systems 
appears not to be achievable by current means.  Additionally, the 
large size of the systems and the unknowns to which they will be 
subjected cause them to be untestable to even find out if, when, or 
where they might fail.  A new paradigm and architecture for 
software development are thus needed [19], and we are 
investigating ones based on the premise that errors will always be 
present in software systems, and we should try to not only 
compensate for them, but also take advantage of them.  
Furthermore, an agent-based architecture, with the agents having 
explicit philosophies, is a promising foundation for engendering 
trust.  We can trust the agents to act autonomously if they 
embrace ethical standards that we understand and with which we 
agree.  We expect that this will lead to robustness, fault tolerance, 
recovery, graceful degradation, and, ultimately, trust in our 
systems.  

2. PHILOSOPHICAL AGENTS 
An agent-based approach is inherently distributed and 
autonomous, but when the communication channels that link the 
agents are bandwidth-constrained or noisy, the agents will have to 
make decisions locally, which we hope will be coherent globally, 
as well as worthy of trust.  We can trust the agents to act locally 
(autonomously), if we understand and agree with their principles.  
To endow agents with ethical principles, we as developers need 
an architecture that supports explicit goals, principles, and 
capabilities (such as how to negotiate), as well as laws and ways 
to sanction miscreants [15]. Figure 1 illustrates such an agent 
architecture that can support both trust and coherence, where 
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coherence is the absence of wasted effort and progress toward 
chosen goals [8]. 
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Figure 1: Architecture for a philosophical agent.  The 
architecture defines layers of deliberation for enabling an 
agent to behave appropriately in society. 
The lowest level of the architecture enables an agent to react to 
immediate events [12].  The middle layers are concerned with an 
agent's interactions with others [5,6,7,13], while the highest level 
enables the agent to consider the long-term effects of its behavior 
on the rest of its society [11].  Agents are typically constructed 
starting at the bottom of this architecture, with increasingly more 
abstract reasoning abilities layered on top. 
Awareness of other agents and of one's own role in a society, 
which are implicit at the social commitment level and above, can 
enable agents to behave coherently [9].  Tambe et al. [17] have 
shown how a team of agents flying helicopters will continue to 
function as a coherent team after their leader has crashed, because 
another agent will assume the leadership role.  More precisely, the 
agents will adjust their individual intentions in order to fulfill the 
commitments made by the team. 
If the agents have sufficient time, they can negotiate about or vote 
on which agent should become the new leader.  When time is 
short or communication is not allowed, the agents can follow 
mutually understood social conventions, such as “the agent with 
the most seniority becomes the new leader.” 

2.1 Ethical Abstractions 
Ethics is concerned with codes and principles of moral behavior 
[4].  Most ethical theories distinguish between the concepts of 
right and good:  

• Right is that which is right in itself  

• Good is that which is good or valuable for someone or for 
some end.  

Should software agents favor right or good?  Deontological 
theories emphasize right before good. They oppose the idea that 
the ends can justify the means, and they place the locus of right 
and wrong in autonomous adherence to moral laws or duties. A 
proponent of these, the German philosopher Immanuel Kant 
(1724-1804), defined his “categorical imperative” as an absolute 
and universal moral law based entirely on reason.  For right action 
by an agent, the categorical imperative would be: “Agents should 
act as they think all other agents should act.” For example, 
breaking a promise would not be right, because if all agents did it, 
the system they support would not function.  

Kant's categorical imperative does not contain a way to resolve 
conflicts of duty. Also, an action is not wrong unless the agent 
explicitly intends for it to do wrong.  For example, an agent on a 
NASA deep space probe who is responsible for managing 
communications with ground control would not be wrong to shut 
down the communications link for diagnostics, even if that might 
leave other agents on the probe unable to communicate.  These 
theories can also legitimize inaction, even when inaction has 
predictable, but unintended effects. 
In contrast, teleological theories choose good before right: 
something is right only if it maximizes the good; in this case, the 
ends can justify the means.  In teleological theories, the 
correctness of actions is based on how the actions satisfy various 
goals, not the intrinsic rightness of the actions.  Choices of actions 
can maximize either individual or societal good, where good may 
be pleasure, preference satisfaction, interest satisfaction, or 
aesthetic ideals. 
What agents need to decide actions are not just universal 
principles (each can be stretched) and not just consequences, but 
also a regard for their promises and duties.  Agents have prima 
facie duties to keep promises, help others, repay kindness, etc. 
[11].  In the context of a NASA mission, an agent could repay a 
kindness to another agent by offering, without being asked, to 
donate a resource such as excess battery power.  While agents 
have such duties, there is no ranking among the duties, which are 
defeasible.  For example, an agent on a NASA deep space probe 
might find it acceptable to monopolize a communication channel 
to ground control to the detriment of other agents because it 
values the success of its task without regard to the consequences 
for other agents. 

2.2 Machine Ethics 
Isaac Asimov proposed a moral philosophy for intelligent 
machines in a Handbook of Robotics [1] that defined three Laws 
of Robotics. These were subsequently augmented by the “Zeroth 
Law” [2].  An adaptation of these laws for a collection of agents 
sent on a NASA mission might be: 

Principle 1: An agent shall not harm the mission through its 
actions or inactions. 

Principle 2: Except where it conflicts with Principle 1, an agent 
shall not harm the participants in the mission. 

Principle 3: Except where it conflicts with the previous 
principles, an agent shall not harm itself. 

Principle 4: Except where it conflicts with the previous 
principles, an agent shall make rational progress toward mission 
goals. 

Principle 5: Except where it conflicts with the previous 
principles, an agent shall follow established conventions. 

Principle 6: Except where it conflicts with the previous 
principles, an agent shall make rational progress toward its own 
goals. 

Principle 7: Except where it conflicts with the previous 
principles, an agent shall operate efficiently. 

Distributed systems—which most Internet applications are—are 
susceptible to deadlocks and livelocks.  However, if the system 



 

components obey these seven philosophical principles, then the 
susceptibilities would disappear, because deadlock and livelock 
would violate Principle 6. 

2.3 Applying Ethics 
A philosophical approach to distributed system design 
presupposes that the components, or agents, can  

• enter into social commitments to collaborate with others, 

• change their mind about their results, and 

• negotiate with others. 
However, the ethical theories above are theories of justification, 
not of deliberation.  An agent can decide what basic “value 
system” to use under any approach. 
The deontological theories are narrower and ignore practical 
considerations, but they are only meant as incomplete 
constraints—that is, the agent can choose any of the right actions 
to perform. The teleological theories are broader and include 
practical considerations, but they leave the agent fewer options 
for choosing the best available alternative. All of these ethical 
approaches are single-agent in orientation and encode other 
agents implicitly. An explicitly multiagent ethics would be an 
interesting topic for study. 

3. Methodology 
The goal of our research is to evaluate the utility of different 
combinations and precedence orderings of behavior-guiding 
principles.  To make the most progress toward our goal, we chose 
to use an agent-development toolkit (ZEUS) to provide most of 
the low-level functionality we need.  We also selected the FIPA 
ACL, because it is the closest to a standard that is available.  
We developed an initial set of four agent architectures.  All agent 
architectures use the same two algorithms for checking memory 
for previous mineral samples and controlling the actual movement 
of the agents. The decision of which mineral sample to move 
towards is defined separately for each agent. 

Checking Memory 
1. Check to see if there are mineral samples the agent 

remembers and has not picked up that are currently out of the 
viewing area  

2. If there are mineral samples in memory,  
a. determine the closest mineral sample to the agent 

from memory  
b. make a move of one space towards that mineral 

sample  
3. Else if there are no mineral samples in memory, then make a 

random move of one space along the same path it was on. 
Movement 
1. The agent moves one position either in a random direction if 

it has chosen to move randomly or in the direction of its 
chosen mineral sample  

2. If the agent reaches the same position as the mineral sample 
it is searching for, it retrieves the mineral sample and then 
senses again.  

3. If the agent reaches an empty spot, it senses again.  

4. If the agent cannot move into a spot because there is another 
agent already there, the agent attempts to make a random 
move of one space along the same path it was on. 

Our baseline agent, Agent 0, is purely self-interested and unaware 
of other agents.  Conflicts and inefficiencies arise as agents of this 
type attempt to pick up the same samples. 
A more capable agent, Agent 1, is aware of other agents and, by 
estimating their behavior, attempts to avoid conflicts.  Agent 2 is 
cooperative, and communicates its true intentions to other agents, 
thereby reducing conflicts even further.  Agent 3 is more 
cooperative, in that it communicates not only its intentions, but 
also opportunities by which other agents might benefit, thereby 
improving the overall societal performance towards a global 
mission.  The next section describes our experiments with these 
agents in different scenarios. 

4. Evaluation 
4.1 Evaluation Considerations 
We require a test scenario that will allow us to make clear 
comparisons between the performances of agent architectures 
with different combinations and precedence orderings of 
philosophical principles.  There are several features that we 
considered in selecting a scenario: 
1. The scenario must justify multiple simultaneous tasks. 

2. The tasks must be uniform to simplify performance 
evaluation. 

3. It should be possible to carry out the tasks without explicit 
cooperation. 

a. Communication between agents should not be 
required. 

b. Global knowledge of the task scenario should not 
be required. 

Based on these features, we considered abstract tasks such as: 

1. Exploring (rover-type exploration) 

2. Inspecting (inspecting a space station for damage from space 
debris) 

3. Gathering (collecting mineral specimens on a Mars) 

4. Building (space station construction) 

5. Delivering (transporting supplies to appropriate destinations) 

We then considered these abstract tasks in the context of future 
NASA scenarios involving unmanned probes, such as sample 
collection on Mars, evaluation of asteroids, and exploration of the 
hypothesized liquid ocean beneath the icy crust of Europa.  This 
analysis indicated a large overlap between abstract gathering and 
inspecting tasks and moderate overlap with exploring and 
delivering tasks. 

Next, we considered a matrix of types of test cases.  Essentially, 
the test matrix is an enumeration of goal types, i.e., independent 
vs. shared, and combinations of philosophical principles.  The 
combinations are: 

1. Independent agents and goals; various combinations of 
philosophical principles 



 

2. Independent agents, shared goals; various combinations of 
philosophical principles 

3. Flat agent confederations, shared goals; various 
combinations of philosophical principles 

4. Hierarchically organized agents, shared goals; various 
combinations of philosophical principles 

Metrics that we considered for evaluating performance include: 

1. Measure of independent goals accomplished 

2. Measure of shared goals accomplished 

3. Time required for goal accomplishment 

4. Communication cost 

5. Resource usage 

6. Number of collaborative actions pursued. 

4.2 Agent Test Scenarios 
We developed several test scenarios for our agent architectures 
based on a simulated mineral specimen collection task on an 
unspecified planet. The test area is a 60x45 rectangular area.  The 
tests were run with n= {50, 100, 150, 200} mineral samples with 
varying degrees of clustering. The degree of clustering ranged 
from a random distribution of mineral samples at one end of the 
spectrum to a single cluster of all n samples (the mother lode) at 
the other end.  We did not allow more than one mineral sample to 
occupy any given position. 

Tests were run with m= {6, 12, 24} randomly distributed agents, 
each sharing the same architecture. We also varied the size of the 
agents’ field of view, defined as a v-by-v rectangle. All agents 
share the same size field of view in a given test run.  The value of 
v was varied in the range (v= {7, 9, 11}).  Each simulation lasts 
for 100 time steps. At each step, an agent may take one action 
from its repertoire of capabilities. Each simulation was repeated 
10 times with a different random distribution of agents and 
samples. 

We collected a number of statistics such as the total number of 
samples collected, the number of samples collected per agent, and 
the number of cooperative actions taken per agent, as well as 
averages and standard deviations.  An example of this is shown in 
Figure 2, which also shows that when the samples and agents are 
distributed randomly, very little opportunity for cooperation 
arises.  Consequently, a myopic self-interested agent performs as 
well as a socially aware, cooperative agent. 

The single metric that we used to summarize the results of any 
given test run was the percentage of mineral samples collected in 
100 time steps.  Two major variants of the tests are determined by 
whether or not there is an upper limit placed on the number of 
samples that an agent could collect (Figure 3 shows a case where 
agents are limited to 8 samples).  All agent architectures share the 
common goal of gathering as many mineral specimens as 
possible. 

A definition of what constitutes cooperation or competition 
depends on the overall societal goals that the group of agents 
believes they are trying to achieve [16].  For example, if the goal 
is to balance the load carried by each agent, then cooperation 

means an agent with a heavier load gives in to others and the 
standard deviation among loads is reduced.  If the goal is to 
maximize the percentage of samples collected, then cooperation 
means an agent should retrieve its closest samples and announce 
its intentions to do so, in order to deter other agents from wasting 
time on the same quests. Greater cooperation can be arrived at by 
communicating to nearby agents the location and estimated size 
of clusters of samples.  The benefit of this to the society of agents 
is shown in Figure 3. 
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Figure 2: There is little opportunity for cooperation, and 
therefore little benefit to cooperative search, when agents and 
samples are distributed randomly. 
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Figure 3: Benefits of communicating the locations of clusters 
to other agents. 
We next investigated the same core scenario based on a simulated 
collection of mineral specimens on an unspecified planet. There 
are a total of 50 mineral samples and 24 agents. In the worth-
oriented tests, agents have a sample carrying capacity of 8. In 
subsequent tests, agents have a sample carrying capacity of 2. The 
test area is a 60x45 rectangular area. Under these scenarios, the 
goal is to collect as many of the mineral samples as possible. 
Many of the tests are evaluated over different degrees of 
clustering of the 50 samples. There is one configuration for each 



 

of the ten degrees of sample clustering.  The interpretation of the 
clustering values on the X-axis are 1=10 clusters, 2=9 clusters, 
3=8 clusters, …, 10=1 cluster.  Each simulation is run for 100 
time steps. 

4.3 Worth-Oriented Evaluation of Mission 
Success 
On long-term missions, overall success will depend on the ability 
to conserve resources in order to meet long-term objectives.  This 
has prompted us to examine an agent architecture that seeks to 
minimize the expenditure of resources in the mineral sample 
collection scenario that we have been using.  This architecture, 
dubbed ‘EarlyFinisher’, is an extension of the cooperative agent 
architecture described above.  The essential difference between 
our standard cooperative agent and an early finishing agent is that 
the early finishing agent terminates activity after collecting its 
limit (8) of mineral samples.  In contrast, the standard cooperative 
agent continues to cooperate with other agents after having 
collected its limit of samples by communicating to other agents 
the existence of samples that it finds or relaying messages that it 
receives. 
Figure 4 shows that the early finishing architecture consistently 
uses fewer moves per sample on average compared to the 
standard cooperative architecture and the noncooperative 
architecture.  This figure shows that this efficiency holds over all 
degrees of data clustering, ranging from 10 clusters (1 on the X-
axis) to the aggregation of the samples in a single large cluster (10 
on the X-axis). The bumps in the curve at 3 and 8 on the X-axis 
are probably an artifact of the configuration of the sample 
clusters. 
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Figure 4: The early finishing agent architecture consistently 
uses fewer moves per mineral sample in comparison with 
either cooperating or noncooperating agent architectures. 
In Figure 5 we see that the early finishing architecture is 
competitive with the cooperative and noncooperative 
architectures, only slightly under-performing overall.  We note 
that when there is little clustering of samples, there is little 
opportunity for cooperation.  In such situations there is very little 
difference in performance (1-8 on the X-axis of Figure 5). 
However, as the degree of clustering increases, cooperative 
behavior improves performance as can be seen for both the 
Cooperative and EarlyFinisher (8-10 on the X-axis of Figure 5).  
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Figure 5: The performance of the early finishing agent 
architecture is marginally poorer than the cooperative and 
noncooperative architectures. 

4.4 Misinformation from Agents 
In order to achieve mission robustness, the agent architecture 
must be able to handle misinformation.  In the context of 
cooperating agents, misinformation could well originate from 
malfunctioning agents and, in the less than halcyon world of the 
twenty-first century, malicious agents. In a set of experiments we 
examined the effects of misinformation when agents assume that 
all information they receive from other agents is correct. In this 
section agents have a mineral sample carrying capacity of 2. 

0

10

20

30

40

50

60

70

80

90

100

1 2 3

Degree of Sample Clustering

%
 o

f S
am

pl
es

 C
ol

le
ct

ed

0 Bad Agents 3 Bad Agents 6 Bad Agents
12 Bad Agents 24 Bad Agents No Cooperation

Figure 6: As the number of malfunctioning/malicious agents 
increases there is a corresponding decrease in the number of 
mineral samples collected.  In this figure, the “bad agents” 
provide misinformation only when they detect a cluster of 
mineral samples. 
In Figure 6 there are two general trends that can be seen. First, as 
the number of agents providing misinformation increases, the 
number of samples collected decreases uniformly, although the 
decrease is very small when there is only one cluster.  The reason 



 

for this is that the agents that are providing misinformation only 
do so in this experiment when they observe a cluster of samples.  
When observing a cluster, such ‘bad agents’ communicate an 
erroneous position for it.  If there is only one cluster, then there is 
very little opportunity for such agents to dispense misinformation.  
The second trend to be observed is that performance also 
decreases as a function of degree of clustering even as the number 
of ‘bad agents’ is held constant.  This set of experiments was 
carried out with three clusters (X=1), two clusters (X=2) and one 
cluster (X=3).  The two reference curves in this figure are the 
non-cooperative architecture and the cooperative architecture with 
no bad agents.  Note that the non-cooperative curve drops 
dramatically from X=2 to X=3. This is a result of the fruitless 
search for mineral samples that the noncooperating agents are 
conducting over the entire search area while the samples are 
grouped in a single large cluster. 
In a second set of experiments, the ‘bad agents’ were designed to 
provide misinformation both when they discover sample clusters 
and when no cluster is in sight.  This increase in overall 
misinformation magnified the performance degradation observed 
in the previous set of experiments.  However, the same general 
trends seen in Figure 6 are also seen in Figure 7.  
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Figure 7: As the number of malfunctioning/malicious agents 
increases there is a corresponding decrease in the number of 
mineral samples collected.  In this figure, the “bad agents” 
consistently provide misinformation regardless of whether or 
not they perceive a cluster of mineral samples. 

4.5 Detecting Misinformation from Agents 
The previous section describes the effect of misinformation in a 
cooperative agent environment where agents naively assume that 
all information they receive from other agents is correct. We 
considered three agent architectures for addressing 
misinformation. All three of these architectures keep track of 
information that they receive from other agents and which agent 
they received the information from, as well as the originator of 
the information if it has been relayed. 

4.5.1 Gullible Agents 
The gullible agent architecture is an extension of the cooperative 
architecture in which agents assume that all agents provide correct 
information. When an agent determines that information it 

receives does not match its own direct observations, it classifies 
the agent from which it received the information as malicious and 
ignores future information provided by that agent. 

4.5.2 Gullible-Original Agents 
This is a refinement of the gullible agent architecture. The 
difference is that while the gullible agent disbelieves all agents 
that it perceives to have proffered misinformation, the gullible-
original agent only discredits the agents that it gets information 
directly from and not those that it received information by relay 
via other agents. 

4.5.3 Skeptical Agents 
In contrast to the gullible and gullible-original architectures, the 
skeptical architecture disbelieves all agents until it is able to 
verify through observation that the information it receives is 
correct. In other respects it conforms to the cooperative agent 
architecture. 
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Figure 8: Performance of misinformation-detecting 
architectures in tests involving a single cluster of samples. 

4.6 Passive Response to Misinformation 
Once an agent determines that another agent is responsible for 
misinformation the passive response taken is simply to ignore the 
agent that is perceived to be malfunctioning or malicious.  Figures 
8 and 9 show the performance of these architectures in 
comparison to the standard cooperative architecture labeled as 
‘No Detection’ and the noncooperative architecture.  In the case 
of a single large cluster (Figure 8) where there is a clear 
advantage for cooperation, all cooperative architectures perform 
better than the noncooperative architecture, even when up to 50% 
of the agents are spewing misinformation.  However, the skeptical 
approach is at a disadvantage when most of the agents are 
providing correct information.  We hypothesize that since the 
simulations are run for only 100 time steps and there is only one 
cluster, skeptical agents are not able to overcome their skepticism 
due to insufficient opportunity to verify information by direct 
observation.  
Simulations with three clusters provide greater opportunity for 
agents to confirm by direct observation the accuracy of the 



 

information that they receive from other agents. In Figure 9, all of 
the architectures for detecting and ignoring misinformation 
perform better than the standard cooperative architecture, which 
assumes that all information received from other agents is correct. 
In addition, these architectures outperform the noncooperative 
architecture. 
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Figure 9: Performance of misinformation-detecting 
architectures in scenarios involving three clusters of mineral 
samples. 

4.7 Active Response to Misinformation 
Simply ignoring agents that are perceived to be malfunctioning or 
malicious on the basis of misinformation is quite often an 
inadequate response.  The first principle that we propose in 
section 2.2 states that an agent should not harm the mission 
through its actions or inactions.  Arguably, simply ignoring 
malfunctioning or malicious agents allows them to continue to 
harm the mission.  Consequently, an agent that concludes that 
some other agent is malfunctioning or malicious must act to keep 
the bad agent from harming the mission. Balanced against this 
requirement is also the concern that the ability of a single agent to 
restrain the behavior of another agent must be limited. There is 
the potential for bad agents to cause chaos by acting to restrain 
good agents. The approach that we have investigated requires the 
agreement of n agents to restrain an agent. Agents concluding that 
some agent is bad report the “bad agent” to a coordinating agent. 
Once the coordinating agent has received bad conduct reports 
from n distinct agents, it “terminates” the bad agent. While we 
have not exhaustively analyzed conditions to characterize optimal 
values of n, we have investigated values of n = 1, 2, and 3 and in 
our simulations the best results are obtained with n = 3. 
In Figures 10 and 11, the results of actively restraining faulty 
agents are shown.  In this set of experiments, the skeptical 
approach to recognizing bad agents results in the greatest 
reduction of mineral samples collected by bad agents (Figure 10). 
The uncollected samples are thus available for future collection 
by non-faulty agents.  As can be seen in Figure 11, restraining 
faulty agents does not significantly degrade the performance of 
the gullible-original and skeptical agents.  In fact, there is a small 
performance improvement for skeptical agents. 
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Figure 10:  The average number of samples collected by faulty 
agents is significantly reduced by an active response.  
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Figure 11:  Actively restraining of faulty agents does not 
significantly alter the average number of samples collected by 
the Gullible-original and Skeptical agents.  

5. CONCLUSIONS 
The agents we construct—and the systems they implement, 
manage, and enact—must be trustworthy, ethical, parsimonious of 
resources, efficient, and—failing all else—rational.  What we are 
investigating differs from current work in software agents in that: 

• We are not researching new agent capabilities per se 

• We are not developing an agent-based system for a new 
application domain 

• We are investigating how agents can be the fundamental 
building blocks for the construction of general-purpose 
software systems, with the expected benefits of robustness 
and autonomy 

• We are characterizing agents in terms of mental abstractions, 
and multiple agents in terms of their interactions.  These 
abstractions matter because anticipated missions go beyond 
traditional metaphors and models in terms of their 
dynamism, openness, and trustworthiness. 



 

The benefit of this architecture to complex missions such as future 
NASA planetary and deep space missions is fourfold: (1) it will 
support missions of much greater complexity than are possible 
under the current model of earth-based control, (2) it will reduce 
costs by minimizing the amount of earth-based support required 
for missions, (3) it will eliminate communication time lag as a 
significant factor in local task execution, providing the ability to 
react to and take advantage of serendipitous events, and (4) it will 
significantly enhance mission robustness. The development of the 
proposed architecture builds on developments in decision theory, 
agent societies, trusted systems, and ubiquitous computing. 
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