
Multiagent Reputation Management to Achieve Robust Software Using 
Redundancy 

 
Rajesh Turlapati and Michael N. Huhns 

Center for Information Technology, University of South Carolina 
Columbia, SC  29208 

{turlapat,huhns}@engr.sc.edu 
 
 

Abstract 
 

This paper explains the building of robust software 
using multiagent reputation. One of the major goals of 
software engineering is to achieve robust software. Our 
hypothesis is that robustness can be increased through 
redundancy. We achieve redundancy by using agents, 
with each agent wrapping a different algorithm with 
similar functionality. The agents build trust in each other 
using reinforcement learning. Two types of reputation 
management are simulated: one in which the reputations 
of all agents are maintained centrally and a second, 
which is distributed, where an agent maintains locally the 
reputations of the agents it knows and each agent can 
have its own evaluation of its known agents’ 
performances. We simulated and compared two ways of 
achieving distributed reputation management. A 
probabilistic function is used as a preprocessing 
technique for selecting a set of agents based on 
reinforcement values of the agents. The values are 
obtained based on the correctness of the results the agent 
produces in performing the task it is given. Voting is used 
as a post-processing technique for judging the 
correctness of the output generated by the agents. 
 
 
1. Introduction 
 

Software redundancy has been shown to yield a high 
degree of fault-tolerance [3]. Software fault tolerance has 
become an implicit requirement in most application 
requirements. Any software system, from a simple home 
based one to a complex weather forecasting system is 
desired to be fault tolerant. Hardware redundancy is not 
sufficient, because any amount of redundant hardware 
can fail due to the same faulty software. Software 
redundancy is achieved by adding software components 
that are not exactly identical but have similar 
functionality. If one of the components fails, there might 
be an alternative component working in its place. 

Many techniques have been developed for software 
redundancy, such as single-version software and multiple-
version software. N-version programming (NVP) [2] is a 
process to build fault tolerant software systems. The 

major problems of NVP are how to maximize version 
development independence and minimize the probability 
of getting results that are identical when two or more 
versions are given the same task. This paper extends N-
version programming using multiagent redundancy, and 
solves some of the problems faced by the above 
technique. 

To enforce software redundancy, an agent can serve as 
a level of granularity and also an environment can be 
created to make the agents cooperate and learn among 
themselves. Multiagent systems learn not only by trial and 
error, but also through cooperation by sharing 
instantaneous information, episodic experience, and 
learned knowledge. Multiagent systems can form a basis 
for implementing redundancy and thereby provide a 
platform to achieve fault tolerant software. A system that 
has an agent-based infrastructure can increase its number 
of agents, the capability of each agent, and the resources 
available to these agents without introducing additional 
complexity. An earlier report [4] presents an idea that 
software redundant systems have non-identical software 
components that correct each others errors.  

The agents are reinforced based on voting among the 
agents. Trust among agents is given special attention, 
because agents cannot always be presumed to operate in a 
cooperative environment free of fraud and deception. 
Formalization of trust [5] is very important in multiagent 
systems, and reputation helps in this formalization.  An 
agent encounters problems of trust [8] when it is 
introduced into a competitive market.  

Reinforcement learning is of great importance in 
multiagent systems, because the agents can learn about 
other agents through rewards obtained by performing 
tasks.  Task success is decided by voting among the 
agents. Agents with correct results are given positive 
reinforcements and agents with incorrect results are given 
negative reinforcements. In our work, we use a 
probabilistic function as a preprocessing technique for 
choosing an initial set of agents. Agents with higher 
reinforcement values have a higher probability of being 
selected than agents with lower reinforcement values. 
Voting is used as a post processing technique.  

 
2. Problems of NVP 



 
N-version programming suffers from the following 

problems: 
• There is no control specified for choosing which 

algorithms to function. 
• Simple voting is used, but nothing is specified to 

operate if the votes are tied. 
• There is no learning in N-version programming, i.e., 

a faulty algorithm after being discovered is allowed 
to participate in system functioning. 

• All of the versions do not communicate with one 
another or, in other words, they just execute the 
program and they have no knowledge about the other 
versions in the system 

• Modifications of N-version programming can solve 
the problem of faulty algorithm executions through 
reputation management, but if they always execute 
algorithms with higher reputations, then versions 
with lower reputation will face a starvation problem 

• Large amount of resources are consumed as all N-
versions are executed in parallel. 

 
 
3. Agent-based redundancy 
 

The above problems with N-version programming can 
be mitigated by wrapping the components with agents. In 
order to be efficient, a mechanism is needed to choose 
which agents work on which problems, and it must 
function reliably even when the agents are uncooperative. 
We classify each agent into one of three categories based 
on the role it plays. An agent can assume any of the three 
roles depending on the situation. 
Client agent: 
A client agent is an agent with a task that it needs to have 
performed. Using central reputation management it can 
directly select service provider agents to perform the task 
or using distributed reputation management it can select a 
friend agent to perform the task. 
Friend agent: 
A friend agent comes into action in distributed reputation 
management. A friend agent recommends a service 
provider agent to the client agent.  
Service provider agent: 
A service provider agent wraps an algorithm, which is 
capable of performing some task.  

In all forms of reputation management we simulated, 
execution starts with three distinct service providers 
selected using probabilistic agent selection and stops as 
soon as a consensus is reached. This method overcomes 
the problem of large resource consumption faced by 
NVP. 
 

3.1. Probabilistic agent selection 
 

This function selects an agent based on the 
reinforcement value.  There is a bandwidth of values for 
an agent to be selected.  This bandwidth is created in 
direct proportion with the reinforcement values of the 
agents. Maximum bandwidth is the sum of bandwidth of 
all the individual bandwidths. The random function 
generates a value with in this maximum bandwidth and 
corresponding agent is selected depending on the 
bandwidth to which this value belongs. 

The probabilistic function is: 
For each of client A’s friends fi, the probability P(fi) is 

P(fi) = reputationi / Sum of all reputations 
 

3.2. System configurations 
 

3.2.1. Configuration 1.  We collected algorithms from 25 
students. Each algorithm implements a doubly linked list, 
with methods to insert and delete objects and traverse the 
list. 
3.2.2. Configuration 2.  We hypothesized a set of 25 
algorithms, each with a different correctness percentage.  

 
3.3. Central reputation management 

 
In this scheme, the reputations of all agents are 

maintained centrally. A client agent knows about a 
service provider agent’s reputation through this central 
reputation structure. 

 
3.4. Experimental procedures 

 
Each algorithm is treated as an agent implemented as a 

Java thread. There are a total of 150 inputs (50 Integer 
types, 50 Floating types, and 50 String types). Each input 
is 100 instances of Integers, Floats, or Strings. Positive 
reinforcement is an increment of 1 for every correct 
operation of the agent. Negative reinforcement is a 
decrement of 1 for every wrong operation of the agent. 
Reinforcements are awarded through post-processing 
techniques. I used voting among the agents. All agents are 
given same reinforcement values to start with. But it can 
be modified by giving different reinforcement values 
depending on various factors like time complexity that 
each algorithm takes. We used a preprocessing technique 
for selecting an initial set of 3 agents, selected randomly 
based on the reinforcement values of the agents. Voting is 
done by comparing element values in a fixed position in 
all the lists. This fixed position is randomly generated. 
 
3.5. Distributed reputation management 
 



The correlation between trust and reputation is 
positive. So the first step to formalize trust is to formalize 
reputation. The formalization of reputation is restricted to 
a particular multiagent society because each society or an 
agent within a society has a different set of goals to be 
achieved. If an agent with the highest reputation transits 
to another group of multiagent systems it will have to re-
establish its reputation. If no central authorities exist, the 
only way agents can find trustworthy agents is by 
exchanging information with others to identify those 
whose past behavior has been untrustworthy. Finding 
agents that are trustworthy reduces to the problem of 
distributed reputation management [1]. 

 

Figure 1.  Central reputation management 
 
Each agent maintains a local reputation management 

function. Whenever it needs service provider agents to 
perform a task it contacts the agents recommended in its 
local profiles. These agents are termed friend agents to 
distinguish them from service provider agents. 

Distributed reputation management has several 
advantages over centralized management, as follows: 
1) Each agent can have its own reinforcement method  

2) Each agent can have different scales of evaluation 
3) It is scalable simply by adding more agents, although 

an increase in redundancy might yield degraded 
performance depending on the application domain. 

There are many ways of achieving distributed 
reputation management. We implemented two types of 
algorithms and compared the results. 

 
3.6. Algorithm 1 assumptions and procedure 

 
The client agent is chosen as agent number 1. Agent 1 

starts with friend agent’s list with an initial set of 5 
agents. There are two setups used for configuration 2. In 
setup 1, the friends of all agents are chosen explicitly, but 
in setup 2, the friends of all agents are chosen randomly. 
For setup 1, the friends of agent 1 are 6, 7, 8, 9, and 10. 
Each of these friend agents starts with an initial reputation 
of 1. From its local profiles, the client agent selects three 
friend agents randomly, where the agents with better 
reputations are more likely to be chosen. A service 
provider agent is selected randomly by each friend 
agent. In case a service provider agent is already selected, 
another agent is selected randomly until 3 different 
service providers are selected. 

If a service provider agent performs the task 
successfully, a positive reinforcement is given both to the 
agent selected and its referrer; if it fails, a negative 
reinforcement is given to the service provider and the 
referrer. If the agents disagree about their results and no 
result predominates, then the client agent contacts an 
additional friend agent through its probabilistic function. 
Positive reinforcement is incremented with 5 for every 
correct operation of the agent that is decided through 
voting. Negative reinforcement is decremented with 1 for 
every wrong operation of the agent. 

 
3.7. Algorithm 2 assumptions and procedure 
 

The client agent is chosen as agent number 1. Agent 1 
starts with friend agent’s list with an initial set of 5 agents   

Two setups are used for configuration 2 just as in 
algorithm 1. For setup 1, agent 1’s friends are 6, 7, 8, 9, 
and 10 and for setup 2 agent 1 chooses its friends at 
random. The client agent selects three friend agents from 
its local profiles using probabilistic function. Each friend 
agent selects its highest-ranked service provider agent. 
In case a service provider is already selected, the agent 
with the next best ranking is selected until 3 different 
service providers are selected. 

Problem Description

Client agent probabilistically
selects 3 initial agents

Agents perform task and
return results

Agents reinforced if no
exception generated

Agent results compared

Consensus?

Agents reinforced based on
agreement with consensus

Client agent probabilistically
selects another agent

No

Yes



 
Figure 2. Distributed reputation management in 

algorithm 1 
 

 
If an agent performs the task successfully, a positive 

reinforcement is given both to the agent selected and its 
referrer; if it fails, a negative reinforcement is given to the 
service provider and to the referrer. If the agents disagree 
about their results and no result predominates, then the 
client agent contacts an additional friend agent through its 
probabilistic function. The reputation is incremented by 5 
for every correct operation of the agent and decremented 
by 1 for every wrong operation. 

The main difference between algorithms 1 and 2 is in 
the way that service provider agents are selected. In the 
first algorithm, a probabilistic agent selection algorithm 
is used and in the second the agents with the best 
reputation are selected. 
 

4. Results 
 
4.1. Centralized reputation management 
configuration 1 
 

Among 25 taken algorithms, 5 fail. But when all 25 
algorithms are included in a robust software system, it 
achieves 100% correctness. So the fault in one algorithm 
can be compensated for by the remaining algorithms 
when a single robust system is built. 
 
4.2. Distributed reputation management  
4.2.1. Algorithm 1, Configuration 1.  (Table 1) The 
system is 100% correct Client agent 1 starts with 5 agents 
and increases its friend’s list to a maximum limit of 24. 
There is an even distribution of reputations for all the 
agents 
 
4.2.2. Algorithm 1, Configuration 2 (setups 1 and 2). 
(Table 2 and 3) The system is 96% to 100% correct. 
Client agent 1 starts with 5 agents and increases its 
friend’s list to a maximum limit of 24. There is an even 
distribution of reputations for all the agents 
 
4.2.3. Algorithm 2, Configuration 1. (Table 4) The 
system is 100% correct. The client agent 1 started with 5 
agents and increased its friend’s list to maximum limit of 
24. There is a clustering of reputations for only some 
agents. 
 
4.2.4. Algorithm 2, Configuration 2 (setups 1 and 2). 
(Table 5 and 6)   The system is 96% to 100% correct. 
Client agent 1 starts with 5 agents and increases its 
friend’s list to 18 after 100 service requests unlike in 
algorithm 1 where client agent 1 builds its friend’s list 
with the maximum number of agents available in the 
environment. There is a clustering of reputations for only 
some agents. 
 
4.3. Trade-offs between Algorithms 1 and 2 
 

• Algorithm 1 builds its local reputation list in less 
time than algorithm 2. 

• Algorithm 1 gives an even distribution of 
reputations among the local profiles of all the 
agents. 

• Algorithm2 generates a consensus with fewer 
service provider agents per service request than 
algorithm 1. 



 
Figure 3. Distributed reputation management in 

algorithm 2 
 

An attempt is awarded to a service provider agent if it 
tries to provide a service for a client and for a friend 
agent an attempt is awarded if it refers a service provider 
to a client.  A correct is awarded to a service provider if it 
succeeds in performing a task as judged by voting and for 
a friend agent if the service provider referred by it 
succeeds in performing the task. 
Correct Percentage = correct/attempted * 100 

Votes are the units of reputation. Votes are awarded to 
an agent for performing its role correctly. 
 
 
 
 
 
 
 

Table 1. Algorithm 1 – configuration 1 for client 
agent 1 with initial friends 6, 7, 8, 9 and 10.  This 

shows the friends of client 1 and their 
reputations after 150 service (doubly linked list) 

requests 
Friend Votes 
3    91 
12   86 
14    83 
18    82 
20    78 
16    78 
17    77 
22    74 
4   73 
21   68 
15   65 
23   60 
7   58 
24   55 
9   44 
10   41 
8   40 
6   40 
19   28 
2   3 
5   1 
11   1 
0   1 

 
 
Table 2: Algorithm 1 – configuration 2 and setup 

1 for client agent 1 with initial friends 6, 7, 8, 9 
and 10.  This shows the friends of client 1 and 

their reputations after 100 service requests. 
Friends Votes Attempted Correct % 
12 41 20 33.33% 
3 29 16 22.00% 
20 27 14 27.91% 
14 25 10 28.13% 
22 25 5 41.18% 
19 23 18 23.21% 
8 21 14 20.45% 
24 17 14 26.19% 
16 17 17 33.33% 
17 16 14 23.81% 
18 15 8 16.67% 
7 13 16 34.69% 
13 13 17 25.49% 
23 11 3 27.27% 
4 8 7 26.09% 
15 6 8 28.00% 



11 6 14 25.00% 
6 6 6 15.00% 
5 3 5 11.76% 
2 3 13 14.63% 
9 1 7 18.18% 
10 1 4 16.67% 
0 1 8 0.00% 
21 1 7 13.63% 

 
 
Table 3: Algorithm 1 – configuration 2 and setup 
2 for Client Agent 1 with initial friends 2, 7, 9, 4 
and 13.  This shows the friends of client 1 and 

their reputations after 100 service requests 
Friends Votes Attempted Correct % 
21 45 77 33.77% 
20 42 46 30.43% 
13 36 62 24.19% 
12 35 32 28.13% 
22 33 43 32.56% 
17 33 58 25.86% 
9 33 63 30.16% 
19 32 44 25.00% 
16 30 61 26.23% 
23 24 43 30.23% 
15 20 45 28.88% 
7 19 31 16.12% 
11 16 19 26.32% 
24 8 21 28.57% 
10 6 23 17.39% 
8 4 39 15.38% 
2 1 14 14.29% 
4 1 20 10.00% 
5 1 8 0.00% 
0 1 23 0.00% 
14 1 9 0.00% 
6 1 33 9.09% 
3 1 33 6.06% 
18 1 3 0.00% 

 
 
Table 4: Algorithm 2 – configuration 1 for client 
agent 1 with initial friends 6, 7, 8, 9 and 10.  This 

shows the friends of client 1 and their 
reputations after 150 service (doubly linked list) 

requests 
Friends Votes 
13  183 
18  182 
23  145 
14  141 
19  115 

24  100 
12  79 
22  63 
7  59 
20  47 
17  43 
4  31 
8  26 
16  25 
3  23 
9  21 
21  18 
6  9 
11  7 
15  6 
0  4 
10  1 

 
 
Table 5: Algorithm 2 – configuration 2 and setup 

1 for client agent 1 with initial friends 6, 7, 8, 9 
and 10.  This shows the friends of client 1 and 

their reputations after 100 service requests 
Friends Votes Attempted Correct % 
22 115 56 41.42% 
9 113 27 59.03% 
23 19 19 18.97% 
14 16 42 21.43% 
8 11 10 15.63% 
19 10 11 22.86% 
17 7 20 11.48% 
7 6 4 14.29% 
12 5 3 11.11% 
24 5 6 15.00% 
2 5 5 29.41% 
11 4 6 27.77% 
6 1 1 0.00% 
10 1 0 0.00% 
18 1 4 15.39% 
13 1 14 9.52% 
0 1 4 8.33% 

 
 
Table 6: Algorithm 2 – configuration 2 and setup 
2 for client 1 with initial friends 16, 11, 24, 13 and 

3.  This shows the friends of client 1 and their 
reputations after 100 service requests 

Friends Votes Attempted Correct % 
11 58 81 56.79% 
24 46 143 37.76% 
21 35 81 30.86% 
16 32 50 34.00% 



23 11 48 29.17% 
9 6 76 14.47% 
5 6 39 23.08% 
22 3 65 23.08% 
14 1 16 25.00% 
13 1 6 0.00% 
3 1 5 20.00% 
0 1 7 0.00% 
18 1 10 0.00% 
4 1 18 5.56% 
8 1 3 0.00% 
19 1 3 0.00% 
20 1 16 18.75% 

 
 
4.4. Effect of redundancy 
 

How much redundancy is needed depends on the 
application domain, for example: 
 
4.4.1. An e-commerce system.  There should be as much 
redundancy as possible. Increase in redundancy is not 
responsible for performance degradation as our system 
starts with 3 service provider agents and, if consensus is 
not achieved, then a fourth service provider agent is 
selected, and so on. Hence it does not matter if there are 
100 or a billion agents in the society. The versions of 
software might have the same functionality but they are 
not identical. For example, agent 1 and agent 2 both sell 
goods. One might have expertise in selling books in 
which client A has an interest and one might have 
expertise in selling computers in which client B has an 
interest. In distributed reputation management, an agent 
can decide how many friend agents to keep track of. It 
might keep only 40 agents as friends, while another agent 
might keep 10,000 agents as friends. This is what we term 
as scalability in distributed reputation.  All agents need 
not know about all agents. It is up to how an agent is 
implemented. Increased redundancy would affect a 
centralized reputation system as it maintains a global 
structure to store all reputations. 
 
4.4.2. An operating system.  Identify the critical points 
where a failure might occur. The number of versions of 
algorithms at the critical points depends on the budget, 
manpower, the risk at that point, etc.   
 
 
5. Conclusion 

We have shown that robustness is increased through 
redundancy, which is achieved through multiagent 
systems. The resulting system is robust and reliable. 
Selecting a centralized or distributed reputation 

management scheme depends upon the application 
domain. 

The future work for this domain is extensive, and 
should be focused on 
• What should be the number of algorithms? 
• On what does the number of algorithms depend? 
• What values of positive reinforcement and negative 

reinforcement are optimal? 
 
 
6. References 
 
[1] Bin Yu and Munindar P. Singh “An Evidential Model 
of Distributed Reputation Management,” AAMAS, pp. 
294-301, July 2002. 
 [2] V. Bharathi, “N-Version programming method of 
Software Fault Tolerance: A Critical Review,” 721302, 
December 28-30, 2003. 
[3] Wilfredo Torres-Pomales, “Software Fault Tolerance: 
A Tutorial”, NASA/TM-2000-210616, pp. 66, October 
2000. 
[4] Michael N. Huhns, Vance T. Holderfield, and Rosa 
Laura Zavala Gutierrez, “Achieving Software Robustness 
via Large-Scale Multiagent Systems Vol. 2603, Berlin, 
pp. 199-215, 2003. 
 [5] Mladen A. Voukl, “An Empirical Evaluation of 
Consensus Voting and Consensus Recovery Block 
Reliability in the Presence of Failure Correlation*” 
Journal of Computer and Software Engineering, Vol. 
1(4), pp. 367-388, 1993. 
[6] Jonathan Carter, Elijah Bitting, and Ali A. Ghorbani, 
“Reputation formalization for an information Sharing 
multiagent system,” vol. 18, no. 4, pp. 515–534, 2002. 
[7] Leslie P. Kaelbling and Michael L. Littman, 
“Reinforcement Learning: A Survey,” Journal of 
Artificial Intelligence Research, vol. 4, pp. 237-285, 
1996. 
[8] Sandip Sen and Neelima Sajja, “Selecting service 
providers based on reputation,” AAAI Workshop 2002 
WS-02-10 ISBN 1-57735-163-0. 
 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


