Interaction-Oriented Programming

Michael N. Huhns

Department of Computer Science and Engineering, University of South Carolina
Columbia, SC 29208 USA

huhns@sc.edu

Abstract. This paper describes a new approach to the production of robust soft-
ware. We first motivate the approach by explaining why the two major goals
of software engineering—correct software and reusable software—are not be-
ing addressed well by the current state of software practice. We then describe a
methodology based on active, cooperative, and persistent software components,
i.e., agents, and show how the methodology produces robust and reusable soft-
ware. We derive requirements for the structure and behavior of the agents, and
report on preliminary experiments on applications based on the methodology. We
conclude with a roadmap for development of the methodology and ruminations
about uses for the new computational paradigm.

1 Introduction

Computing is in the midst of a paradigm shift. After decades of progress on represen-
tations and algorithms geared toward individual computations, the emphasis is shifting
toward interactions among computations. The motivation is practical, but there are ma-
jor theoretical implications. Current techniques are inadequate for applications such
as ubiquitous information access, electronic commerce, and digital libraries, which in-
volve a number of independently designed and operated subsystems. The metaphor of
interaction emphasizes the autonomy of computations and their ability to interface with
each other and their environment. Therefore, it can be a powerful conceptual basis for
designing solutions for the above applications.

Unfortunately, the field of software engineering has been progressing slowly. This
should not be surprising, for three reasons:

1. Software systems are the most complicated artifacts people have ever attempted to
construct

2. Software systems are (supposedly) guaranteed to work correctly only when all er-
rors have been detected and removed, which is infeasible in light of the above
complexity

3. The effect of an error is unrelated to its size, i.e., a single misplaced character out
of millions can render a system useless or, worse, harmful.

1.1 Progress in Software Engineering

Software engineering concerns both the process of producing software and the software
that is produced. The major goal for the software is that it be correct, and the major goal

for the process is that it be conducted efficiently. One fundamental approach to meeting
these goals is to exploit modularity and reuse of code. The expectations are that small
modules are easier to debug and verify, and therefore more likely to be correct, that
small modules will be more likely to be reused, and that reusing debugged modules
is more efficient than coding them afresh. A few examples of software engineering
practice based on this approach are the following [5]:

— Parameterized subroutines provide code reuse within an application

— Libraries of subroutines encourage code sharing across applications

— Object-oriented methods allow tailoring of library routines via inheritance and
polymorphism

— Client/server paradigms, such as the world-wide web, ODBC, OLAP, and SQL
databases, permit sharing of data across platforms

— Remote procedure calls, such as Sun’s Java RMI and Microsoft’s COM, enable
code to be shared across platforms

— Transaction processors, such as Tuxedo and Encina++, enable transactions to be
shared

— Distributed object technologies, such as OMG CORBA and Microsoft DCOM, al-
low sharing of tailorable code across platforms.

Programming paradigms have evolved from machine language in the 1950’s, pro-
cedural programming in the 1960’s, structured programming in the 1970’s, and object-
based and declarative programming in the 1980’s. In the 1990’s, methods for structuring
collections of objects are being developed, including frameworks, design patterns, sce-
narios, and protocols.

However, software has not kept pace with the increased rate of performance for
processors, communication infrastructure, and the computing industry in general [30].
Whereas processor performance has been increasing at a 48% annual rate and network
capacity at a 78% annual rate, software productivity has been growing at a 4.6% annual
rate and the power of programming languages and tools has been growing at an 11%
annual rate. CASE tools, meant to formalize and promote software reuse, have not been
widely adopted [19]. By a different metric, the industry standard for good commercial
software is approximately six defects per KLOC (thousand lines of code), and this rate
has held constant for decades [13].

Table 1. Features of Programming Languages and Paradigms (from [30])

Concept Procedural Language Object Language Multiagent Language

Abstraction Type Class Society

Building Block Instance, Data Object Agent

Computation Model| Procedure/Call Method/Message Perceive/Reason/Act

Design Paradigm Tree of Procedures Interaction Patterns ~ Cooperative Interaction

Architecture Functional Inheritance and Managers, Assistants,
Decomposition Polymorphism and Peers

Modes of Behavior | Coding Designing and Using Enabling and Enacting

Terminology Implement Engineer Activate

The procedural and declarative approaches to programming suffer from being pri-
marily line-at-a-time techniques, with a basis in functional decomposition. Object tech-
nology improves these by replacing decomposition with inheritance hierarchies and
polymorphisms. It enables design reuse of larger patterns and components. However,
inheritance and polymorphism are just as complex and error prone as decomposition,
and the great complexity of interactions among objects limits their production and use
to a small community of software engineers. By focusing on encapsulating data struc-
tures into objects and the relationships among objects, it supports a data-centric view
that makes it difficult to think about sequences of activity and dataflow. Scenarios over-
come this difficulty by depicting message sequences and threads of control, but they
are not well supported by current object languages. Table 1 summarizes the major fea-
tures of existing software paradigms, and the features promised by the multiagent-based
approach described below.

1.2 A New Software Paradigm

We believe it is time to consider a completely different approach to software systems.
We propose one based on the (intentionally provocative) recognition that

— errors will always be a part of complex systems

— error-free code can at times be a disadvantage

— where systems interact with the complexities of the physical world, there is a con-
comitant power that can be exploited.

We suggest an open architecture consisting of redundant, agent-based modules. The
appropriate analogy is that of a large, robust, natural system. We motivate our approach
by means of the following four examples.

Example 1: Avoiding Deadlocks and Livelocks. Sometimes, when two people ap-
proach each other on a narrow sidewalk, they move from side-to-side in unison a few
times until they find a way to pass. Now, imagine two robots in a similar situation: if
they are each programmed identically and accurately, then they might move in unison
and be deadlocked forever. If, however, one had a small flaw in its programming, then
it would eventually act differently and break the deadlock.

This example illustrates a key concept: errors can sometimes make a system more
robust. Individual components do not have to be perfect, if there are a sufficient number
of them, if their capabilities are basically sound, and if their responsibilities overlap.

Such deadlock behavior is actually quite common—it can occur anytime two pro-
cesses access a common resource, e.g., when two applications attempt to update a
database, bid at an auction, or communicate over a channel at the same time. When
the possibility of the deadlock is known in advance, a solution is to deliberately intro-
duce uncertainty into one or both of the processes; this is the basis for conflict resolution
in the CSMA/CD Ethernet protocol.

Fig. 1. Robots meeting in a hallway might move in unison and livelock”, unless one operates
differently than the other

Example 2: Forming a Circle. Consider asking a group of children to form a circle.
This they will be able to do, relatively independent of the number of children, their
sizes, and their ages, without requiring any further directions as to who should stand
where. The formation of the circle will be robust with respect to the removal or addition
of children. It will even accommodate a few children who do not understand the request.
This “circle algorithm” succeeds because each element of the solution is intelligent and
autonomous, and possesses basic knowledge of the problem domain. Each element is
not, however, required to be perfect.

Contrast this with a conventional approach to developing software for arranging
items in a circle. A programmer would first define classes for the items, with attributes
describing their size and shape. The programmer would then construct a central control
module that, using trigonometry, would compute the precise locations for each of the
items. The control module would have to be written to accommodate an arbitrary num-
ber of items having a variety of sizes and shapes. Changing any one of the parameters
would require the control module to recompute the locations of all items. More signifi-
cantly, changing the way in which the shape or size of an item is defined would require
the control module to be rewritten. (For example, if the control module expected items
to be defined in terms of their length and width, then it would have to be modified to
handle items defined in terms of their radius.)

Example 3: Navigating on Mars. Consider an autonomous vehicle roaming on Mars.
There is a very simple algorithm that enables the vehicle to maneuver around obstacles:
when an obstacle is encountered, the vehicle

1. Backs up 1 meter

2. Turns clockwise 90 degrees

3. Moves forward 1 meter

4. Turns counterclockwise 90 degrees
5. Goes forward on its original course.

Although in theory it appears that the vehicle can easily become trapped, in practice
the vehicle is able to wriggle through any configuration of obstacles that it can physi-
cally fit between, because it cannot move exactly 1 meter or turn exactly 90 degrees. Its
errors in these motions give it the variability it needs to move eventually in just the right

Fig. 2. Children (and autonomous agents) can be a robust circle-forming algorithm

way to go around an obstacle. Surprisingly, attempts to increase its precision not only
increase its complexity, but also make it more likely to become trapped. In essence,
reducing errors can make the system less robust.

Example 4: Business Software Objects—Avoiding a Pay Cut. As amore general and
fundamental example, most business software components are intended to be models
of some real object within the business, such as an employee. A problem is that, unlike
the entities they represent, conventionally implemented components are passive. Why
is this a problem? If someone accidentally reduced the salary of an employee by 50%,
a conventional software component would not protest. Like real employees, agents im-
plemented as components with the extra ability to take action would not allow such
accidents. As we describe next, agents can also do a lot more.

2 Interaction-Based Software Development

The behavior of any system depends on its construction and the environment in which
it operates. When the system contains a number of components that interact with each
other and a complex environment, the behavior can be difficult to predict and control.
Traditional software interfaces are rigid. Often the slightest error in the implementa-
tion of a component can have far-reaching repercussions on the behavior of the entire
system. However, the output of a component may be erroneous because of its mal-
functioning, its environment being out of its design range, or an erroneous input from

Fig. 3. A robot navigating on Mars can wriggle between obstacles via a very simple algorithm
that takes advantage of errors in its movement through the environment

another component. Traditional approaches for software or hardware fault tolerance are
rigid in that they use fixed means, e.g., averaging or voting, to correct errors.

By contrast, we are developing an approach in which the interactions among com-
ponents are defined in a more robust manner using higher-level abstractions such as
social commitments and team intentions. These abstractions enable us to design the
components to be more flexible toward their inputs and outputs. Moreover, in real-
life situations, a component may be forced to release results that are almost certainly
erroneous—it may lack the time and resources to await definite inputs and process
them properly. Our approach can handle these situations naturally, whereas traditional
approaches are incapable of even representing such situations.

Our approach presupposes that the components are able to enter into social com-
mitments to collaborate with others, to change their mind about their results, and to
negotiate with others. They must be long-lived (to even detect errors that manifest later
in the execution) and persistent (to resolve them). In other words, the components are
interacting agents functioning in teams. The agents can detect not only errors, but also
opportunities in general. They can volunteer to take advantage of those opportunities,
to form teams, negotiate solutions, and enact them in a persistent manner. One risk with
such systems is that their persistence may get them into livelocks where interactions
prevent progress. It is essential that the agents be able to explore their way out of live-
locks. Interestingly, “errorful” behavior by some members of the team can facilitate this
exploration, especially in complex environments where the concurrently executing mix
of agents is determined dynamically.

Our approach is based a number of important tenets:

Interaction Persistent action

Teamwork founded on social commitments|Negotiation

Exploration Error tolerance and exploitation
Although some of these tenets are shared with some recent approaches, e.g., aspect-

oriented and agent-oriented programming, no existing approach captures all of them. It

appears desirable to try to exploit their synergistic mix.

2.1 Requirements for a New Class of Applications

Thanks to ongoing advances in computer systems, new classes of applications are evolv-
ing. These applications require a number of important properties beyond traditional
approaches:

Disintermediation (the direct association between users and their software [40]). Pro-
viding a user with seamless access to and interaction with remote information, applica-
tion, and human resources requires a distributed active-object architecture [51].

Dynamic composability and execution. A system should execute as a set of distributed
parts, but the resources required will be mostly unknown until run-time: this requires
an infrastructure to enable their discovery and composition as needed.

Interaction. There might be subtle and critical patterns of interaction among the com-
ponents, but the specific interactions may be unknown until run-time, and may vary:
this requires that the patterns of interaction be explicitly represented and reasoned with.

Error tolerance and exploitation. As the deployed systems become increasingly com-
plex, they should not only tolerate, but where possible exploit, errors in their compo-
nents.

Two major convergences now give us the means to address the above requirements.
First, large information environments dealing not only with information, but also with
the physical world are available to provide crucial computing and communication re-
sources, as well as ready contact with reality. Second, technical advances in computer
science provide a foundation for agent architecture and languages. These advances go
hand-in-hand, because the existence of the expanding infrastructure changes the trade-
offs in carrying out the dictates of the science.

A recent computing paradigm is based on Java, and the ability it provides for users
and applications to download the specific functionality they want at the moment they
request it. In particular, Java Beans possess two interfaces: one that governs the in-
teraction of a bean with its environment at run-time, and a second that describes the
behavior of the bean to developers at program-creation or compile time. DCOM pro-
vides a similar capability for COM objects. Such capability is leading to the rise of a
software-component industry, which will produce and then distribute on demand the
components that have a users’ desired functionality [Yourdon 1996]. Each user can be
presented with a unique customized environment. However, because of this uniqueness,
how can component providers be confident that their components will behave properly?

This is a problem that can be solved by agent-based components that actively cooper-
ate with other components to realize the user’s goals and that express their behavior in
terms of their intentions and commitments.

2.2 Agent-Based Software

Programming based on teams of agents will build on results generated by a large num-
ber of researchers. In particular, efforts under the DARPA Intelligent Integration of
Information program for developing mediators, wrappers, and agent communications
form one of the foundations for our work. We extend the efforts into a complete pro-
gramming paradigm with a formal semantics. Our extensions and formal semantics are
based on the work on agent-oriented programming by [41], [53], and [21].

A wide variety of software programs have been developed recently that are charac-
terized as software agents [17]. One category of such agents focuses on the interaction
between a user and a computing environment. A second category of agent-based soft-
ware is focused on the interaction among computing agents. The basic issues addressed
concern interoperability among geographically distributed agents executing on hetero-
geneous platforms. There are two different approaches for communication among the
agents. The procedural scripting approach causes execution of a remote task by sending
a procedural script for interpreted execution at the remote site. Examples of this ap-
proach are Telescript and Tcl [20]. The declarative approach takes the view that only a
declarative description of the task should be sent to the remote site. An example of this
approach is ACL [11].

What we are proposing differs from current work in software agents in that

We are not researching new agent capabilities per se

We are not developing an agent-based system for some new application domain
We are investigating how agents can be the fundamental building blocks for the
construction of general-purpose software systems, with the anticipated benefits of
robustness and reuse

We are characterizing agents in terms of mental abstractions, and multiple agents
in terms of their interactions, as follows.

Mental abstractions for agents are beliefs, knowledge, desires, goals, and intentions,
whereas multiagent abstractions are

Social: about collections of agents
Organizational: about teams and groups
Ethical: about right and wrong actions
Legal: about contracts and compliance

These abstractions matter because modern applications go beyond traditional meta-
phors and models in terms of their dynamism, openness, and trustworthiness. They
involve virtual enterprises and electronic commerce, such as in manufacturing supply
chains and autonomous logistics, community-ware and social interfaces, and problem
solving by collaborative groups. The architecture of future information systems will be
agent-oriented, as shown in Figure 4.

Users g3 &
ENAhH

=y

Bl
é%é%

Multimedia
Resources

&5

Fig.4. Architecture for an agent-oriented information system, indicating collaborations among
users, applications, and resources

Techniques for creating and maintaining societies of autonomous active objects
(agents) will be useful not only for large open information environments, but also for
large open physical environments. For example, new efficiencies in logistics could re-
sult from considering each supply item being deployed to be intelligent (implemented
via a “smart card”’) with a local goal to reach a destination and an ability to take advan-
tage of a global distribution system.

Such information environments are too complex to be centrally developed or con-
trolled. The only alternative is for intelligence to be embedded at many places to provide
distributed management. Each locus of intelligence is an autonomous agent that must
be long-lived (to execute unattended for long periods), adaptive (to explore and learn
about its environment), and social (to interact with others to leverage knowledge and
capabilities, so as to achieve individual as well as collective goals). Composed as they
are of active social entities, multiagent systems are ideally suited to the challenges of
software development described above. Teams, with different members playing specific
roles and cooperating to achieve some higher end, emphasize the social and organiza-
tional aspects of multiagent systems.

2.3 System Redundancy and Adaptation

In some circumstances, robustness in the presence of errors is governed by redundancy.
That is, if each software module is deemed to be behaving either correctly or incor-
rectly, then two modules with the same intended functionality are sufficient to detect an
error in one of them, and three modules are sufficient to correct the incorrect behavior.
Fundamentally, the amount of redundancy required is well specified by information and
coding theory.

HP Labs has built a massively parallel computer with 220,000 known defects, but it
still yields correct results [8]. As long as there is sufficient communication bandwidth
to find and use healthy resources, it can tolerate the defects. Allowing so many defects
enables the computer to be built very cheaply.

Similarly, a National Research Council committee last year, in addressing the prob-
lem of software security, published a report called Trust in Cyberspace, which advo-
cated the “Theory of Insecurity.” The theory suggests that acceptably secure systems
can be built out of components that have known vulnerabilities and security holes [25].

When software modules exhibit more complex behavior, then deeper reasoning is
needed to determine whether or not the behavior is correct. This requires agents to
communicate their intentions and commitments. They can then be monitored to deter-
mine if they have acted according to their intentions and have kept their commitments.
Activating a group of agents then becomes a type of nondeterministic programming.

Self-adaptive software [29] evaluates its own behavior and changes the behavior
when the evaluation indicates that it is not accomplishing what the software is intended
to do, or when better functionality or performance is possible. This implies that the soft-
ware has alternative ways of accomplishing its purpose, along with enough knowledge
of its construction and awareness of its current operation to enable effective changes to
be made at runtime. Self-adaptive software requires components to maintain models of
themselves and the other components with which they might interact [23]. In a control-
system metaphor, runtime software is treated like a factory, with inputs and outputs and
a monitoring and control facility that manages the factory to improve its performance
[27].

Intentional programming attempts to coordinate the cooperation of independently
developed abstraction objects, termed intentions. Intentions are not executed at runtime,
but are called at programming time [42].

2.4 Agent Capabilities

Figure 4 illustrates how agents might represent, i.e., act on behalf of, various kinds of
passive or non-agent like components and entities in an environment, and how they
might interact to provide next-generation services to users and applications. Success in
this requires that

— Agents stay aware of their own roles, capabilities, and weaknesses by maintaining
a model of themselves

— Agents stay aware of their team by maintaining models of its members and their
roles

— Agents maintain models of other teams in which they might play a role

— Agents learn from interactions about the goals, capabilities, and intentions of other
agents

— Agents rely on commitments from other agents, and maintain commitments to other
agents.

2.5 Ontologies: Modeling Objects, Resources, and Agents

A key to enabling agents to interact productively is for them to construct and maintain
models of each other, as well as the passive components in their environment. Unfortu-
nately, the agents’ models will be mutually incompatible in syntax and semantics, not
only due to the different things being modeled, but also due to mismatches in underly-
ing hardware and operating systems, in data structures, and in usage. In attempting to
model some portion of the real world, information models necessarily introduce sim-
plifications that result in semantic incompatibilities.

Ontologies appear to be well suited for reconciling heterogeneous semantics. We
have been developing mediating mechanisms based on domain-specific ontologies to
yield the appearance and effect of semantic homogeneity among agents at the knowl-
edge level [34]. However, if there are n entities in the environment, then each would
need a model of each of the other entities, resulting in n(n — 1)/2 models that must
be maintained. This is infeasible for large domains. We solve this via two means. First,
agents maintain and advertise models of themselves, resulting in a total of n models.
Second, we consider the source of the models. How should one agent represent an-
other, and how should it acquire the information it needs to construct a model in that
representation?

This has, we believe, a simple and elegant answer: the agent should presume that
unknown agents are like itself, and it should choose to represent them as it does itself.
Thus, as an agent learns more about other agents, it only has to encode any differences
that it discovers. The resultant representation can be concise and efficient, and has the
following advantages:

— An agent has a head start in constructing a model for a just-encountered agent.

— An agent has to manage only one kind of model and one kind of representation.

— The same inference mechanisms it uses to reason about its own behavior can reason
about the behaviors of other agents; an agent trying to predict what another will do
has only to imagine what it itself would do in a similar situation.

— As information about other agents is acquired through observations and interac-
tions, models of them can be updated, and will diverge from the default.

We portray an agent as a rational decision-maker that perceives and interacts with
its environment. Agents are rational in the context of all other agents, because they are
aware of the other agents’ constraints, preferences, intentions, and commitments and
act accordingly.

3 Semantics

If agents are constructed modularly, the challenge is in specifying and generating the
right interactions. We term our approach interaction-oriented programming (IOP), and

include in it high-level abstractions and techniques that capture the structure of the
desired interactions. We identify three layers of IOP, from lower to upper:

— Coordination, which enables the agents to operate in a shared environment

— Commitment, which reflects the agents’ obligations to one another, capturing their
social structure and the norms governing their behavior

— Collaboration, which supports reaching agreement, forming and maintaining teams,
and performing complex joint activities.

Informal concepts, such as competition, often have variants that may be classified
into different layers. For example, bidding in an auction requires no more than coordi-
nation, whereas commerce involves commitments, and negotiation involves protocols
for collaboration.

Pieces of the above layers have been studied in distributed computing, databases,
and distributed artificial intelligence (DAI), but usually not from a programming per-
spective. The distributed computing and database work focuses on narrower problems
of synchronization, and eschews high-level concepts such as social commitments. Thus
it is less flexible, but more robust, than the DAI work. Our contribution will be in en-
hancing and synthesizing ideas into a framework that is rigorous yet flexible.

4 Preliminary Results and Discussion

In preliminary experiments, we have constructed a large group of agents, each imple-
mented as a concurrently executing Java thread and interacting through a base class
environment. The agents each have an understanding of what a circle is, what it means
to be part of a circle, where the nearest agents are located, and an estimate of how close
the group is to being in a circle. The agents have the ability to reason about where they
should be on a circle and the direction they should move to get there. They also have the
ability to help move nearby agents that do not seem to be located or moving properly.
Into this environment, we have introduced a few agents that do not have the ability to
move properly or are stationary. The group overcomes this and produces an acceptable
circle. We have anecdotal evidence, via one comparison, that such an implementation
can be constructed more rapidly and robustly than a conventional object-oriented im-
plementation in C++.

The Team-Oriented Paradigm

We propose an open architecture consisting of multiple, redundant, agent-based com-
ponents interacting via a verified kernel. To program and activate a team will require
a resolution of who (role) will do what (subtask), when (coordination), how (capabili-
ties), where (resources or location), and why (team plan and external requirements). In
addition, there are the aggregate matters of how many agents per role and how much
resources are needed. The main steps are agent creation (compilation), team configura-
tion (linkage), and team activation (execution).

The above matters presuppose an agent factory with rich protocols for discovery and
software configuration that inherently accommodate flexibility through negotiation. In

a general setting, the agents could join and activate teams with minimal programmer
intervention. Their negotiated commitments to one another would lead to coordinated
and coherent action by the entire team even as the membership of the team evolves and
some members behave imperfectly.

We believe that implementing software as a large number of intelligent, but not
perfect agents will be successful. Our approach imposes requirements on the structure
and behavior of the agents, and facilitates a formal semantics. We will supply the meta-
model, architecture, and formal semantics to realize this approach. Prototypes are being
developed using an iterative process called User-Centered Software Engineering.

5 Conclusion

We have proposed and begun investigation of a new software development paradigm—a
cooperative paradigm—based on interacting agents, active objects, and active wrappers
of legacy components. The resultant methodology and language, interaction-oriented
programming, represent a fundamental extension of the earlier paradigms, with greater
expressive power, different conceptual foundations, such as the beliefs held by the com-
ponents, and new modeling techniques.

Techniques for creating and maintaining societies of autonomous active objects
(agents) will be useful not only for large open information environments, but also for
large open physical environments. For example, such techniques would yield new effi-
ciencies in logistics: by considering each item of material to be an intelligent entity re-
siding on a “smart card” whose goal is to reach a destination, a distribution system could
manage more complicated schedules and surmount unforeseen difficulties. Languages
are required for creating and maintaining such environments—an interaction-oriented
programming language satisfies this requirement.

Just as today almost anyone can create a web page and contribute information to
the Web, so the proposed paradigm will enable anyone to create and contribute cus-
tomized components to software applications. We are in the midst of a trend toward
disintermediation—the direct association between users and their software—that en-
ables people to be responsible for their own computing, often without formal training
or the support of professional intermediaries. This is healthy, but an infrastructure such
as we propose is needed that can

— Analyze component interoperability and then cope with incompatibility
— Support the dynamic reconfiguration of loosely confederated processes and agents

— Monitor and manage persistent autonomous processes (extending the notion of dae-
mons).

It is claimed that the major impediment to the realization of component-based de-
velopment is quality of the components [32]. The proposed paradigm mitigates this
through massive redundancy, leading to increased robustness. (A system that is stuck
and making no progress can try one of its less popular alternatives.)

References

10.

11.

12.

13.
14.

15.

16.

17.

18.

19.

20.
21.

22.

Jean-Marc Andreoli, Paolo Ciancarini, and Remo Pareschi, “Interaction Abstract Machines,”
in Gul Agha, Peter Wegner, and Akinori Yonezawa, eds., Research Directions in Concurrent
Object-Oriented Programming, MIT Press, Cambridge, MA, 1993, pp. 257-280.

Antoine Beugnard, Jean-Marc Jezequel, Noel Plouzeau, and Damien Watkins, “Making
Components Contract Aware,” IEEE Computer, Vol. 32, No. 7, July 1999, pp. 38-45.

Fred P. Brooks, The Mythical Man-Month, Anniversary Edition, Addison-Wesley, Reading,
MA, 1995.

F-C. Cheong, “OASIS: An Agent-Oriented Programming Language for Heterogeneous Dis-
tributed Environments,” Ph.D. Thesis, University of Michigan, 1992.

Adam Cheyer, “Agent-Based Interoperation,” CSLI Seminar Series on Intelligent Agents,
Stanford University, April 27, 1995.

Cynthia Della Torre Cicalese and Shmuel Rotenstreich, “Behavioral Specification of Dis-
tributed Software Component Interfaces,” IEEE Computer, Vol. 32, No. 7, July 1999, pp.
46-53.

Helder Coelho, Luis Antunes, and Luis Moniz, “On Agent Design Rationale,” in Proceedings
of the XI Simposio Brasileiro de Inteligencia Artificial (SBIA), Fortaleza (Brasil), October
17-21, 1994, pp. 43-58.

Peter Coffee, “Perfect Computers Cost Too Much,” PC Week, July 6, 1998, p. 54.

Philip R. Cohen and Hector J. Levesque, “Persistence, Intention, and Commitment,” in In-
tentions in Communication, Philip R. Cohen, Jerry Morgan, and Martha E. Pollack, eds.,
MIT Press, 1990.

Les Gasser, “Social conceptions of knowledge and action: DAI foundations and open systems
semantics,” Artificial Intelligence, Vol. 47, 1991, pp. 107-138.

Michael Genesereth and Stephen Ketchpel, “Software Agents,” Communications of the
ACM, Vol. 37, No. 7, 1994, pp. 48-53.

R. Goodwin, “Formalizing Properties of Agents,” Technical Report CMU-CS-93-159, De-
partment of Computer Science, Carnegie-Mellon University, 1993.

Les Hatton, “Does OO Sync with How We Think?” IEEE Software, May 1998, pp. 46-54.
Michael N. Huhns, “Agent Teams: Building and Implementing Software,” IEEE Internet
Computing, Vol. 4, No. 1, January/February 2000, pp. 90-92.

Michael N. Huhns, “Multiagent-Oriented Programming,” Intelligent Agents and Their Po-
tential for Future Design and Synthesis Environments, Ahmed K. Noor and John B. Malone,
editors, NASA Langley Research Center, Hampton, VA, February 1999, pp. 215-238.
Michael N. Huhns and Munindar P. Singh, “A Multiagent Treatment of Agenthood,” Applied
Artificial Intelligence: An International Journal, Vol. 13, No. 1-2, January-March 1999, pp.
3-10.

Michael N. Huhns and Munindar P. Singh, eds., Readings in Agents, Morgan Kaufmann
Publishers, Inc., San Francisco, CA, 1997.

Michael N. Huhns, editor, Distributed Artificial Intelligence, Pitman/Morgan Kaufmann,
1987.

Juhani Tivari, “Why Are CASE Tools Not Used?” Communications of the ACM, Vol. 39, No.
10, October 1996, pp. 94-103.

K. Indermaur, “Baby Steps,” Byte, March 1995, pp. 97-104.

Nicholas R. Jennings, “On Agent-Oriented Software Engineering,” IEEE Internet Comput-
ing, Vol. 3, No. 4, 1999, pp. XXX.

Nicholas R. Jennings, “Commitments and conventions: The foundation of coordination in
multi-agent systems,” The Knowledge Engineering Review, Vol. 2, No. 3, 1993, pp. 223—
250.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

Gabor Karsai and Janos Sztipanovits, “A Model-Based Approach to Self-Adaptive Soft-
ware,” IEEE Intelligent Systems, Vol. 14, No. 3, May/June 1999, pp. 46-53.

Elizabeth A. Kendall, Margaret T. Malkoun, and Chong Jiang, “Multiagent System Design
Based on Object-Oriented Patterns,” Journal of Object-Oriented Programming, June 1997,
pp- 41-47.

Stephen Kent, “An Interview with Stephen Kent,” IEEE Spectrum, Vol. 37, No. 1, January
2000, p. 37.

David Kinny and Michael Georgeff, “Modelling and Design of Multi-Agent Systems,” in J.P.
Muller, M.J. Wooldridge, and N.R. Jennings, eds., Intelligent Agents III — Proceedings of the
Third International Workshop on Agent Theories, Architectures, and Languages, Springer-
Verlag, Berlin, 1997, pp. 1-20.

Mieczyslaw M. Kokar, Kenneth Baclawski, and Yonet A. Eracar, “Control Theory-Based
Foundations of Self-Controlling Software,” IEEE Intelligent Systems, Vol. 14, No. 3,
May/June 1999, pp. 37-45.

David Krieger and Richard M. Adler, “The Emergence of Distributed Component Platforms,”
IEEE Computer, Vol. 31, No. 3, March 1998, pp. 43-53.

Robert Laddaga, “Creating Robust Software through Self-Adaptation,” IEEE Intelligent Sys-
tems, Vol. 14, No. 3, May/June 1999, pp. 26-29.

Ted Lewis, “The Next 10,0002 Years: Part I1,” IEEE Computer, May 1996, pp. 78-86.
David L. Martin, Adam J. Cheyer, and Douglas B. Moran, “The Open Agent Architecture:
A framework for building distributed software systems,” Applied Artificial Intelligence, Vol.
13, No. 1-2, 1999, pp. 92-128.

Bertrand Meyer and Christine Mingins, “Component-Based Development: From Buzz to
Spark,” IEEE Computer, Vol. 32, No. 7, July 1999, pp. 35-37.

Robin Milner, “Elements of Interaction,” Communications of the ACM, Vol. 36, No. 1, Jan-
vary 1993, pp. 78-809.

Allen Newell, “The knowledge level,” Artificial Intelligence, Vol. 18, No. 1, 1982, pp. 87—
127.

Cherri M. Pancake, “The Promise and the Cost of Object Technology: A Five-Year Forecast,”
Communications of the ACM, Vol. 38, No. 10, October 1995, pp. 33-49.

M. J. Pont and E. Moreale, “Towards a Practical Methodology for Agent-Oriented Software
Engineering with C++ and Java,” Leicester University Technical Report 96-33, December
1996.

C.V. Ramomoorthy and Wei-tek Tsai, “Advances in Software Engineering,” IEEE Computer,
Vol. 29, No. 10, October 1996, pp. 47-58.

Anand S. Rao and Michael P. Georgeff, “‘Modeling rational agents within a BDI-
architecture,” in Proceedings of the International Conference on Principles of Knowledge
Representation and Reasoning, 1991, pp. 473-484.

D. Riecken, “Introduction to the Special Issue on Intelligent Agents,” Communications of
the ACM, Vol. 37, No. 7, 1994, pp. 18-21.

Mary Shaw, “Outlook on Software System Design,” IEEE Computer, Vol. 31, No. 1, January
1998, p. 32.

Yoav Shoham, “Agent-Oriented Programming,” Artificial Intelligence, Vol. 60, No. 2, June
1993, pp. 51-92.

Charles Simonyi, “The Future is Intentional,” IEEE Computer, Vol. 32, No. 5, May 1999,
pp- 56-57.

Munindar P. Singh and Michael N. Huhns, ”Social Abstractions for Information Agents,” in
Intelligent Information Agents, Matthias Klusch, ed., Kluwer Academic Publishers, Boston,
MA, 1999.

Clement Szyperski, Component Software: Beyond Object-Oriented Programming, Addison
Wesley Longman, 1998.

45.

46.

47.

48.

49.

50.

51.

52.
53.

54.

55.

56.

Milind Tambe, David V. Pynadath, and Nicolas Chauvat, “Building Dynamic Agent Organi-
zations in Cyberspace,” IEEE Internet Computing, Vol. 4, No. 2, March/April 2000.

Jose M. Vidal and Edmund H. Durfee, “Learning Nested Agent Models in an Information
Economy,” Journal of Experimental and Theoretical Artificial Intelligence (special issue on
learning in distributed artificial intelligence systems), 1998.

Guijun Wang, Liz Ungar, and Dan Klawitter, “Component Assembly for OO Distributed
Systems,” IEEE Computer, Vol. 32, No. 7, July 1999, pp. 71-78.

Peter Wegner, “Why Interaction is More Powerful Than Algorithms,” Communications of
the ACM, Vol. 40, No. 5, May 1997, pp. 80-91.

Peter Wegner, “Interactive Software Technology,” CRC Handbook of Computer Science and
Engineering, May 1996, pp. 1-24.

Peter Wegner, “Interactive Foundations of Object-Based Programming,” IEEE Computer,
October 1995, pp. 70-72.

Darrell Woelk, Michael Huhns, and Christine Tomlinson, ‘“Uncovering the Next Generation
of Active Objects,” Object Magazine, July—August 1995, pp. 33-40.

Michael J. Wooldridge, ”Agents and Software Engineering,” Proceedings AIIA, 1998.
Michael J. Wooldridge, ”Agent-Based Software Engineering,” IEE Proceedings on Software
Engineering, Vol. 144, No. 1, February 1997, pp. 26-37.

Michael J. Wooldridge and Nicholas R. Jennings, ”Software Engineering with Agents: Pit-
falls and Pratfalls,” IEEE Internet Computing, Vol. 3, No. 3, May/June 1999.

Michael J. Wooldridge, Nicholas R. Jennings, and David Kinny, ” A Methodology for Agent-
Oriented Analysis and Design,” in Oren Etzioni, Jean-Pierre Muller, and Jeffrey Bradshaw,
eds., Agents’99: Proceedings of the third International Conference on Autonomous Agents,
Seattle, WA, May 1999.

Edward Yourdon, ”Java, the Web, and Software Development,” IEEE Computer, August
1996, pp. 25-30.

