
Cooperation for DAI through Common-Sense
Knowledge

Michael N. Huhns, Larry M. Stephens, and Douglas B. Lenat

Microelectronics and Computer Technology Corporation
Artificial Intelligence Laboratory
3500 West Balcones Center Drive

Austin, TX 78759
(512) 338-3651

huhns@MCC.COM

1 Introduction

The goal of the Antares Project at MCC is to develop methods that en-
able separately developed knowledge-based systems to cooperate in solving
problems beyond the capabilities of any one of the knowledge-based systems.
There have been many previous attempts to develop distributed systems of
cooperating experts (see [8] for a comprehensive summary of these). For the
most part, these attempts have been ad hoc and have met with few successes.
The resultant systems have been domain dependent and did not generalize.
Further, it has not been sufficient that each knowledge-based system be writ-
ten in the same language [9] or have access to a global data structure, such as
a blackboard [5, 6]. The fundamental hypothesis of our research is that these
systems lack the common-sense understanding of the world that is necessary
for cooperation and that is possessed by cooperating humans.

Our approach for engendering cooperation among distributed knowledge-
based systems utilizes 1) a large global base of common-sense knowledge
that permits enforcement of semantic consistency and 2) an explicit char-
acterization of self-interest to control global problem solving while allowing
autonomy. It has been shown [1, 4] that autonomous systems can cooperate
without the explicit exertion of control if they are self-interested. A gen-
eral notion of self-interest for an autonomous knowledge-based system must
include representations for the goals and problem-solving state of this sys-
tem, as well as models of the goals and problem-solving states of the other
systems with which it interacts. However, interaction and communication

1



among these systems cannot occur without a common understanding of the
global and individual problems the systems are attempting to solve. The dif-
ficulty is that there has been no way to provide this understanding, which is
essential for intelligent interaction among the systems and for exploiting the
full power of the notion of self-interest. Our strategy is to use CYC [10, 11]
to provide the necessary common-sense knowledge, as well as to provide the
means and framework for characterizing self-interest.

2 CYC

At MCC, the CYC Project is building a large common-sense knowledge base
of real-world facts, heuristics, and reasoning mechanisms. This knowledge
base is being developed to assist with knowledge acquisition for constructing
knowledge-based systems and to provide a means for overcoming brittleness
in using knowledge-based systems. This development is also predicated on
the notion that the more we know the more we can learn; development of
the CYC system is thus self-synergistic.

The CYC system consists of the large knowledge base, a user interface,
and a knowledge-representation language. The knowledge-representation
language is frame-based; there is a frame in the system to represent each
instance of an object, slot, function, problem-solving method, etc. In addi-
tion, there are frames to represent the concepts of an object, slot, function,
problem-solving method, etc. The language is thus self-describing. Each
frame in the knowledge base is linked to others via its slots, which can in-
herit values from other slots through multiple inheritance. The inheritance
can occur along any slot in any direction and can be conditional.

The CYC knowledge base, besides encoding the CYC representation lan-
guage, includes explicit representations for both encyclopedic knowledge and
common-sense knowledge. Storage of this knowledge is expected to require
approximately one-million frames. The frames do not represent simply a
list of facts, but are highly interconnected, much as concepts are in the real
world. This interconnection allows problems to be solved by using analogies
to knowledge not closely related to the problems.

2



3 Using CYC for DAI

Antares is utilizing CYC as a framework within which the necessary compo-
nents of self-interest—goals, tasks, problem-solving states, and results—can
be implemented. As mentioned above, effective cooperation can be achieved
through self-interest [1]. However, an implementation of self-interest requires
more than just an explicit representation for the goals of a knowledge-based
system and a stipulation that the system must pursue these goals [4]. It also
requires each system to be aware of the goals and problem-solving capabil-
ities of the other knowledge-based systems, as well as the current status of
its own problem solving. Further, each system must be aware of and under-
stand what goals and tasks are. This means we must represent such abstract
concepts as “goal” and “task,” in addition to specific instances of goals and
tasks from a problem-solving domain. By providing the knowledge-based
system with an understanding of such concepts, it would realize, for exam-
ple, that satisfying a goal would be rewarded and not satisfying a goal would
be penalized. This is precisely what is meant by “self-interest.”

In the Hearsay-II speech understanding system [3], the knowledge sources
were unaware of each other, of themselves, and even of the overall goals of
the system. In later systems, such as DVMT [12], each knowledge source
had an ability to transmit tasks and hypotheses to other knowledge sources
and receive results and confirmations. This enabled them to cooperate more
effectively, even though they had only a limited awareness of the other knowl-
edge sources. This was later improved by providing each knowledge source
with network information and a mechanism for refining this network [2]. In
MINDS [7], the knowledge sources had a more complete awareness of the
others, consisting of models of their capabilities and behaviors; these models
were learned during the course of problem-solving. In Antares, we are ex-
panding and exploiting this awareness more fully by explicitly representing
the semantics of self-interest.

Self-interest, however, is not sufficient: cooperation will not occur without
a common understanding of the domains involved. A limitation of current
knowledge-based systems is that they have no understanding of the predicates
they use to represent knowledge. For example, in a knowledge-based system
for the domain of digital circuit design, an assertion of the form

(fan-out ?output-signal ?value)

3



might be used to represent facts about digital signals. Another knowledge-
based system for mechanical design might use the same predicate name to
represent the output of air from a fan. The problem is that these systems have
no internal representation for the meaning of fan-out; the semantics must be
supplied by a user external to the systems and, from the standpoint of these
systems, the predicate might just as well have been named foo. Without
any link to the real world or to a common knowledge base representing the
real world, there is no reason to expect these systems to have a consistent
semantics for their terms; the result is that these systems would conflict
rather than cooperate.

However, if these two systems represented their knowledge within the
CYC framework, then, after one system had created the predicate fan-out,
the other system would be prohibited from changing that definition. The
other system would be required to create a different frame for its notion of
fan-out. Thus, the usage of the term fan-out would necessarily be consis-
tent. If the systems have the same underlying representation and semantics
and communicate at this level, then differences in the surface form of their
knowledge become unimportant. The enforcement of semantics is discussed
more fully in [10].

For example, imagine two knowledge-based systems developed separately
for the domain of digital circuit design, one for designing circuits using two-
level NAND gates and the other for designing circuits using two-level NOR
gates. Each of these is implemented in CYC, thus insuring that each has ac-
cess to the same base of fundamental common-sense knowledge. This knowl-
edge includes Boolean algebra (specifically, DeMorgan’s theorem). Suppose a
decomposable problem is given to the NAND-gate system in sum-of-products
form to design a circuit out of NAND gates only. The NAND-gate system
can learn of the existence of the NOR-gate system from the CYC knowledge
base (CYC can provide a list of available problem solvers for the domain of
digital circuit design), decompose the problem, and send a subproblem to the
NOR-gate system. The NOR-gate system can convert the subproblem into
product-of-sums form and produce a solution using two-level NOR gates.
This solution can be sent to the NAND-gate system, which converts it to
two-level NAND gates using DeMorgan’s theorem. The converted solution
can finally be combined with solutions obtained by the NAND-gate system
to the other subproblems. The two systems are able to cooperate because of
the common underlying knowledge provided by CYC, the specific knowledge

4



of problem solvers, and a common-semantics for all of this knowledge.

4 Conclusions

The Antares Project has just recently been initiated. Work is underway on
developing autonomous knowledge-based systems for the domain of digital
circuit design and on encoding the concepts of self-interest and problem-
solving state within the CYC knowledge base. Our research is helping to
solve epistemological problems in DAI involving inconsistent, incomplete,
and mutual knowledge among distributed knowledge-based systems. By pro-
viding a common-sense knowledge base that these systems can share, we are
helping to insure coherence. However, we have not addressed issues of allo-
cating problems among the systems and modeling other systems, and many
questions remain to be answered.

References

[1] E. H. Durfee, V. R. Lesser, and D. D. Corkill, “Cooperation Through
Communication in a Distributed Problem Solving Network,” in M. N.
Huhns, ed., Distributed Artificial Intelligence, Pitman Publishing Ltd.,
London, England, 1987, pp. 29–58.

[2] E. H. Durfee, V. R. Lesser, and D. D. Corkill, “Coherent Cooperation
Among Communicating Problem Solvers,” IEEE Transactions on Com-
puters, vol. C-36, no. 11, November 1987, pp. 1275–1291.

[3] L. D. Erman, F. Hayes-Roth, V. R. Lesser, and D. R. Reddy, “The
Hearsay-II Speech Understanding System: Integrating Knowledge to
Resolve Uncertainty,” Computing Surveys, vol. 12, no. 2, June 1980,
pp. 213–253.

[4] M. L. Ginsberg, “Decision Procedures,” in M. N. Huhns, ed., Distributed
Artificial Intelligence, Pitman Publishing Ltd., London, England, 1987,
pp. 3–28.

[5] B. Hayes-Roth, “A Blackboard Architecture for Control,” Artificial In-
telligence, vol. 26, 1986, pp. 251–321.

5



[6] B. Hayes-Roth, M. V. Johnson, A. Garvey, and M. Hewitt, “Application
of the BB1 Blackboard Control Architecture to Arrangement Assembly
Tasks,” Artificial Intelligence in Engineering, vol. 1, no. 2, 1986, pp. 85–
94.

[7] M. N. Huhns, U. Mukhopadhyay, L. M. Stephens, and R. D. Bonnell,
“DAI for Document Retrieval: The MINDS Project,” in M. N. Huhns,
ed., Distributed Artificial Intelligence, Pitman Publishing Ltd., London,
England, 1987, pp. 249–283.

[8] V. Jagannathan and R. Dodhiawala, “Distributed Artificial Intelligence:
An Annotated Bibliography,” in M. N. Huhns, ed., Distributed Artificial
Intelligence, Pitman Publishing Ltd., London, England, 1987, pp. 341–
390.

[9] L. V. Leao and S. N. Talukdar, “An Environment for Rule-Based Black-
boards and Distributed Problem Solving,” Artificial Intelligence in En-
gineering, vol. 1, no. 2, 1986, pp. 70–79.

[10] D. B. Lenat, M. Prakash, and M. Shepherd, “CYC: Using Common
Sense Knowledge to Overcome Brittleness and Knowledge Acquisition
Bottlenecks,” AI Magazine, vol. 6, no. 4, Winter 1986, pp. 65–85.

[11] D. B. Lenat and E. Feigenbaum, “On the Thresholds of Knowledge,”
Proceedings of the Tenth International Joint Conference on Artificial
Intelligence, Milan, Italy, August 1987, pp. 1173–1182.

[12] V. R. Lesser and D. D. Corkill, “The Distributed Vehicle Monitoring
Testbed: A tool for investigating distributed problem solving networks,”
AI Magazine, vol. 4, no. 3, Fall 1983, pp. 15–33.

6


