
An Extended Protocol for Multiple-Issue Concurrent Negotiation

Abstract

Negotiation is the technique for reaching mutually beneficial
agreement through communication among agents. A concur-
rent negotiation problem occurs when an agent needs to ne-
gotiate with multiple agents to reach agreement. In this pa-
per, we present a protocol to support many-to-many bilateral
multiple-issue negotiation in a competitive environment. The
protocol is presented in the context of service-oriented ne-
gotiation, where one or more self-interested parties will pro-
vide services to one or more other parties. By extending ex-
isting negotiation protocols, our proposed protocol enables
both service requestors and service providers to manage sev-
eral negotiation processes in parallel. Moreover, this protocol
mitigates the situation where most one-to-many negotiations
are biased in favor of one participating agent, and reduces the
decommitment situation for both participants. We conclude
by discussing additional issues related to concurrent multiple-
issue negotiation.

Introduction
In supply chains, e-commerce, and Web services, the par-
ticipants negotiate contracts and enter into binding agree-
ments with each other by agreeing on functional and qual-
ity metrics of the services they request and provide. Ne-
gotiation is a process by which agents communicate and
compromise to reach agreement on matters of mutual in-
terest while maximizing their individual utilities. To meet
the requirements of service requestors, multiple issues, in-
cluding both functional and non-functional, need to be taken
into account. Many researchers have investigated multiple-
issue negotiation (Fatima, Wooldridge, & Jennings 2004;
Jonker & Robu 2004; Dang & Huhns 2005). Fatima et al.
presented an optimal agenda and procedure for two-issue
negotiation. Dang and Huhns proposed a coalition deal for
multiple-issue negotiation to balance between computation
cost and negotiation benefit.

Researchers are interested in concurrent negotiation since
(1) it is both time efficient and robust when an agent need to
negotiate with multiple other agents to make a good deal and
(2) it is essential when an agent requests a service involved
multiple agents like supply chain problem. Most of recent
works focused on one-to-many negotiation. Some (Rahwan,

Copyright c© 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

Kowalczyk, & Pham 2002) developed approaches to maxi-
mize the service requestor’s utility by coordinating multiple
concurrent negotiations to exploit the corresponding service
providers. Some (Nguyen & Jennings 2004b) proposed the
commitment model to enable the agent to break its commit-
ments when an agent receives an offer for a better service in
comparison with those for which the agent is committed.

In service-oriented multi-agent environment, it is very
likely there are multiple service requestors and providers ne-
gotiating simultaneously. We consider a competitive envi-
ronment and assume the agents are self-interested and know
only their own negotiation preferences. Based on two-phase
commit protocol (Moss 1985) and the extended CNP proto-
col (S. Aknine & Shakun 2004), we present a negotiation
protocol to support many-to-many multiple-issue negotia-
tion.

This paper advances the state of the art in the following
ways. First, most existing protocols of concurrent negoti-
ation do not deal with issues like negotiation consistency
and decommitment risk arisen by many-to-many negotia-
tion. Second, most protocols do not deal with the competi-
tive scenario where many issues are involved in and the op-
ponent’s preference are unknown. In contract, our proposed
protocol (1) enables both service requestors and providers
to engagen in several negotiation processes concurrently;
(2) avoids the bias towards one participating agent in one-
to-many negotiation; (3) improves the negotiation efficiency
and robustness by multiple negotiation threads; (4) reduces
decommitment situation for both participating agents; (5)
provides agents the possibility to adopt hierarchal strategy
for concurrent multiple-issue negotiation: the upper coordi-
nation level and the lower individual negotiation level.

Presented in the context of service-oriented negotiation,
the remainder of the paper is organized as the following:
Section 2 discusses the related work. Section 3 describes
the negotiation protocol and Section 4 details the algorithms.
Section 5 theoretically analyzes the property of the proposed
protocol. Section 6 discussed further issues related concur-
rent multiple-issue negotiation. Section 7 concludes.

Related Work
Negotiation for services involves a sequence of information
exchanges between parties to establish a formal agreement
among them, whereby one or more parties will provide ser-



vices to one or more other parties. Therefore, Concurrent
negotiation is necessary for a service-oriented domain.

The issue of concurrent negotiation is dealt with in (Rah-
wan, Kowalczyk, & Pham 2002; Nguyen & Jennings 2004a;
2004b). By considering the negotiation as a distributed con-
straint satisfaction problem, Rahwan (Rahwan, Kowalczyk,
& Pham 2002) represented a framework for one-to-many ne-
gotiation by conducting a number of coordinated concurrent
one-to-one negotiations and discussed the possible negoti-
ation strategies for a coordinator. However, many-to-many
negotiation is not equivalent to multiple one-to-many negoti-
ation and issues arising in many-to-many negotiation such as
consistency, coordination, and decommitment risk, are too
difficult to be handled by the existing protocols.

Nguyen et al. (Nguyen & Jennings 2004a; 2004b) pre-
sented a heuristic model for coordinating concurrent ne-
gotiation and an integrated commitment model that enable
agents reason about when to commit or decommit. In their
model, a coordinator on behalf of the buyer manages several
negotiation threads one for each individual seller. The buyer
first select its strategy for the threads based on its belief,
then classify the sellers according to their behaviors during
the encounter and consequently adapt the right negotiation
strategy based on their classification. Once a thread reaches
a deal with a particular seller, the deal is a one-side com-
mitment binding to the corresponding seller and can only be
dropped after the buyer finalizes its all negotiation threads. It
is obviously biased in favor of the buyer since a commitment
should be a bilateral relationship used to bind two participat-
ing agents. To mitigate this problem, they allow the seller to
de-commit by adopting a commitment model. Both buyer
and seller can renege from the previous deal after paying the
decommitment penalty. This model still biased in favor of
the buyer since any sellers who have already reached a deal
have to wait till all negotiation threads end. On the other
hand, breaking the commitments is always a hard decision
to make because it is usually more issues beyond decommit-
ment penalty need to be considered such as reputation and
user feedback etc.

Sandholm and Lesser (Sandholm & Lesser 1995) dis-
cussed the automated negotiation among bounded rational
self-interested agents in the context of task allocation do-
main, and presented a protocol to support leveled commit-
ment by introducing the counter-proposal into CNP.

Zhang et al. (Zhang, Lesser, & Abdallah 2004) presented
a negotiation mechanism for task allocation in a cooperative
system. By two-dimension binary search, agents compro-
mise between their initial proposals and current proposal to
generate new proposal alternately and reach an agreement if
the marginal gain is more than marginal cost. In (Zhang,
Lesser, & Podorozhny 2003), they proposed an approach to
deal with multi-linked negotiation in the context of task al-
location domain. A partial order scheduler is used to issues
in each task and the relationships among them with their
flexibilities and dependencies. There is no mutual influence
among negotiation threads in their model. Since their proto-
col does not support concurrent negotiation, it is difficult for
a contractee to coordinate among multiple sub-tasks.

In (S. Aknine & Shakun 2004), They proposed an ex-

Provider b2

Counter-Proposal

Pre-Accept

Formal-Proposal

Requestor a1 Provider b1

Proposal

Counter-Proposal

Pre-Reject

Pre-Reject

Reject

Requestor a2

Counter-Proposal

Counter-Proposal

Pre-accept

Formal-Proposal

Accept

Proposal

Accept

Proposal

Counter-Proposal

.

Figure 1: A Concurrent Negotiation Sequence Diagram

tended version of Contract Net Protocol to support concur-
rent negotiation processed for the task contractor service
provider). It is time efficient and failure tolerant compar-
ing to CNP. However, their protocol did not allow counter-
proposing that is very important in negotiation with time
constraints especially when multiple issues are involved.

Negotiation Protocol
In order to illustrate our protocol, we present a motivating
GetStockQuotescenario. We assume all agents are self-
interested and have their own preferences about the services.
Consider a service requestora1, might arrange to get a stock
quote from a service provider. In this scenario,a1 locates
two service providerb1 and b2 that meet its functionality
requirements and starts two negotiation processes, one for
each service provider, to find the one that provides better
service with less cost. Moreover, Consider the situation in
which b1 has already been in a negotiation with another po-
tential service requestora2, therefore,b1 will negotiate with
a1 anda2 at the same time to find a service requestor who
provides the better offer. Most existing protocols can not
handle this situation properly. In some protocol, for exam-
ple, if b1 is one of the providers that are negotiating witha1

concurrently,b1 has to wait till alla1’s negotiation threads
end. Even ifb1 reach an agreement witha1 earlier, it can be
accepted or possibly rejected bya1 only aftera1 finished all
his negotiation threads. Therefore, current protocols bound
b1 to a one-side commitment and makeb1 lose time and the
potential chance of reaching a contract with other agents,
it bias in favor ofa1, but still causea1 in the trouble of the
likely decommitment to the previously agreed proposals and
lead to the loss of utility (decommitment penalty) and rep-
utation that is vital in the future sophisticated negotiation
mechanism aiming at long-term cooperation and gains.

By considering the two-phase commit protocol from data-
base system domainand the extended CNP protocol, we in-
troduce two phases of accept and reject into the alternating
offers protocol (Osborne & Rubinstein 1994) to support con-
current multiple-issue negotiation. During a negotiation ses-
sion, a agent can use a number of messages when commu-
nicating with its opponent. The negotiation acts are briefly
defined in Table 1 and illustrated in a simplified version of
ourGetStockQuotescenario in Figure 2:

In multiple-issue negotiation, different agents have differ-
ent preferences over the negotiation issues. Their prefer-



Table 1: Negotiation Messages
Proposal A requestor initiates the negotiation

by proposing an offer for a service.
Counter-Proposal An agent counter-proposes a new proposal

in response to the previous proposal
Formal-Proposal An agent formalizes its pre-accepted

proposal.
Pre-Accept An agent temporarily accepts a proposal.
Pre-Reject An agent temporarily rejects a proposal.
Accept An agent accepts a proposal.
Reject An agent rejects a proposal.

ences are usually represented in form of their utility func-
tions with issues as variables. By adapting the alternating
offering protocol, an agent makes an offer that gives it the
highest utility at the beginning of the negotiation, and then
incrementally concedes by offering its opponent a proposal
that gives it lower utility as the negotiation progresses.

Let a andb represent the negotiating agents andI a nego-
tiation issue set ofn issues, whereI = {I1, . . . , In}. Given
Ob→a,t representing an offer fromb to a at time roundt, we
define agenta’s utility as Ua(Ob→a,t). The agentb’s utility
is defined analogously.
Definition 1: In a negotiation where agenta negotiates
with a set of agentsB = {b1, . . . , bn} concurrently, agent
bi’s offer Obi→a,t is better than agentbj ’s offer Obj→a,t iff
Ua(Obi→a,t) > Ua(Obj→a,t)
Definition 2: In a negotiation where agenta negotiates
with a set of agentsB = {b1, . . . , bn} concurrently, agent
bi’s offer is acceptable to agenta at time roundt if (1)
Ua(Obi→a,t) ≥ Ua(Oa→bi,t+1) and (2) Ua(Obi→a,t) =
argmax U(Obj→a,t) for bj ∈ B.

As shown in Figure 2, a requestor agenta1 locates two
provider agentb1 and b2, then initiates two negotiation
threads with them simultaneously by sending its proposal.
After evaluating the received proposal,b2 sends its counter-
proposal toa1. b1 is in a negotiation with another re-
questor agenta2 when he receivesa1’s proposal,b1 also
send its counter-proposal toa1 sinceb1 has not reached any
agreement witha2 yet. After evaluation,a1 finds thatb2’s
counter-proposals is acceptable and pre-acceptsb2’s counter
proposal. a1 will pre-reject other counter-proposals at the
same time.b1 receives the pre-reject froma1 and the pre-
accept message froma2, b1 sends the formal-proposal toa2

and pre-reject all other requestors. While the pre-accepted
b2 sendsa1 its formal-proposal, other pre-rejected agents
send their counter-proposals toa1. a1 acceptsb2 and rejects
all other providers ifb2’s formal-proposal is still acceptable.
Analogously,a2 sends the accept message tob1 and the re-
ject message to other providers.

Two-phase commitment (Pre-AcceptandAccept) and the
corresponding two-phase rejection (Pre-RejectandReject)
are necessary to deal with the concurrent encounters. With
this protocol, the concurrent negotiation process has two
phases. In phase one, service agents exchange counter-
proposals after service requestors initiate the negotiations.
Once receives an acceptable proposal, agent announces that
the negotiation phase two comes by sendingpre-accept to

Requestor proposes

Provider counter-proposes

Requestor counter-proposes

Requestor

pre-accepts

Provider

pre-accepts

6

Provider

formalizes

Requestor accepts

Requestor

formalizes

Provider accepts

Requestor

pre-rejects

12

1

Requestor

pre-accepts

Provider

pre-rejects

Provider

pre-accepts

Provider

counter-proposes

Requestor

counter-proposes

Requestor

rejects

Provider

rejects

13

4

7

2

5

3

8

11

9

10

 Success

Failure

Requestor

pre-rejects

Provider

pre-rejects

.

Figure 2: Finite State Machine for Concurrent Negotiation

the agent who send the acceptable proposal and sedingpre-
reject to the rest of negotiating opponents. In phase two, the
negotiation enters a process similar to the last-round first-
price auction. The pre-accepted agent sends back its formal
proposal while other pre-rejected agents send their counter-
proposals for their final tries. If the formal proposal is still
acceptable, it will be accepted formally and other offers will
be rejected to end the negotiation.

Figure 3 depicts a Finite State Machine (FSM) model
that describes the concurrent negotiation protocol for ser-
vices. The left part shows the situation in which the service
provider starts the pre-accept or pre-reject phases. The right
part shows the situation in which the service requestor starts
the pre-accept or pre-reject phases. The service requestor
agent starts from state 1 by sending an initial proposal to the
service provider agent (state 2). The provider agent evalu-
ates it (state 2), if this proposal is acceptable, it pre-accepts
this proposal (state 4); otherwise, it counter-proposes (state
3). Two agents send counter-proposals back and forth before
they find an acceptable offer (state 2 and 3). The provider
agent may pre-rejects the proposal if it has pre-accepted an-
other agent or has been pre-accepted by another agent (state
5). The pre-accepted requestor sends its formal proposal to
the provider (state 6). If this formal proposal is acceptable,
it is accepted by the provider (state 12), otherwise, this pro-
posal is pre-rejected (state 5) and the requestor can send its
newly built better counter-proposal (state 7), which could
be pre-accepted by the provider (state 4) or rejected finally
(state 13). The right part of Figure 3 depicts how the service
requestor pre-accepts or pre-rejects its peer analogously.

Negotiation Algorithm
In this section, we will describe in detail the negotiation al-
gorithmic of service requestor and provider during a negotia-
tion process. The whole negotiation process has two phases:
(1) The proposal exchange phase in which both sides ex-
change proposals/counter-proposals till one agent sendsPre-
Accept/Pre-Rejectto the other; (2) The proposal formaliza-
tion phase in which agent sends its formal proposal if it is
pre-accepted or the counter-proposal otherwise.

For service requestor, there are three evaluation functions
in Figure 4: EvaluateCounterProposal1, EvaluateCounter-
Proposal2, and EvaluateFormalProposal. EvaluateCoun-
terProposal1deals with all counter-proposals in phase one.



Wait

[None] / Send Proposal

EvaluateCounterProposal1

[Recv Counter-proposal] / None

WaitForRespToCounterProposal

Accept Reject

WaitForRespToFormalProposal

[Recv Pre-reject] / None

[Recv Accept] / None

[None] / Send Formal-Proposal

Pre-Accepted

[None] / Send Counter-Proposal

Pre-Rejected

[Recv Pre-accept] / None

[None] / Send Counter-Proposal

[Recv Reject] / None

[Recv Pre-accept] / None

[Recv Pre-reject] / None

WaitForRespToPreAccept

[None] / Send Pre-accept

EvaluateFormalProposal

[RecV Formal-proposal] / None

EvaluateCounterProposal2

[RecV Counter-proposal] / None
[None] / Send Pre-accept

[None] / Send Reject

[None] / Send Accept

[None] / Send Pre-reject

WaitForRespToPreReject

[None] / Send Pre-reject

Service Requestor i

.

Figure 3: FSM for a Service Requestor

WaitForRespToCounterProposal1

[None] / None

Evaluate

[Recv proposal] / None

WaitForRespToCounterProposal2

Accept Reject

WaitForRespToFormalProposal

[Recv Pre-reject] / None

[Recv Accept] / None

[None] / Send Formal-Proposal

Pre-Accepted

[None] / Send Counter-Proposal

Pre-Rejected

[Recv Pre-accept] / None

[None] / Send Counter-Proposal

[Recv Reject] / None

[Recv Pre-accept] / None

[Recv Pre-reject] / None

WaitForRespToPreAccept

[None] / Send Pre-accept

EvaluateFormalProposal

[RecV Formal-proposal] / None

EvaluateCounterProposal2

[RecV Counter-proposal] / None

[None] / Send Pre-accept

[None] / Send Reject
[None] / Send Accept

[None] / Send Pre-reject

WaitForRespToPreReject

[None] / Send Pre-reject

Service Provider i Wait

[Recv counter-proposal] / None

.

Figure 4: FSM for a Service Provider

It evaluates the counter-proposals from the service providers
and sendPre-Accept, Pre-Reject, or counter-proposal re-
garding the evaluation result.EvalutionCounterProposal2
evaluates all counter-proposals in phase two. It sendsPre-
accept to the sender if its proposal is acceptable, other-
wise it sendsReject. EvaluateFormalProposalevaluates the
formal-proposal from the pre-accepted agent, it sendsAc-
ceptto the sender if the formal proposal is acceptable, and it
sendsPre-Rejectotherwise. For service provider, there are
also three evaluation functions:Evaluate, EvaluateCounter-
Proposal2, and EvaluateFormalProposal. Evaluatedeals
with all proposals and counter-proposals appear in phase
one. It sends the messages ofPre-Accept, Pre-Reject, or
counter-proposals regarding the evaluation result.Evalu-
tionCounterProposal2andEvaluateFormalProposalare de-
fined as the same as in service requestor’s model. Given
an agenta and its opponent setB = {b1, . . . , bn}, We de-
fine a set of five flags to indicate the negotiation status be-
tweena andbi. let f1

a↔bi
denotes the negotiation phase one,

f2+
a→bi

denotes thata pre-acceptsbi, f2−
a→bi

denotes thata
pre-rejectsbi, f2+

a←bi
denotes thata is pre-accepted bybi,

f2−
a←bi

denotes thata is pre-rejected bybi.Those flags are
exclusive, i.e. only one can be true at a time. Once one flag
is ture, others are set to false by default. We assume that the

message delivery time is negligible comparing to the time
interval of each negotiation round. Messages are sorted and
processed in the order of their appearances in Algorithm 1
and the return messages are sent at the end of each round.
The detailed algorithm for agenta at timet < td , wheretd
is its negotiation deadline, is defined in Algorithm 1.

Since we assume that the agents are self-interested, it is
possible for an agent to propose a very good offer in the
phase one in order to scare off its competition and then send
a lower formal proposal later. Although it likely is beaten
by other agents’ counter-proposals, we enforce a negotiation
strategy to further avoid this situation. Any formal proposals
worse than their pre-accepted proposals will be definitively
rejected. The best offer from the received counter-proposals
will be pre-accepted as a replacement in this case.

Theoretical Analysis
In this section, we will analyze the properties of the proto-
col; in particular the termination property and prove that this
negotiation process will end after a finite set of steps. Based
on the State transition diagram, we’d like to describe the fol-
lowing properties of our concurrent negotiation protocol.

Property 1: Given an agenta and its opponent agent set
B, the concurrent negotiation protocol guarantees that agent
a can only start the negotiation phase two if the phase one
has been completed for all agents inB.

Proof: The negotiation phase two starts whena find an ac-
ceptable offer. Since (1) An agent cannot reach aPre-Reject
state until one of its peer agents is in aPre-Acceptstate,
and it cannot reach aRejectstate until one of its peers is in
anAcceptstate. It let the rejected/pre-rejected agents know
there is at least one competitor that provides better offer than
they do. This is enforced by the negotiation algorithm. (2)
An agent cannot send its formal-proposal until all its peer
agents have received aPre-Rejectmessage, in order to give
the pre-rejected peers the chance of sending their counter-
proposals to the opponent. There are two paths leading the
requestor to the formal-proposal state (1-2-4-6, 1-2-5-7-4-6)
in Figure 3. A requestora needs to be pre-accepted (state
4) to reach the formal-proposal state (state 6). Therefore,
all other requestors have received thePre-Rejectbeforea
reaches its formal-proposal state since the provider sendsa
Pre-Acceptand other requestorsPre-Rejectsimultaneously.
It can be proved for the provider in the analogous way.

Property 1 deals with the concurrent encounter in phase
two and confirm the consistency during the negotiation.
Now we consider the convergence property of the protocol.

Property 2: Given a set of service requestorA and a set of
service providerB, the negotiation process engaged by the
agents fromA andB using the proposed concurrent protocol
ends after a finite steps.

Proof: From Figure 3, we can see that loops can occur
during the negotiation process. There are three loops: (1)
A loop on states 2 and 3, i.e. the service requestor and the
provider keep exchanging counter-proposals; (2) A loop on
states 5, 7, 4, and 6, i.e. the requestor gets stuck in keep
counter-proposing and being pre-accepted, and then being
pre-rejected at the formal-proposal state; (3) A loop on state



Notations:
O is a proposal/counter-proposal,Õ is a formal
proposal,PA is Pre-Accept, PR is Pre-Reject, A is
Accept, R is Reject;
Initialization;
setf1

a↔bi
= true for all bi ∈ B

if agenta is a requestorthen
sendsOa→bi,t0 to all bi ∈ B

Negotiation;
while t < td do

Wait for MessageMbi→a, bi ∈ B
switch current flag indicator between a andbi do

casef2+
a←bi

= true
if Mbi→a = Abi→a then negotiation succeeds;
else ifMbi→a = PRbi→a then sendsOa→bi ,
setf2−

a←bi
= true;

break;
casef2−

a←bi
= true

if Mbi→a = Rbi→a then negotiation fails;
else ifMbi→a = PAbi→a then sendsÕa→bi

,
setf2+

a←bi
= true;

break;
casef2+

a→bi
= true

if Mbi→a = Õbi→a then
if Õbi→a is acceptablethen sendsAa→bi to
bi, Ra→bj to all bj ∈ B, j 6= i;
else sendsPRa→bi ; sendsPAa→bk

if bk ’s
offer is acceptable; sendsRa→bj to all
bj ∈ B, j 6= i, k; set
f2+

a→bk
= true,f2−

a→bi
= true;

break;
casef2−

a→bi
= true

if Mbi→a = Obi→a then
if Obi→a is acceptablethen sendsPAa→bi ,
sendsPRa→bk

, if bk ’s offer is formal-offer;
sendRa→bj to all bj ∈ B, j 6= i, k; set
f2−

a→bk
= true, f2+

a→bi
= true;

else sendsRa→bi

break;
casef1

a↔bi
= true

if Mbi→a = Obi→a then
if Obi→a is acceptablethen sendsPAa→bi to
bi sendsPRa→bj to all bj ∈ B, j 6= i; set
f2+

a→bi
= true, setf2−

a→bj
= true for all

bj ∈ B, j 6= i;
elsesendsOa→bi

else ifMbi→a = PRbi→a then
sendsOa→bi , setf2−

a←bi
= true

else ifMbi→a = PAbi→a then
sendsÕa→bi ; sendsPRa→bj to all
bj ∈ B, j 6= i; setf2+

a←bi
= true; set

f2−
a→bj

= true for all bj ∈ B, j 6= i

end
end

end
Algorithm 1 : Negotiation Algorithm

8, 11 , 9 , and 10, the provider gets stuck in the analogous sit-
uation as the requestor in (2). To prove that the protocol will
ends in a finite step, we must prove that there is no infinite
sequence of loops on the above three loops.

(1) In loop 2-3, agents keep exchanging counter-proposal
by alternating offering protocol, an agent makes an offer that
gives it the highest utility at the beginning of the negotiation,
and then incrementally concedes by offering its opponent a
proposal that gives it lower utility as the negotiation pro-
gresses. Agents have to concede to offer deals that are more
likely to be accepted by their opponents if they prefer reach-
ing an agreement to the conflict deal. These principles apply
to all concurrent negotiation threads. Many existing mech-
anism can guarantee agents will keep making progress dur-
ing the negotiation. With a pre-defined minimum hop, one
agent will eventually pre-accept the counter-proposal from
its opponent and come out of the loop (1). Also, agent can
be kicked out of the loop (1) when its opponent pre-accepts
one of its peers from another negotiation threads.

(2) In loop 5-7-4-6, the pre-rejected requestor sends its
new counter proposal to the provider and is pre-accepted,
however, its formal proposal is then pre-rejected and the re-
questor has to send a new counter-proposal again. This sit-
uation happens when there are existing requestors that keep
competing with each other. Let assume a service providerb
negotiates concurrently with a set ofn service requestors: a
pre-accepted requestora0 and a setA′ = {A− a0} of n− 1
pre-rejected requestors. After the provider receives the for-
mal proposal froma0 and the counter-proposals fromA′.
Let ai be the one with the best offer fromA′. By comparing
the offers froma0 andai, we have:

(a) If Ub(Oai→b) ≤ Ub(Oa0→b), a0 will be accepted and
reach state 12, all requestors fromA′ will ends with the re-
jections and reach state 13. The negotiation ends

(b) If Ub(Oai→b) > Ub(Oa0→b), requestora0 will be pre-
rejected and reach state 5, requestorai will be pre-accepted
and enter state 4, all other agents are rejected and are out
of the loop. There are onlyai anda0 left. The negotiation
ends if one of them can overbid the other in two consecu-
tive rounds. The infinite loop occurs whenai anda0 keep
overbidding each other alternately with a tiny amount. It
can be prevented by enforcing time constraints to the proto-
col. Since both sides can get better off if they can reach a
contract earlier, the provider should consider the time fac-
tor for proposals received in the phase two. For example,
before comparing two proposals, a time discount function
(e.g. a normalized function whose value decreases exponen-
tially with the time) can be applied to the counter-proposal
that needs to evolve two more states to be a formal-proposal.
Therefore, the counter proposal need to overbid the formal-
proposal more and mre to overrule it along the time and ne-
gotiation will end in finite steps.

Concurrent negotiation issues
Negotiation protocol specifies the actions which can be fol-
lowed by each side to negotiate a contract. This negotiation
protocol is more flexible than the extended CNP protocol
because agents can exchange counterproposals. The proto-
col itself does not guarantee the negotiation will end with



a contract. Both participating agents need to adapt certain
negotiation strategy to keep the negotiation process going.

With this protocol, concurrent negotiation process can be
performed at two different levels: The upper level deals
with the coordination among multiple negotiation processes
when an agent tries to minimize the possibility of conflicts
among different negotiation threads, the lower level deals
with the execution of the individual negotiation process.

A negotiation agent consists of two main components:
a coordinator and a number of negotiation threads. The
coordinator is responsible for coordinating all the threads
and choosing an appropriate negotiation strategy for each
thread. The negotiation threads deal directly with the various
opponents and are responsible for deciding what counter-
proposals to send and what proposal to pre-accept. In each
round, the threads report their status to the coordinator, the
coordinator will use the progress in one negotiation thread
to alter the behavior of the agent in another threads.

Since the computation cost becomes crucial when more
negotiation threads and issues are involved, some time-
efficient strategy like coalition deal can be adopted by the
individual negotiation threads to make the negotiation more
efficient. Coalition deal can also mitigate the message con-
gestion problem by reducing the computation cost and dis-
tributing messages among a number of negotiation threads.
We believe that commitment is a binary relationship and
address the decommitment problems. Our protocol miti-
gates the bias and reduces the situation of decommitment for
the negotiation participants. From Algorithm 1, we know
that our protocol is neutral to both service requestor and
provider. Therefore, our protocol can eliminate the situation
of decommitment arisen by the one-side commitment.

In negotiation phase two, a service agent host a last-
round first-price auction. Since it is the final try for those
pre-rejected agents to stay in the negotiation, it makes the
truth telling about the reserve offer the dominant strategy
for agents whose counter-proposals are close to their reserve
offer. At this time, they do not want to lose by providing an
offer worse than its reserve offer and they do not want to win
the negotiation with the negative gains by providing an offer
better than its reserve offer. Therefore, this protocol make
the negotiation more efficient. This truth revealing property
will be further explored and exploited in future.

Conclusion
This paper investigates the concurrent negotiation in a com-
petitive environment by proposing a negotiation protocol
to support many-to-many negotiation among self-interested
agents. First, we introduce the many-to-many negotiation
problem by a motivating example. Second, we define the
protocol communication acts and describe the negotiation
protocol. Third, we illustrate the negotiation algorithms, an-
alyze the protocol properties, and in particular prove the ter-
mination property of the protocol. Finally, we discuss some
issues related to concurrent multiple-issue negotiation.

There are several possible directions for future work.
First, we will further investigate the effect of the proposed
protocol to agent’s negotiation strategy and develop a so-
phisticated commitment model. Second, we can further ex-

tend this protocol to support the negotiation for a composed
service with different service agents under the constraints
such as QoS and dependency issues among agents.

References
Dang, J., and Huhns, M. N. 2005. Optimal multiple-issue
negotiation over qos metrics of web service.USC CIT
Technical Report TR-CIT05-01.
Fatima, S. S.; Wooldridge, M.; and Jennings, N. 2004.
Optimal negotiation of multiple issues in incomplete infor-
mation settings. InProc. Third International Joint Confer-
ence on Autonomous Agents and MultiAgent Systems (AA-
MAS’04), 1080–1089. New York,USA: ACM.
Jonker, C. M., and Robu, V. 2004. Automated multi-
attribute negotiation with efficient use of incomplete pref-
erence information. InProc. Third International Joint Con-
ference on Autonomous Agents and MultiAgent Systems
(AAMAS’04), 1056–1063. New York,USA: ACM.
Moss, J. E. 1985.Nested transactions: an approach to
reliable distributed computing. Massachusetts Institute of
Technology.
Nguyen, T. D., and Jennings, N. 2004a. Coordinating mul-
tiple concurrent negotiations. InProc. Third International
Joint Conference on Autonomous Agents and MultiAgent
Systems (AAMAS’04), 1064–1071. New York,USA: ACM.
Nguyen, T. D., and Jennings, N. R. 2004b. Reasoning
about commitments in multiple concurrent negotiations.
In Proceedings of the 6th International Conference on E-
Commerce.
Osborne, M. J., and Rubinstein, A. 1994.A Course in
Game Theory. The MIT Press.
Rahwan, I.; Kowalczyk, R.; and Pham, H. H. 2002. Intelli-
gent agents for automated one-to-many e-commerce nego-
tiation. In CRPITS ’02: Proceedings of the twenty-fifth
Australasian conference on Computer science, 197–204.
Australian Computer Society, Inc.
S. Aknine, S. P., and Shakun, M. F. 2004. An extended
multi-agent negotiation protocol.International Journal on
Autonomous Agents and Multi-agent Systems.
Sandholm, T., and Lesser, V. 1995. Issues in automated
negotiation and electronic commerce: Extending the con-
tract net framework. In Lesser, V., ed.,Proceedings of
the First International Conference on Multi-Agent Systems
(ICMAS’95), 328–335. San Francisco, CA, USA: The MIT
Press: Cambridge, MA, USA.
Zhang, X.; Lesser, V.; and Abdallah, S. 2004. Efficient
Management of Multi-Linked Negotiation Based on a For-
malized Model.Autonomous Agents and Multi-Agent Sys-
tems.
Zhang, X.; Lesser, V.; and Podorozhny, R. 2003. Multi-
Dimensional, MultiStep Negotiation for Task Allocation in
a Cooperative System.Autonomous Agents and MultiAgent
Systems (conditionally accepted for publication).


