
Chapter 14

ON BUILDING ROBUST WEB
SERVICE-BASED APPLICATIONS

Rosa Laura Zavala Guti´errez and Michael N. Huhns
University of South Carolina, Department of Computer Science and Engineering

{zavalagu, huhns}@engr.sc.edu

Abstract Reliability is an issue of importance in Web service applications, as they often
expose an enterprise’s critical processes, such as finance, insurance, customer-
relationship management, or sales. Reliability can be ensured by providing com-
pensations for faults, but the complexity of the applications makes it impossible to
anticipate all the scenarios that the applications might encounter. An approach to
error tolerance needs to be provided. In this chapter we show that even when on-
line applications are complex, the service-oriented architecture of Web services
provides an excellent basis for our redundancy-based approach to error tolerance.
Our studies and theories in software robustness demonstrate that: (i) robustness
can be achieved through redundancy; (ii) by being able to represent and conciliate
multiple viewpoints, agents are an appropriate unit for adding redundancy; and
(iii) agents having different algorithms but similar responsibilities can produce
the needed redundancy. We integrate Web services as part of the functionality of
the agents that provide the redundancy.

1. INTRODUCTION

During the last decade, the software industry has rapidly evolved many
paradigms, architectures, and technologies for developing enterprise-wide soft-
ware applications. The applications have capabilities that were not possible or
were very difficult to provide previously, such as integration of disparate ap-
plications within and among enterprises, automation of business-to-business
(B2B) data interchange and negotiations, and definition and integration of
business processes involving different parties. Initial B2B automation activ-
ities were tightly coupled, in the sense that business partners predefined the



294

terms of their interaction using standards such as EDI1 and XML2. Recently,
the emergence of Web services (WS3) has led the software industry into a
service-oriented approach to software development. WS is a loosely coupled
technology, because Web services are based on the autonomous use of stan-
dard protocols (UDDI4 for discovery, WSDL5 for description, BPEL4WS6 for
coordination, and SOAP7 for communication). WS provide greater flexibility
with respect to the interoperability, reuse, and development of applications in
a distributed environment.

Reliability is an issue of importance inWeb service applications, as they often
expose an enterprise’s critical processes, such as finance, insurance, customer-
relationship management, or sales. However, those applications are complex
and have so many related entities that it is impossible to anticipate all the
scenarios that the applications might face. An approach to error tolerance
needs to be provided.

To satisfy this need, we hypothesize that multiagent-based redundancy can
provide a basis for robust WS-based applications, and a service-oriented ap-
proach for implementation and deployment can foster that. Developers can
identify critical points in a process and incorporate redundant functionality
based on existing Web services. Since Web services reside on a vendor site,
they may be an affordable basis for redundancy, because consumers do not buy
the component itself but only pay to access it. Further, they provide dynamic
discovery and aggregation of services and, at any time, consumers may decide
to no longer use a particular Web service.

However, if we use a Web serviceper se as the unit for adding redundancy,
some centralized controller would have to be in charge of managing the exe-
cution of the redundant components and the selection of results. We further
hypothesize that agents—by possessing the abilities to represent multiple view-
points and interaction abstractions, negotiate, use different decision procedures,
and reach agreements—are an appropriate unit for adding redundancy. Agents
having different algorithms but similar responsibilities can produce the needed
redundancy. We use Web services as the source for the agents’ algorithms.

In Section 2, we provide a review of software reliability and software ro-
bustness. Section 3 includes a discussion of approaches to error tolerance for
achieving software robustness. In Section 4, we present the details of our ap-
proach. Section 5 presents a description of the agent-based Web applications

1http://developer.netscape.com/viewsource/marchaledata.htm
2http://www.w3.org/XML/
3http://www.w3.org/2002/ws/
4http://www.uddi.org/
5http://www.w3.org/TR/wsdl
6http://xml.coverpages.org/bpel4ws.html
7http://www.w3.org/TR/soap/



On Building Robust Web Service-Based Applications 295

that we developed. Finally, we present our conclusions and recommendations
for future work in Section 6.

2. BACKGROUND

An algorithm is said to be correct if, for every input instance, it halts with
the correct output. An incorrect algorithm might not halt at all on some input
instances, or it might halt with an answer other than the desired one (5). Even
when the algorithm is correct, its implementation might not be correct (due
to mistakes introduced by the programmer) or if it is, it could have additional
constraints imposed by the programmer in order to make it easier to implement,
or it could face unexpected situations (i.e., a faulty environment, corrupted data,
or defective hardware).

Software robustness is the ability of a software product to function cor-
rectly or coherently in a changing environment, in the presence of invalid or
conflicting inputs, and in the presence of situations not considered during its
design. Software reliability is a wider concept, which includes robustness. It
is the probability of error-free operation of an application (16). The required
level of reliability in a system depends on the consequences and cost of run-
time errors. Safety-critical systems have very high reliability requirements,
because errors during performance could have catastrophic consequences. For
other systems, the cost of a small number of errors during performance may
be acceptable. Even for non-critical software systems with lower reliability
requirements, software reliability is an important attribute and has frequently
been studied in software engineering. Reliability in a software system can be
achieved using the following complementary strategies: (1) error prediction,
(2) error avoidance, (3) error detection and correction, and (4) error tolerance.

Error prediction uses statistical techniques to estimate how many flaws might
be in a system and how severe their effects might be. Based on that informa-
tion, management can decide whether the statistics are acceptable or if other
reliability strategies should be used to improve the software reliability. The
use of good software engineering techniques and processes helps towards error
avoidance. However, human errors cannot be avoided during development,
resulting in bugs in the resultant software product. Procedures such as JUnit8

testing can aid in detecting the bugs so that the developers correct them before
releasing the product. The tests can also include scenarios not stipulated in
the requirements, thus testing the software robustness. Even after testing, it is
probable that a product will still contain bugs. Moreover, even if the software
performs to its specification (it does not contain any bugs) and the tests consider

8http://www.junit.org/



296

exceptional cases, it is impossible to anticipate all the possible scenarios under
which the system will operate. Therefore, we need to consider the fact that the
software application will face unexpected situations.

Error tolerance is a strategy aimed at enabling a system to continue operation
even in the presence of an unexpected situation. Thus, an approach to achieve
error tolerance is required to produce robust software. At the present, there
are few such approaches. Section 3 includes a discussion of the most common
ones: N-version programming, recovery blocks, and transactions.

3. RELATED WORK

3.1 N-VERSION PROGRAMMING

In N-version programming, at least three different versions of a software
system are implemented by different teams from a common specification. The
different versions are executed in parallel. Their outputs are compared and the
final result is determined by using a voting system. This approach is based on
the idea that different teams will not make the same errors when designing and
implementing a system (1).

3.2 RECOVERY BLOCKS

At least two different implementations for the same problem are collected.
These are not based on the same specification. A test to check if the program has
executed successfully has to be provided, which usually receives the program
output and checks that it is correct according to the input provided. The different
implementations are executed in sequence rather than in parallel. After one
version is executed, the test to check correctness is run and the next version is
executed only if the test fails (13, 14).

N-version programming and Recovery blocks technologies are based on the
assumption that the specification is correct. The Recovery blocks technology
also assumes that the program that tests correctness is correct.

3.3 DEFENSIVE PROGRAMMING

Database systems have exploited the idea of transactions for maintaining
the consistency of their data. A transaction is an atomic unit of processing that
moves a database from one consistent state to another. A similar approach to
database transactions for general software applications is known asdefensive
programming. Defensive programming checks the system state after modifi-



On Building Robust Web Service-Based Applications 297

cations to ensure consistent state changes. If inconsistencies are detected, the
state is restored to a known correct state. Restoration of a state is achieved us-
ing one of two mechanisms:backward recovery (restore the system to a known
correct state) andforward recovery (try to correct the damaged system state).

When a system includes cooperating processes, the sequence of process
communications can be such that the check-points of the processes are out of
synchronization. To recover from a fault, each process has to be rolled back to
its starting state. This makes recovery very complex.

The three approaches presented in this section—recovery blocks, N-version
programming, and defensive programming—require the use of a centralized
controller to ensure that the steps involved in tolerating an error are exe-
cuted (16).

4. MULTIAGENT-BASED REDUNDANCY USING
WEB SERVICES

Several researchers have investigated the use of multiagent systems for the
development of software systems. Jennings has shown that multiagent systems
can form the fundamental building blocks for software systems, even if the soft-
ware systems do not themselves require any agent-like behaviors (11). When a
conventional software system is constructed with agents as its modules, it can
exhibit several additional benefits (4, 7).

Our goal is to create robust WS-based applications and we investigate its
achievement through massive redundancy, where the redundancy is managed
by techniques developed for multiagent systems. That is, agents represent the
individual Web services and use techniques for cooperation and negotiation to
achieve coherent, system-wide behavior.

Consider the real world application of credit approval. A credit report con-
tains information about an individual’s credit worthiness (i.e., payment history
and any suits, arrests, or filings for bankruptcy). Companies called credit report-
ing agencies compile and sell credit reports to businesses. Because businesses
use this information to evaluate applications for credit, insurance, employment,
leasing, and other similar purposes, it is important that the information in the
report be complete and accurate. Unfortunately, this is not always the case.
Sometimes a credit report might not reflect all the individual’s credit accounts:
it might include payments not credited or data mixed in from the credit file of
someone else with a similar name.

Figure 1 depicts the credit approval process as conducted by some particular
business. The process starts when an application is submitted. Then, the busi-
ness collects necessary information (name, address, phone number, employer’s
information, income, immigration status, etc.). Next, the business determines



298

the veracity of the information provided by the applicant. For example, it could
call the applicant’s employer to make sure that it is really her employer and to
verify the applicant’s income. After that, it is necessary to obtain the applicant’s
credit score, and it is at this point that the process can benefit from redundancy.
The business can make use of multiple Web services provided by different
parties, i.e., different credit reporting agencies, to obtain the applicant’s credit
score.

To see how additional services compensate for inconsistent information,
imagine that an agency does not have all the applicant’s credit accounts on
its system. If the business consulted with only that agency, the inconsistency
could result in a denial of credit due to “insufficient credit history.” However,
if the business consults with more agencies, then the inaccuracies of the first
agency would become apparent. Additional services also compensate for an
unavailable service: e.g., if a credit reporting agency’s Web server is down,
information can be collected from the other agencies. The use of multiple Web
services provides the basis for an improved decision with respect to whether to
approve or deny credit.

The challenge is to develop techniques for designing software systems so
that the systems can easily accommodate the additional components and take
advantage of their redundant functionality. In our example, the system that
implements the credit approval process would need to include some decision
mechanism that took the results from the different credit reporting agencies
and provided the result. At first glance, this might seem an easy task—just
compare results and if they differ apply a single rule for deciding which one
to take—but it implies satisfaction of all the details of reaching an agreement
among different parties.

If agents are developed at a convenient level of granularity at which to add
redundancy, then the software environment that takes advantage of them is
akin to a society of such agents, where there can be multiple agents filling each
societal role. By design, agents know how to deal with other agents, so they can
accommodate additional or alternative agents naturally. They are also designed
to reconcile different viewpoints.

4.1 ARCHITECTURE AND PROCESS

We propose the following process to create robust WS applications:

The developers of the application have to identify critical points in a
process and collect redundant functionality for those processes based on
existing Web services. The service-oriented approach of WS provides
an excellent basis for that. Since Web services reside on the vendor site,
they may be an affordable basis for redundancy, because consumers do



On Building Robust Web Service-Based Applications 299

Collect 
applicant’s 

info

Verify 
applicant’s 

info

Obtain 
applicant’s 
credit score

Deny credit

Approve
credit

Receive 
application

[Credit score>600]

[Credit score<=600]

CREDIT REPORT 
AGENCY

CREDIT REPORT 
AGENCY

CREDIT REPORT 
AGENCY

Figure 14.1. Redundancy is the basis for most forms of robustness

not buy the component itself, they just pay to access it. Further, they
provide dynamic discovery and aggregation of services, and at any time,
consumers may decide not to use a particular Web service any more.

Develop the agents (once per Web service collected). The Web service
will be part of the functionality of the agent, but it will also include
the capabilities needed to participate in a group discussion and reach
consensus. The agent should know nothing of the inner workings of
the WS. It should have knowledge only about its characteristics, such as
access point, input data type and output data type, and time and space
complexity. For developing the agents we need to:

– Choose the approaches that the agents will use for accommodating
the redundant functionality. The possible approaches that we have
defined (8) are explained in the rest of this section.

– Integrate the agents andWeb services so that the agents are accessed
instead of the Web services. Integration of agents and Web services
is an open and emerging research area (10). Efforts are underway
to target the particular problem of agents using Web services as
part of their behavior and wrapping Web services with agent ca-
pabilities. The focus of our paper is not centered on this point, so
for the development of our example applications we used a simple
approach, which is described in Section 5. Other approaches are
described in (2, 6).

Possible modes that we have defined in order for the agents to reach consen-
sus are listed in Table 1.



300

Table 14.1. Approaches for Combining Agents’ Functionalities

PREPROCESSING POSTPROCESSING

Random / lottery Performance-based
Auction election / criteria selection Voting

Team Collaboration
Incremental

A preprocessing approach would consist of the agents choosing, at the be-
ginning, which one or ones are going to perform the task. There are three
strategies applicable to this approach:

Randomly picking an agent to perform the task. This is equivalent to a
lottery. The output would be based solely on the results from that agent.
Any bugs or errors in the agent would not be caught or corrected. The
lottery method would be appropriate in a system where all agents have
the same capabilities, or in a system with a relatively large number of
correct agents and the probability of selecting an appropriate agent is
high. Communication overhead would be low as it would be needed
only for determining the winner of the lottery.

Selecting an agent by auction or voting (using information such as relia-
bility and past performance of components). Since this is a single-input,
single-output sub-system, an agent’s desire to perform a task would be
based on mitigating factors the agent knows or can deduce about itself,
such as speed, complexity, and reputation. These factors would help in
determining which agent is chosen to perform each task. It would be
the means for determining the agent’s bid in an auction or the value (or
weight) of an agent’s vote in an election. This method, while also based
on a single agent’s response, is a more intelligent choice since justifying
factors are involved in the selection. The domain is similar to that of the
lottery method.

Distributing the task to be performed into subtasks to individual agents.
This strategy would entail distributing the task to be performed into sub-
tasks to individual agents. The individual agents would be responsible
for processing only a subset of the original task. The subsets would then
be collected and combined to contribute to the single answer required
by the system. This methodology would increase speed as far as the
processor goes. If all agents are equally competent, then this method is
practical for a large problem that could be divided into smaller subsets.



On Building Robust Web Service-Based Applications 301

The problem of selecting an agent to perform a task, as well as distributing a
task among different agents has been largely discussed in previous Distributed
AI and Multi-Agent Systems literature, beginning with the Contract Net Proto-
col and extending through market approaches, auctions, and distributed plan-
ning (15, 3, 12).

A postprocessing approach would consist of all the agents performing the
task, followed by a decision on which one produced the best result. There are
four strategies applicable to this approach:

Taking the result of the agent whose processing was the fastest. A domain
in which the agents are sufficiently competent would be an appropriate
for this strategy.

Choosing the result given by most agents by voting. This is different from
the voting scheme above, in that the proposed output would be based on
a direct comparison of information. Agents would compare their results
to other agents and a running tally kept. The result with the most votes
is given as the final answer. To handle ties, a weight could be assigned
to each agent based on additional factors such as speed and reputation.

Making a decision only about controversial data subsets. This involved a
collaboration strategy where data is compared between agents so that any
common data subsets are kept and only a decision about controversial
data subsets have to be made. The decision about any controversial
subsets could be made by any of the methods mentioned. An average,
a minimum, or a maximum could be computed and utilized by such
collaboration methods.

Incremental voting. An agent is selected by some means already dis-
cussed. One agent’s result is compared to another’s and, if they are the
same, the result is forwarded. If the comparison is different or if more
comparisons are desired, then more agents are included before a result
is forwarded. A variation to this would be for agents to sample a subset
of the data and compare results. Agents who differ from the majority are
culled from the sampling, and comparisons continue until a single result
emerges.

A combination of the preprocessing and postprocessing approaches could also
be used. For example, more than one agent could be selected, using either
a random or a voting preprocessing approach and the result would then be
selected using one of the postprocessing approaches.

The preprocessing approaches by themselves are not representative of our
redundancy-based robustness proposal; however they are useful when imple-
menting a combined approach.



302

For the application examples presented in the next section, we controlled all
of the activities (collection of the Web services, development of the agents and
integration). In practice, there are different modes in which our approach can
be implemented:

An intermediary approach. A third-party business accesses the Web ser-
vices, provides agents for different combining approaches, and exposes
the multiagent system as a single Web service that will provide the result
produced by agreement among the agents.

WS consumers combine the redundant functionality. In order for this
option to be viable, agent implementations of the combining approaches
would have to be available, as well as tools for integrating them with the
Web services.

WS providers include the agent capabilities into their exposed Web ser-
vices. Standards for agent-based WS would need to emerge for the WS
providers to be able to do that.

Finally, the redundancy provider (one of the three above) would have to
decide on the number of WS and thus, the number of agents. More agents
lead to more robustness, but communication overhead and processor time are
limiting factors. Hence the redundancy provider needs to manage the trade-off
between cost and required reliability.

5. APPLICATION EXAMPLES

We collected a number of Web services, each offered by a different provider.
We then created an agent for each Web service. The agent provides access to the
Web service (through its WSDL definition) and has incorporated capabilities
to interact with others in order to jointly agree on a solution. The agents
were written in JADE9 and make use of the Java JAX-RPC10 and SAAJ11

APIs, as well as the Apache AXIS SOAP implementation12. The agents can
be viewed as SOAP clients with agent capabilities: i.e., protocols for handling
communication, negotiation, and interaction. We worked with WS for two
different domains: weather information and data sorting. In the following
subsections, we explain how we achieved robust Web service functionality for
each of these domains.

9http://sharon.cselt.it/projects/jade/
10http://java.sun.com/xml/jaxrpc/index.jsp
11http://java.sun.com/xml/saaj/index.jsp
12http://ws.apache.org/axis/



On Building Robust Web Service-Based Applications 303

5.1 WEB SERVICES FOR DATA SORTING

The sorting problem is defined as follows (5):

Input: A sequence of n numbers (a1, a2, ..., an)

Output: A permutation (reordering) (a′
1, a

′
2, ..., a

′
n) of the input se-

quence, such thata′
1 ≤ a′

2 ≤ ... ≤ a′
n.

Sorting is a fundamental operation in computer science (many programs use
it as an intermediate step), and as a result a large number of good sorting
algorithms have been developed.

Table 14.2. Sorting Algorithms Collected

Algorithm Features

C.A.R Hoare’s Quick Sort Input (java) data type: int array
Positive and negative numbers accepted

HeapSort Input (java) data type: int array
Positive and negative numbers accepted

QuickSort Input (java) data type: Byte array, Short array,
Integer array, Long array, Float array,
Double array, String array, Character array
Only positive numbers accepted

RadixSort Input (java) data type: int array
Only ten inputs accepted

For the development of this application we performed the following steps:

We collected a number of sorting algorithms, each provided by a different
programmer and therefore having different input and output signatures
and performance characteristics. Table 2 summarizes the algorithms
collected and information about them.

We made each algorithm available as a WS. Unlike the Weather Infor-
mation case described below, for this application we created the Web
services ourselves and publicized them (instead of using available ser-
vices). Available tools make it easy to perform this task. We used
AXIS Java2WSDL13 for generating the WSDL specification files from
the source code files of the sorting algorithms, AXIS WSDL2Java14 for

13http://ws.apache.org/axis/java/ant/axis-java2wsdl.html
14http://ws.apache.org/axis/java/ant/axis-wsdl2java.html



304

generating the sorting Web services’ interfaces, and the skeleton of the
classes from the WSDL specification files. We then filled the skeleton
files manually using the source code files of the sorting algorithms. To
make the sorting Web services available we used Tomcat15.

We then created a client for each Web service. AXIS WSDL2Java can
also be used to create files for the clients’ interfaces and classes: it
automatically generates the Java source code necessary to access the
Web service described in the WSDL file that it gets as input. We used it
for that purpose and then compiled the generated files.

We then used JADE for writing an agent for each client. JADE agents
communicate using the FIPA Agent Communication Language16 mes-
sages. Table 3 shows the core code of each agent. JADE automatically
invokes the setup method after the creation of the agent. On setup, each
agent performs the following steps

– Register SL (FIPA Semantic Language17) as the content language
to use for the ACL messages.

– Register the ontology that they will use in those messages, which
defines the terms that the agent will be able to understand. We
defined an ontology called SortingOntology using JADE support
for ontologies18. Our ontology consist of three elements: the Re-
questAgentAction agent action, the ResultPredicate predicate, and
the ErrorPredicate predicate. Table 4 lists the vocabulary that each
one defines.

– Register its service with the Directory Facilitator agent (DF).

– Initiate all the behaviors that the agent can handle. We defined a
behavior for each of the approaches for combining the agents’ func-
tionalities that the agent is able to involve. We implemented a com-
bination of a distributed preprocessing approach and a performance-
based postprocessing approach (the agent whose processing was
the fastest), as well as a voting postprocessing approach (the result
given by most agents)19. Figure 2 depicts a UML diagram of the
logistics of the system for the combined approach. The agents use
the FIPA-request protocol to communicate and agree on a solution.
Upon a user request, a BrokerAgent performs a search with the DF

15http://jakarta.apache.org/tomcat/
16http://www.fipa.org/specs/fipa00061/
17http://www.fipa.org/specs/fipa00008/
18sharon.cselt.it/projects/jade/doc/CLOntoSupport.pdf
19The application can be accessed at http://www.cse.sc.edu/ zavalagu/redundancy/sorting



On Building Robust Web Service-Based Applications 305

for all the sorting agents available and sends a Request message
with a RequestAgentAction as content to all of them. Each agent
decides, based on the input data type, whether its component is ca-
pable of executing the user request. Any agent whose component is
capable of executing the user request attempts to run it and sends to
the BrokerAgent either an Inform message with a ResultPredicate
as content, or a Failure message with an ErrorPredicate as content.
The first valid result received by the BrokerAgent is drawn. In this
way, over a period of time, the fastest and most available compo-
nents are chosen the most often, although some connections are
very slow or sometimes not available.

Table 14.3. Agents’ Setup Method

protected void setup()
{

manager.registerLanguage(new jade.content.lang.sl.SLCodec());
manager.registerOntology(SortingOntology.OntologyScheme.getInstance());
registerService();
addBehaviour(new PerformanceBasedBehaviour(this));
addBehaviour(new VotingBehaviour(this));

}

Taken together, our agents are applicable to a wider set of scenarios than any
individual sortingWeb service. Some of the agents accept only integer numbers
as input, others can handle floating-point numbers, and others accept strings.
One allows ascending and descending ordering, and the rest only ascending.
Finally, some connections are faster and steadier than others.

Table 14.4. Terms defined in the SortingOntology ontology

Element Vocabulary
RequestAgentAction jade.util.leap.List elements java.lang.String elementsType
ResultPredicate jade.util.leap.List result
ErrorPredicate java.lang.String errorMessage

5.2 WEB SERVICES FOR WEATHER INFORMATION

For this case, we made use of availableWeb capabilities provided by different
parties. Many repositories of Web services are publicly available for use and



306

some of them include weather report capabilities. The basic functionality that
each service provides consists of giving the temperature for some locale in the
world. Some provide additional functionalities, such as forecasts. Table 5 lists
the Web services that we used and their providers.

 

REQUEST (RequestAgentAction) 

INFORM (ResultPredicate) 

FAILURE (ErrorPredicate) 

Figure 14.2. Interaction logistics of the agent-based Web services for sorting

We generated the client for the weather WS in exactly the same way that
we did for the sorting WS. The creation of the agents for the weather WS was
also the same as for the sorting WS, except that for this experiment we only
implemented one approach for combining the agents’ functionalities and we
defined a new ontology called WeatherOntology.



On Building Robust Web Service-Based Applications 307

We implemented a combination of a distributed preprocessing approach and
a performance-based postprocessing approach20. The protocol that the agents
use is the same as the one used for the Sorting domain and is depicted in Figure
2.

Again, taken together, our weather agents work for a wider set of scenarios
than any individual weather Web service. Some of them accept only a USA
zip code as input. Others give the weather for different countries; i.e., one of
them works only for Iraq (asking for the name of the city) and USA (asking
for the zip code), while another can give the weather for almost any country
by means of an airport code. Some of them give temperatures in Fahrenheit,
others in Celsius, and others in both scales. Also, some WS provide only the
current temperature, while others provide additional information such as n-day
forecasts, humidity, sky, wind, visibility, location, etc. The WS vary also on
the additional methods provided to make their use easier, such as a list of the
countries for which they can give the weather, a list of airports in a particular
country or region, a list of regions in a country, etc. Finally, some connections
are faster than others as well as having more constant throughput.

6. FUTURE WORK

Just as there are different ways that a group of people can reach conclusions
and make decisions, so are there different ways that a group of agent-wrapped
software components can combine their results. We are continuing to study
alternative ways for combining the agents’ functionality; i.e., a combination of
preprocessing and postprocessing approaches, or a standby approach where re-
dundant components in the system are not used until a primary service provider
fails. Also, different techniques for each approach can be tested; i.e., instead of
choosing the outcome reached by a majority of the agents in the postprocessing
approach, we could use the average of the results (for the particular domain,
such as weather).

Our interest is in experimentation on large-scale systems; i.e., wrapping
agents around redundant software components written in different computer
languages, using different operating systems, and distributed geographically.
We will continue our development of the Web services testbed.

A more interesting solution is to imagine a range of developers from a broader
class of our society. It is possible that through well programmed and verified
agent wrappers, software of a variety of types from a variety of developers
could be accommodated. Just as the Web enables a wide range of people to
publish and distribute information, this would enable more people to develop

20The application can be accessed at http://www.cse.sc.edu/ zavalagu/redundancy/testbed



308

Table 14.5. Weather Web Services and its Providers

Provider URL Web Service Func-
tionality

InnerGears Web Services
(http://www.innergears.com/
WebServices.aspx)

http://www.innergears.com/ Web-
Services/WeatherByZip/ Weather-
ByZip.asmx?WSDL

Temperature by zip
code

InnerGears Web Services
(http://www.innergears.com/
WebServices.aspx)

http://www.innergears.com/ Web-
Services/WorldWeatherByICAO/
WorldWeatherByI-
CAO.asmx?WSDL

Weather report by
airport code

InnerGears Web Services
(http://www.innergears.com/
WebServices.aspx)

http://www.innergears.com/
WebServices/StateWarnings/
StateWarnings.asmx?WSDL

Warnings report by
state

InnerGears Web Services
(http://www.innergears.com/
WebServices.aspx)

http://www.innergears.com/
WebServices/ForecastByZip/
ForecastByZip.asmx?WSDL

Forecast report by
zip code

XMethods Demo Services
(http://www.xmethods.net)

http://www.xmethods.net/sd/
TemperatureService.wsdl

Temperature by zip
code

Capescience (capescience
.capeclear.com/ Webservices
/index.shtml)

http://live.capescience.com/ws
dl/GlobalWeather.wsdl

Weather report by
country, region,
search keyword,
and airport code

Capescience (capescience
.capeclear.com/ Webservices
/index.shtml)

http://live.capescience.com/
wsdl/AirportWeather.wsdl

Humidity, location,
pressure, sky con-
ditions, summary,
temperature, visi-
bility, and wind by
airport code

Juice Software (Webservices
.juice.com)

http://Webservices.juice.com
:4646/temperature.wsdl

Temperature by zip
code

UNISYS Sample Web Ser-
vices (http://www.unisysfsp
.com/ default.aspx?catID=17)

http://weather.unisysfsp.com/ PD-
CWebService/ WeatherServices
.asmx?WSDL

Temperature and
weather report by
zip code

Ejse Web Services http://www.ejse.com/ WeatherSer-
vice/ Service.asmx?wsdl

Weather report by
zip code and Iraq
city name



On Building Robust Web Service-Based Applications 309

and contribute behavior. The resultant systems of aggregated behavior, such
as those for finances, electrical power distribution, and telecommunications
whose behavior affects the lives and well being of the members of a society,
would be more likely to operate on behalf of those members.

ACKNOWLEDGMENTS

This work was supported in part by theAdvanced Research and Development
Activity (ARDA).Any opinions, findings and conclusions or recommendations
expressed in this material are those of the authors and do not necessarily re-
flect the views of the U.S. Government. This work was also supported by the
U.S. National Science Foundation under grant number IIS-0083362.

REFERENCES

1. Algirdas Avizienis, "The Methodology of N-version Programming," Software Fault Tol-
erance, edited by M. Lyu, John Wiley & Sons, 1995, pp. 23–46.

2. Paul Buhler and Jose M. Vidal, "Semantic Web services as Agent Behaviors," Agentci-
ties: Challenges in Open Agent Environments, edited by B. Burg, J. Dale, T. Finin, H.
Nakashima, L. Padgham, C. Sierra, and S. Willmott, Springer-Verlag, Berlin, 2003, pp.
25–31.

3. Adam Cheyer, and David Martin, "The OpenAgentArchitecture," Journal ofAutonomous
Agents and Multi-Agent Systems, vol. 4 , no. 1, March 2001, pp. 143–148.

4. Helder Coelho, Luis Antunes, and L. Moniz, "On Agent Design Rationale," Proc. XI
Simposio Brasileiro de Inteligencia Artificial, Fortaleza (Brasil), October 17–21, 1994,
pp. 43-58.

5. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein "Intro-
duction to Algorithms," The MIT Press, Cambridge, Massachusetts, London, England,
McGraw-Hill Book Company, Second Edition, 2001.

6. Jonathan Dale, Akos Hajnal, Martin Kernland, and Laszlo Zsolt Varga, "Integrating Web
services into Agentcities", Agentcities Technical Recommendation Document.
Available at: http://www.agentcities.org/rec/00006/

7. Vance T. Holderfield and Michael N. Huhns, "A Foundational Analysis of Software Ro-
bustness Using Redundant Agent Collaboration," Proc. Int’l Workshop on Agent Tech-
nology and Software Engineering, Erfurt, Germany, October 2002.

8. Michael N. Huhns, Vance T. Holderfield, and Rosa Laura Zavala Gutierrez, "Achieving
Software Robustness Via Large-Scale Multiagent Systems," Software Engineering for
Large-Scale Multi-Agent Systems, edited by A. Garcia, C. Lucena, F. Zambonelli, A.
Omicini, and J. Castro, Springer Verlag, Lecture Notes in Computer Science, Volume
2603, Berlin, 2003, pp. 199–215.



310

9. Michael N. Huhns: "Software Agents: The Future of Web Services," Agent Technologies,
Infrastructures, Tools, andApplications for E-Services: NODe 2002Agent-Related Work-
shops, Erfurt, Germany, October 7–10, 2002, edited by R. Kowalczyk, J. P. M¨uller, H.
Tianfield, R. Unland, Springer-Verlag Heidelberg, Lecture Notes in Computer Science,
2592, 2003, pp. 1–18.

10. Michael N. Huhns, "Agents as Web services," IEEE Internet Computing, Volume 6, 2002,
pp. 93–95.

11. Nicholas R. Jennings, "On Agent-Based Software Engineering," Artificial Intelligence
117, 2 (2000), 277–296.

12. David Martin,Adam Cheyer and Douglas Moran, "The OpenAgentArchitecture:A Frame-
work for Building Distributed Software Systems," Applied Artificial Intelligence, vol. 13,
no. 1-2, 1999, pp. 91–128.

13. Brian Randell, "System Structure for Software Fault-Tolerance," IEEE Transactions on
Software Engineering, Vol. SE-1, pp. 220-232, 1975.

14. Brian Randell and Jie Xu, "The Evolution of the Recovery Block Concept," Software
Fault Tolerance, edited by M. Lyu (Trends in Software series), pp.1–22, John Wiley &
Sons, 1995.

15. Reid G. Smith, "The contract net protocol: High-level communication and control in a
distributed problem solver," Readings in DistributedArtificial Intelligence, edited byA. H.
Bond and L. Gasser, Morgan Kaufmann Publishers Inc., California, 1988, pages 357–366.

16. Ian Sommerville, "Software Engineering," Fifth edition, Addison-Wesley, 1995


