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Abstract. This paper reports on initial investigations of an agent ar-
chitecture that embodies philosophical and social layers. A key feature
of the architecture is that agent behavior is constrained by sets of agent
societal laws similar to Asimov’s laws of robotics. In accordance with
embedded philosophical principles, agents use decision theory in their
negotiations to evaluate the expected utility of proposed actions and use
of resources. This enables more robust decision-making and task execu-
tion. To evaluate the robustness, our investigations have included the
effect of misinformation among cooperative agents in worth-oriented do-
mains, and active countermeasures for dealing with the misinformation.
We demonstrate that propagating misinformation is against the princi-
ples of ethical agents. Moreover, such agents are obligated to report on
misbehavior, which minimizes its effects and furthers the progress of the
agents and their society towards their goals. We also show how dedicat-
ing some agents to specialized tasks can improve the performance of a
society

1 Introduction

The improvements in Internet-based software agents that are underway at many
laboratories and corporations are fulfilling the promise of personalized, friendly
Web services. The improvements come at a cost, however, of greater implemen-
tation complexity. Thus, as we gradually rely more on the improved capabilities
of these agents to assist us in networked activities, such as e-commerce and
information retrieval, we also understand less about how they operate.

For example, consider future NASA missions. As they involve longer du-
rations, more remote locations, and more complex goals, the software systems
controlling them will of necessity become larger, more intricate, and increasingly
autonomous. Moreover, the missions must succeed in the face of uncertainties,
errors, failures, and serendipitous opportunities. While small, well-specified sys-
tems with limited types of known external interactions can be proved correct,
consistent, and deadlock-free via formal verification, such conditions do not hold
for concurrent network-based systems, and constructing large error-free software



systems appears not to be achievable by current means. Additionally, the large
size of the systems and the unknowns to which they will be subjected cause
them to be untestable to even find out if, when, or where they might fail. We
will have no choice but to trust these crucial but complex software systems, so
there should be a principled basis for our trust.

Abstraction is one technique we use to deal with complexity. What is the
proper kind and level of abstraction for dealing with complex agent-based soft-
ware? We think it will be reasonable to endow agents with a philosophy, and then
describe their expected behavior in terms of their philosophy. By understanding
their philosophies, we can use and interact with the agents more effectively. We
can trust the agents to act autonomously if they embrace ethical standards that
we understand and with which we agree. We expect that this will lead to fault
tolerance, graceful degradation, recovery, and, ultimately, trust in our systems.
Also, an explicit philosophy might help the agents understand and anticipate
each other’s behavior.

2 Philosophical Agents

To endow agents with ethical principles, we as developers need an architecture
that supports explicit goals, principles, and capabilities (such as how to negoti-
ate), as well as laws and ways to sanction miscreants [16]. Figure 1 illustrates
such an agent architecture that can support both trust and coherence, where
coherence is the absence of wasted effort and progress toward chosen goals [8].
An agent-based approach is inherently distributed and autonomous, but when
the communication channels that link the agents are bandwidth-constrained or
noisy, the agents will have to make decisions locally, which we hope will be co-
herent globally, as well as worthy of trust. For agents to interact effectively, they
will have to communicate their own principles and model the principles of others.

Awareness of other agents and of one’s own role in a society, which are implicit
at the social commitment level and above, can enable agents to behave coherently
[9]. Tambe et al. [18] have shown how a team of agents flying helicopters will
continue to function as a coherent team after their leader has crashed, because
another agent will assume the leadership role. More precisely, the agents will
adjust their individual intentions in order to fulfill the commitments made by
the team.

If the agents have sufficient time, they can negotiate about or vote on which
agent should become the new leader. When time is short or communication is
not allowed, the agents can follow mutually understood social conventions, such
as the agent with the most seniority becomes the new leader.

The lowest level of the architecture in Fig. 1 enables an agent to react to im-
mediate events [12]. The middle layers are concerned with an agent’s interactions
with others [5] [6] [7] [13], while the highest level enables the agent to consider
the long-term effects of its behavior on the rest of its society [11]. Agents are typ-
ically constructed starting at the bottom of this architecture, with increasingly
more abstract reasoning abilities layered on top.
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Fig. 1. An architecture for a philosophical agent. The architecture defines layers of
deliberation for enabling an agent to behave appropriately in society.

2.1 Ethical Abstractions

Ethics is concerned with codes and principles of moral behavior [4]. Most ethical
theories distinguish between the concepts of right and good:

— Right is that which is right in itself
— Good is that which is good or valuable for someone or for some end.

Should software agents favor right or good? Deontological theories emphasize
right before good. They oppose the idea that the ends can justify the means, and
they place the locus of right and wrong in autonomous adherence to moral laws
or duties. A proponent of these, the German philosopher Immanuel Kant (1724-
1804), defined his categorical imperative as an absolute and universal moral law
based entirely on reason. For right action by an agent, the categorical impera-
tive would be: Agents should act as they think all other agents should act. For
example, breaking a promise would not be right, because if all agents did it, the
system they supported would not function.

Kant’s categorical imperative does not contain a way to resolve conflicts of
duty. Also, an action is not wrong unless the agent explicitly intends for it to do
wrong. For example, an agent on a NASA deep space probe who is responsible
for managing communications with ground control would not be wrong to shut
down the communications link for diagnostics, even if that might leave other
agents on the probe unable to communicate, because the agent did not intend
to disrupt communications. Deontological theories can also legitimize inaction,
even when inaction has predictably bad effects, if the agent did not intend those
effects. For example, an agent could morally justify not turning off an overheating
component, if it did not intend for the component to overheat.

In contrast, teleological theories choose good before right: something is right
only if it maximizes the good; in this case, the ends can justify the means.
In teleological theories, the correctness of actions is based on how the actions



satisfy various goals, not the intrinsic rightness of the actions. Choices of actions
can maximize either individual or societal good, where good may be pleasure,
preference satisfaction, interest satisfaction, or aesthetic ideals.

What agents need to decide actions are not just universal principles (each
can be stretched) and not just consequences, but also a regard for their promises
and duties. Agents have prima, facie duties to keep promises, help others, repay
kindness, etc. [11]. In the context of a NASA mission, an agent could repay a
kindness to another agent by offering, without being asked, to donate a resource
such as excess battery power. While agents have such duties, there is no ranking
among the duties, which are instead defeasible. For example, an agent on a
NASA deep space probe might find it acceptable to monopolize a communication
channel to ground control to the detriment of other agents, because it overvalues
the success of its own task without regard to the consequences for other agents.

2.2 Machine Ethics

Isaac Asimov proposed a moral philosophy for intelligent machines in a Hand-
book of Robotics [1] that defined three Laws of Robotics. These were subse-
quently augmented by the Zeroth Law [2]. An adaptation of these laws for a
collection of agents sent on a NASA mission might be:

Principle 1: An agent shall not harm the mission through its actions or
inactions.

Principle 2: Except where it conflicts with Principle 1, an agent shall not
harm the participants in the mission.

Principle 3: Except where it conflicts with the previous principles, an agent
shall not harm itself.

Principle 4: Except where it conflicts with the previous principles, an agent
shall make rational progress toward mission goals.

Principle 5: Except where it conflicts with the previous principles, an agent
shall follow established conventions.

Principle 6: Except where it conflicts with the previous principles, an agent
shall make rational progress toward its own goals.

Principle 7: Except where it conflicts with the previous principles, an agent
shall operate efficiently.

As a simple example of how such principles might apply, distributed systems,
which most Internet applications are, are susceptible to deadlocks and livelocks.
However, if the components of the distributed system obey these seven philo-
sophical principles, then the susceptibilities would disappear, because deadlock
and livelock would violate Principle 6.

2.3 Applying Ethics

A philosophical approach to distributed system design presupposes that the
components, or agents, can



— enter into social commitments to collaborate with others,
— change their mind about their results, and
— negotiate with others.

However, the ethical theories above are theories of justification, not of delib-
eration. An agent still has to decide what basic value system to use under any
ethical theory it might adopt.

The deontological theories are narrower and ignore practical considerations,
but they are only meant as incomplete constraints = that is, the agent can
choose any of the right actions to perform. The teleological theories are broader
and include practical considerations, but they leave the agent fewer options for
choosing the best available alternative. All of these ethical theories are single-
agent in orientation and encode other agents implicitly. An explicitly multiagent
ethics would be an interesting topic for study.

3 Methodology

The goal of our research is to evaluate the utility of different combinations and
precedence orderings of behavior-guiding principles. To make the most progress
toward our goal, we chose to use an agent-development toolkit (ZEUS) to pro-
vide most of the low-level functionality we need. We also selected the FIPA
ACL, because it is the closest to a standard agent communication language that
is available. We then chose an exploration type of scenario, in which a group
of agents move through a two-dimensional domain trying to find and retrieve
mineral samples.

We developed an initial set of four agent architectures. All agent architectures
use the same two algorithms for checking memory for previous mineral samples
and controlling the actual movement of the agents. The decision of which mineral
sample to move towards is defined separately for each agent.

Checking Memory
1. Check to see if there are mineral samples the agent remembers and has
not picked up that are currently out of the viewing area
2. If there are mineral samples in memory,
o determine the closest mineral sample to the agent from memory
e make a move of one space towards that mineral sample
3. Else if there are no mineral samples in memory, then make a random
move of one space along the current path.
Movement
1. The agent moves one position either in a random direction, if it has
chosen to move randomly, or in the direction of its chosen mineral sample
2. If the agent reaches the same position as the mineral sample it is search-
ing for, it picks up the mineral sample and then senses again.
3. If the agent reaches an empty spot, it senses again.
4. If the agent cannot move into a spot because there is another agent
already there, the agent attempts to make a random move of one space
along its current path.



Our baseline agent, termed self-interested, is purely self-interested and un-
aware of other agents. Conflicts and inefficiencies arise as agents of this type
attempt to pick up the same samples.

A more capable agent, termed cooperative, is aware of other agents and, by
estimating their behavior, attempts to avoid conflicts. It communicates its true
intentions to other agents, thereby reducing conflicts even further. It also com-
municates opportunities by which other agents might benefit, thereby improving
the overall societal performance towards a global mission.

A prevaricating agent pretends to be cooperative and instead provides mis-
leading information to other agents. By this behavior it hopes to make more
resources available for itself, but possibly at the expense of the other agents in
its society.

A specialized scout agent can travel faster and farther because it does not
gather any mineral samples, so its purpose is to aid the other agents in its
society by searching for and reporting on the locations of mineral samples. The
next section describes our experiments with these agents in different scenarios.

4 Evaluation

4.1 Scenario Considerations

We require a test scenario that will allow us to make clear comparisons between
the performances of agent architectures with different combinations and prece-
dence orderings of philosophical principles. There are several features that we
considered in selecting a scenario:

1. The scenario must justify multiple simultaneous tasks.

2. The tasks must be uniform to simplify performance evaluation.

3. It should be possible to carry out the tasks without explicit cooperation.
— Communication between agents should not be required.
— Global knowledge of the task scenario should not be required.

Based on these features, we considered abstract tasks such as:

. Exploring (rover-type exploration)

. Inspecting (inspecting a space station for damage from space debris)
. Gathering (collecting mineral specimens on a Mars)

. Building (space station construction)

. Delivering (transporting supplies to appropriate destinations)
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We then considered these abstract tasks in the context of future NASA sce-
narios involving unmanned probes, such as sample collection on Mars, evaluation
of asteroids, and exploration of the hypothesized liquid ocean beneath the icy
crust of Europa. This analysis indicated a large overlap between abstract gath-
ering and inspecting tasks and moderate overlap with exploring and delivering
tasks.

Next, we considered a matrix of types of test cases. Essentially, the test matrix
is an enumeration of goal types, i.e., independent or shared, and combinations
of philosophical principles. The combinations are:



1. Independent agents; independent goals; various combinations of philosophi-
cal principles

2. Independent agents, shared goals; various combinations of philosophical prin-
ciples

3. Flat agent confederations; shared goals; various combinations of philosophi-
cal principles

4. Hierarchically organized agents; shared goals; various combinations of philo-
sophical principles

Metrics that we considered for evaluating performance include:

. Measure of independent goals accomplished
. Measure of shared goals accomplished

. Time required for goal accomplishment
Communication cost

. Resource usage

. Number of collaborative actions pursued
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4.2 Initial Agent Test Scenarios

We developed several test scenarios for our agent architectures based on a simu-
lated mineral specimen collection task on an unspecified planet. The test area is
a 60x45 rectangular area. The tests were run with n= 50, 100, 150, 200 mineral
samples with varying degrees of clustering. The degree of clustering ranged from
a random distribution of mineral samples at one end of the spectrum to a single
cluster of all n samples (the mother lode) at the other end. We did not allow
more than one mineral sample to occupy any given position.

Tests were run with m= 6, 12, 24 randomly distributed agents, each sharing
the same architecture. We also varied the size of the agent’s field of view, defined
as a v-by-v rectangle. All agents share the same size field of view in a given test
run. The value of v was varied in the range (v= 7, 9, 11). Each simulation lasted
for 100 time steps. At each step, each agent chose and executed one action from
its repertoire of capabilities.

We collected statistics for the total number of samples collected, the number
of samples collected per agent, and the number of cooperative actions taken
per agent, as well as averages and standard deviations. The results produced by
these experiments are documented [14] and include:

— Worth-Oriented Evaluation of Mission Success. On long-term mis-
sions, overall success will depend on the ability to conserve resources in
order to meet long-term objectives. In this study, we examined an agent
architecture that seeks to minimize the expenditure of resources in a dis-
tributed gathering task (the mineral sample collection scenario described
above). We used two types of cooperating agents: an early finishing agent
that terminates its activity after collecting its limit (8) of mineral samples,
and a continuing cooperative agent that continues to cooperate with other
agents after having collected its limit of samples by communicating to other



agents the existence of samples that it finds or relaying messages that it
receives.

— Detecting Misinformation from Agents. In order to achieve mission
robustness, the agent architecture must be able to handle misinformation. We
considered three different agent architectures for addressing misinformation.
In all three of these, agents keep track of the information they receive from
other agents and which agent they receive the information from, as well as

the originator of the information if it has been relayed.
1. The gullible agent architecture is an extension of the cooperative ar-

chitecture in which agents assume that all agents provide correct in-
formation. When an agent determines that information it receives does
not match its own direct observations, it classifies the agent from which
it received the information as malicious and ignores future information
provided by that agent.

2. The gullible-original agent architecture is a refinement of the gullible
agent architecture. The difference is that while the gullible agent dis-
believes all agents that it perceives to have proffered misinformation,
the gullible-original agent only discredits the agents from which it gets
information directly and not those from which it receives information
indirectly by relay through other agents.

3. The skeptical agent architecture, in contrast to the gullible and gullible-
original architectures, disbelieves all agents until it is able to verify
through observation that the information it receives is correct. In other

respects it conforms to the cooperative agent architecture.
— Passive Response to Misinformation. Once an agent determines that

another agent is responsible for misinformation, the passive response taken
is simply to ignore the agent that is perceived to be malfunctioning or ma-
licious.

— Active Response to Misinformation. Agents concluding that some agent

is malfunctioning or malicious report that agent to a coordinating agent.
Once the coordinating agent has received bad conduct reports from n distinct
agents, it terminates the malicious agent.

4.3 Agent Test Scenarios for a Large World

Our investigations next focused on the impact of role-division. To this end we
developed a scouting-agent architecture. The purpose of a scouting agent is to
scout for mineral samples and pass this information on to collection agents, which
then collect the samples. The collection agents are the same cooperative agents
described above. The scouting agent architecture differs from the cooperative
agent architecture in two principle areas. First, its mission only involves scouting
for mineral samples and communicating its finding to other agents. It does not
collect any samples. Second, it moves twice as fast as collection agents and is
able to communicate its findings over a much greater distance.

In order to evaluate a society comprised of scouting and collection agents
and make comparisons with self-interested agent societies and homogeneous co-
operative agent societies, we had to employ a larger simulation world than that



described in the previous section. The test scenarios for our agent architectures
are based on a simulated mineral specimen collection task on an unspecified
planet. The test area is a 180x135 rectangular area. This was constructed by
creating a 3x3 tiling of the 60x45 rectangular area world described in the previ-
ous section. The tests were run with n= 1800 total mineral samples. The samples
were grouped in randomly placed clusters of size s=1800, 450, 200, 100, 50. We
did not allow more than one mineral sample to occupy any given position.

All tests were run with m= 200 agents. The 200 agents were randomly dis-
tributed as 10 groups of 20 agents in the 9 tiles (recall the world is a 3x3 tiling of
rectangles of size 60x45). An agent’s field of view is defined as a v-by-v rectangle.
All agents collecting mineral samples share the same size field of view, 11x11.
Scout agents have a larger field of view of size 41x41. Scout agents are also able
to communicate their findings to agents within their 41x41 field of view. Each
simulation lasts for 300 time steps. At each step, an agent may take one action
from its repertoire of capabilities.

The simulations involved a comparison of three types of agent societies: ho-
mogeneous self-interested agents, homogenous cooperative agents, and a mixture
of scouting agents and cooperative agents. Fach of the following figures shows
the performance of the three types of societies under the same conditions. The
parameter that is varied is the number of clusters in the world. In all cases,
the sum of mineral samples in the clusters total 1800. Each of the simulations
was repeated 5 times with different randomly chosen starting positions for the
groups of agents. The same set of starting positions was used for each society
simulation. Thus, in each figure, each data point is an average over 5 runs.

Figure 2 is a summary of the entire set of tests. It shows the percentage of
mineral samples collected by each of the three architectures after the first 100
times steps. The parameter that is varied in this figure is the number of clusters in
the environment, ranging from one cluster containing all 1800 mineral samples
to 36 clusters each containing 50 mineral samples. The clusters are randomly
distributed.

Of interest in this figure is the relative change in performance between the
societies as the number of clusters increases. Starting with a single cluster, the
society employing scout agents performs better than the homogeneous coopera-
tive and homogeneous self-interested agent societies, this in spite of the fact that
20 of the 200 agents are scout agents and thus unable to collect mineral samples.
As the number of clusters increases, the difference in performance of the three
societies decreases.

This result suggests that the contribution of the scout agent with its enhanced
mobility and field of vision more than makes up for its inability to collect mineral
samples when considerable search is required, as is the case when there are few
large clusters. However, as the number of randomly distributed clusters increases,
the amount of search required decreases and the performance of the homogenous
cooperative agent society gradually matches and eventually surpasses that of the
heterogeneous society. In this setting the scout agent is less of an asset. If the



simulations are run long enough, the scout becomes a liability since it does not
itself collect mineral samples.

Another observation that can be made is that the greater the number and
distribution of clusters, the better the performance of the self-interested set of
agents. This is not surprising, since self-interested agents are not penalized as
heavily by their lack of cooperation when the mineral samples are distributed
more uniformly and are thus easier to chance upon.
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Fig. 2. Comparison of three architectures after 100 time steps according to number of
sample clusters in a large-world environment.

In Fig. 3, the evolution of sample collection for each society is displayed over
a period of 300 time steps. In this figure, all simulations occur in the same large-
world environment in which there is a single large cluster containing all 1800
mineral samples. The data points at time step 100 are in fact the same data
points shown for 1 cluster in Fig. 2. Figure 3 shows in detail how the scouting
society develops an initial performance advantage and how this advantage with
respect to the homogeneous cooperative society is gradually lost over time as
information is propagated between agents in the homogeneous cooperative soci-
ety. The initial advantage that the scouting society enjoys is due to the rapidity
with which the scouts are able to investigate their world. While agents in the
homogeneous cooperative society are not able to search as rapidly or directly
communicate over as great a distance as scout agents, their steady cooperation
allows them to reach the performance level of the scouting society at the end of
300 time steps. This figure also shows that cooperative behavior has a decided
advantage compared to a self-interested approach when considerable search is
required to locate a single large cluster.
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Fig. 3. Comparison of three agent architectures in a large-world environment contain-
ing a single large cluster of samples.

As the number of clusters is increased, the benefit provided by the scout
agent’s ability to rapidly investigate the world is diminished. Figure 4 shows
the performance of the three agent societies in a large world environment where
there are four randomly positioned clusters, each containing 450 mineral sam-
ples. Under these conditions, the scout agent society no longer has a performance
edge over the homogeneous cooperative agent society. However, enough search-
ing is required to find the clusters so that a cooperative approach significantly
outperforms the non-cooperative approach of the self-interested agents. Another
interesting observation is that for both cases of cooperative societies, the collec-
tion of mineral samples tapers off after the first 200 time steps. During the last
100 times steps of the simulation, very few additional samples are collected. We
hypothesize that the agents have unevenly distributed themselves around the
clusters, so that those agents that have not reached their carrying capacity are
too far away from other clusters and most likely out of communication range
to be able to locate any uncollected samples before the end of the simulation is
reached.

Increasing the number of clusters even more reduces the benefit provided
by cooperation. Figure 5 shows the performance of the three agent societies in
a large world environment where there are nine randomly positioned clusters,
each containing 200 mineral samples. Under these conditions, the scout agent
society no longer has a performance edge over the homogeneous cooperative
agent society. In fact, there are only 180 agents collecting samples in the scout
society. As can be seen in this figure, after 100 times steps the homogeneous
cooperative agent society with 200 agents collecting samples performs better.

More striking is the performance of the non-cooperating self-interested agent
society. Its performance is now approaching that of the two cooperating agent
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Fig. 4. Comparison of three agent architectures in a large-world environment contain-
ing four clusters.

societies. In simulations with even larger numbers of smaller clusters there is vir-
tually no difference between the performance of the self-interested agent society
and the homogeneous cooperative agent society. In contrast, the performance of
the scout agent society is slightly lower, because it contains 20 fewer collection
agents.

5 Conclusions

The agents we construct and the systems they implement, manage, and enact
must be trustworthy, ethical, parsimonious of resources, efficient, and failing all
else rational. What we are investigating differs from current work in software
agents in that:

— We are not researching new agent capabilities per se

— We are not developing an agent-based system for a new application domain

— We are investigating how agents can be the fundamental building blocks
for the construction of general-purpose software systems, with the expected
benefits of robustness and autonomy

— We are characterizing agents in terms of mental abstractions, and multiple
agents in terms of their interactions. These abstractions matter because an-
ticipated applications go beyond traditional metaphors and models in terms
of their dynamism, openness, and autonomy.

The benefit of this architecture to complex missions such as future NASA
planetary and deep space missions is fourfold: (1) it will support missions of
much greater complexity than are possible under the current model of earth-
based control, (2) it will reduce costs by minimizing the amount of earth-based
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Fig. 5. Comparison of three agent architectures in a large-world environment contain-
ing nine clusters.

support required for missions, (3) it will eliminate communication time lag as
a significant factor in local task execution, providing the ability to react to
and take advantage of serendipitous events, and (4) it will significantly enhance
mission robustness. The development of the proposed architecture builds on
developments in decision theory, agent societies, trusted systems, and ubiquitous
computing.
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