
Multiagent Systems in Information-Rich

Environments

Michael N. Huhns1? and Munindar P. Singh2??

1 Department of Electrical and Computer Engineering
University of South Carolina
Columbia, SC 29208, USA

huhns@sc.edu
2 Department of Computer Science
North Carolina State University
Raleigh, NC 27695-7534, USA

singh@ncsu.edu

Abstract. Information-rich environments are the open environments
that characterize most of the modern applications of computing technol-
ogy. The applications include ubiquitous information access, electronic
commerce, virtual enterprises, logistics, and sensor integration, to name
but a few. These applications di�er from conventional database appli-
cations not only in the nature and variety of information they involve,
but also in including a signi�cant component that is beyond the infor-
mation system per se: the creation, transformation, use, and ultimate
fate of information. The environments are typi�ed only by the large
amounts and varieties of information they include, and whose e�ective
and e�cient management is key to the above applications. Multiagent
systems (MAS) are an important paradigm for building complex infor-
mation systems, especially cooperative ones. We describe how cooper-
ative information system architectures have evolved a set of common
types of computational agents. We also describe two approaches that
address complementary aspects of MAS construction. These approaches
may be considered as components of our ongoing research program on
interaction-oriented programming.

1 Introduction

Agents and multiagent systems (MAS) are an emerging paradigm for software
development, especially of the next-generation large-scale information systems
known as cooperative information systems (CIS) [6]. CIS is a research area that
syntheszes results from databases and arti�cial intelligence. It is the study of
multiagent systems and organizational and database abstractions geared toward
the large, open, heterogeneous information environments of today. CIS occur

? Supported by the Defense Advanced Research Projects Agency.
?? Supported by the NCSU College of Engineering, the National Science Foundation

under grants IRI-9529179 and IRI-9624425 (Career Award), and IBM corporation.



in several important applications, such as enterprise integration and electronic
commerce.

Numerous de�nitions of agents are known in the literature [3, 5, 8]. Indeed,
the only agreement seems to be that there is a range of de�nitions! Some of
the important properties of agents include autonomy, adaptability, and inter-
activeness, but exceptions reveal that an agent need not have these properties.
However, we believe that agentsmust be capable of interacting with other agents
at the social or communicative level. We distinguish social or communicative in-
teractions from incidental interactions that agents may have as a consequence
of existing in a shared environment.

Indeed, we would go so far as to claim that the potential for participation
in a multiagent system is an essential property of agents. We defend this view
more carefully in [4, 5]. In general, we take the view, in sympathy with Wegner
[12], that interaction is a key extension beyond traditional computer science. In
broad terms, the goal of this paper is to outline what interaction primitives are
suitable for multiagent systems, and how they may be incorporated in designing
and implementing them.

1.1 Information-Rich Environments

Information-rich environments have been around for a long time. We previously
de�ned them in broad terms as environments consisting of a large number and
variety of distributed and heterogeneous information sources [5]. The associated
applications are varied. They involve the purely informational ones, such as
database access, information malls, workow management, electronic commerce,
and virtual enterprises. They also include the information component of physical
applications, such as distributed sensing, manufacturing, transportation, energy
distribution, and telecommunications. By way of distinction, open environments

{ Span enterprise boundaries
{ Have components that are heterogeneous in the underlying database man-
agement systems used, or the semantics associated with the information
stored or manipulated

{ Comprise information resources that can be added or removed in a loosely
structured manner

{ Lack global control of the content of those resources, or how that content
may be updated

{ Incorporate intricate interdependencies among their components.

Although information-rich environments often involve a signi�cant non-information
system component, they are still amenable to specialized multiagent systems.

Cooperative Information Systems are multiagent systems with organizational
and database abstractions geared to open environments. Figure 1 shows a CIS
schematically. In this �gure, we consider an environment consisting of a variety
of information resources, coupled with some kind of a semantic directory or
ontology for the domain of interest. The semantic directory contains information

2



about the resources, including any constraints that apply to their joint behavior.
Each component of the environment, as well as its human user(s), is modeled as
associated with an agent. The agents capture and enforce the requirements of
their associated parties. They interact with one another appropriately, and help
achieve the necessary robustness and exibility.

Semantic Directory
and Resource

Constraint Base

Database
Resources

Text
Resources

Multimedia
Resources

User

Fig. 1. A schematic view of a cooperative information system, with agents representing
the components

Information access involves �nding, retrieving, and fusing information from
a number of heterogeneous sources. At the level of abstraction that concerns
CIS, we are not concerned with network connectivity or the formatting vari-
ations of data access languages. Rather, our concern is with the meaning of
the information stored. It is possible, and indeed common, that when di�erent
databases store information on related topics, each provides a di�erent model
of it. The databases might use di�erent terms, e.g., employee or sta� to refer

3



to the same concept. Worse still, they might use the same term to have di�er-
ent meanings. For example, one database may use employee to mean anyone
currently on the payroll, whereas another may use employee to mean anyone
currently receiving bene�ts. The former will include assigned contractors; the
latter will include retirees. Consequently, merging information meaningfully is
nontrivial. The problem is exacerbated by advances in communications infras-
tructure and competitive pressures, because di�erent companies or divisions of
a large company, which previously proceeded independently of one another, are
now expected to have some linkage with each other.

The linkages can be thought of as semantic mappings between the applica-
tion (which consumes or produces information), and the various databases. If
the application somehow knows that employee from one database has a certain
meaning, it can insert appropriate tests to eliminate the records it does not need.
Clearly, this approach would be a nightmare to maintain: the slightest changes in
a database would require modifying all the applications that consume its results!

A promising approach is to use mediators [?]. A mediator is a simpli�ed agent
that acts on behalf of a set of information resources or applications. Figure 2
shows a mediator architecture. The basic idea is that the mediator is responsible
for mapping the resources or applications to the rest of the world. Mediators
thus shield the di�erent components of the system from each other. To construct
mediators e�ectively requires some common representation of the meanings of
the resources and applications they connect. Such a representation is called an
ontology [?], and it is often managed by its own specialized agent.

1.2 Carnot

In order to best understand the work described below, it is useful to review the
Carnot project, in which the authors participated. Some of the following ideas
had their genesis in the experience gained with Carnot.

A number of innovations were introduced in the Carnot project|these are
discussed in [11, 15]. What is most relevant here are the notions of the semantic
services and the distribution services. The semantic services included tools for
enterprise modeling and model integration. These tools were used to generate
mappings among di�erent resources, modeled in terms of their schemas and ter-
minologies. The mappings were based on a shared ontology for the given domain
of interest [14]. The semantics services provided the basis for agent interopera-
tion, letting the agents use models of each other's resources in interacting in a
desirable manner. This is similar in some respects to mediators [13].

The distribution services managed logical data access for both retrieval and
updates. They included tools such a common interpretive execution environment
as well as a distributed communicating agent facility. The distribution services
handled the functionality of workow management, in a low-level distributed
computing fashion and in a high-level agent-based fashion.

Thus, Carnot used agents to provide support for relaxed, distributed, concur-
rent transactions across heterogeneous databases. Carnot was, however, focused

4



Ontology
Agent

Application
Program

Mediator
Agent

Broker
Agent

Database Resource Agent Database Resource Agent

Query or
Update
In SQL

Reply

Reg/Unreg
(KQML)

Reg/Unreg
(KQML)

Mediated
Query (SQL)

Reply

Schemas
(CLIPS)

Reply

Mediated
Query (SQL)

Ontology
Forms

User Interface
Agent

ReplyReg/Unreg
(KQML)

Reg/Unreg
(KQML)

Fig. 2. Agent architecture for a cooperative information system based on a mediator
agent

5



on the problems of enterprise integration within a closed environment, where the
component databases were known in advance and �xed.

Of the experiences gained with Carnot, two main observations apply to the
enhancements needed to apply cooperative information systems in more general
settings. First, although the task of semantic integration was greatly facilitated
by the tools developed during Carnot, enhanced integration tools were needed
to handle greater varieties of information resources made available by the web.
Second, semantic integration was mostly restricted to the static aspects of the
information resources, i.e., their schemas and data values, but not for their dy-
namic aspects, such as their processes and interactions among them. A better
understanding of processes, especially as they apply in open environments, is a
prerequisite for the integration of the dynamic aspects. There has been some re-
lated work in software engineering [2] , but it is mostly geared to single processes,
not their interaction.

This paper discusses the results we have obtained along the above two lines
of thought.

1.3 MAS Engineering

Although multiagent systems have been known for a number of years and practi-
cal applications of them are spreading, they are still being built in a more or less
ad hoc manner. Prevailing techniques do not support the fundamental properties
that make MAS attractive.

Just as for other systems, engineering a multiagent system presupposes the
existence of tools and methodologies, which in turn presuppose the existence
of suitable representational frameworks and clean theories. As one would expect
with MAS being a new area, the state of the art is mixed. Some problems are well-
studied or there are clearer inputs from other disciplines|for these, we are seeing
useful and practical tools emerging. Other problems are not as well-studied, and
the inputs from related disciplines are not applicable to MAS needs, and for
these the theories are still begin explored. The approaches described below can
be seen as one of each kind.

1.4 Interaction-Oriented Programming

Accordingly, we have been pursuing a research program termed Interaction-
Oriented Programming (IOP) to develop and study primitives for the speci�-
cation of systems of agents and constraints on their behavior. These primitives
include societies, the roles agents may play in them, what capabilities and com-
mitments require and what authorities they grant. Agents can autonomously
instantiate abstract societies by adopting roles in them. The creation, opera-
tion, and dissolution of societies are achieved by agents acting autonomously,
but satisfying their commitments. A commitment can be canceled, provided the
agent then satis�es the metacommitments applying to its cancelation.

The representations for IOP must support several functionalities, which typ-
ically exist informally, and are either e�ected by humans in some unprincipled

6



way, are hard-coded in applications, or are buried in operating procedures and
manuals. Information typically exists in data stores, or in the environment or
with interacting entities. Existing approaches do not model the interactive as-
pects of the above. The IOP contribution is that it

{ enhances and formalizes ideas from di�erent disciplines

{ separates them out in an explicit conceptual metamodel to use as a basis for
programming and for programming methodologies

{ makes them programmable

1.5 Organization

Section 2 describes some components of an architecture of a multiagent system
for information-rich environments. Section 3 describes the enhancements neces-
sary to apply semantic integration to an open environment. Section 4 introduces
a form of commitments that is suited to multiagent systems, shows how they
can be operated on, and used to specify social policies. Section 5 applies these
notions to formalize applications in electronic commerce and virtual enterprises.
Section 6 concludes with a discussion of future directions.

2 Architecture

It is a sign of their maturity that cooperative information systems are begin-
ning to evolve a standard set of agent types. The resultant architecture renders
development and deployment of CISs much easier, and essentially raises the
abstraction level at which CISs can be described. Some of these are

User agents, which have the following characteristics:

{ Contain mechanisms to select an ontology

{ Support a variety of interchangeable user interfaces, such as query forms,
graphical query tools, menu-driven query builders, and query languages

{ Support a variety of interchangeable result browsers and visualization
tools

{ Maintain models of other agents

{ Provide access to other information resources, such as data analysis tools,
workows, and concept learning tools.

Broker agents implement a \yellow pages" and \white pages" directory ser-
vice for locating appropriate agents with appropriate capabilities. Brokers
manage a namespace service, and may have the ability to store and forward
messages, and locate message recipients. Broker agents also function as com-
munication aides, by managing communications among the various agents,
databases, and application programs in the environment.

Resource agents come in a variety of common types, depending on which
resource they are representing, and provide the following capabilities:

7



{ Wrappers implement common communication protocols and translate
into and from local access languages. For example, a local data-manipulation
language might be SQL for relational databases or OSQL for object-
oriented databases.

{ SQL database agents manage speci�c information resources
{ Data analysis agents apply machine learning techniques to form logical
concepts from data or use statistical techniques to peform data mining

{ Resource agents apply the mappings that relate each information re-
source to a common context to perform a translation of message seman-
tics. At most n sets of mappings and n resource agents are needed for
interoperation among n resources and applications, as opposed to n(n-1)
mappings that would be needed for direct pairwise interactions among
n resources without agents (see Figure 3).

Execution agents, which might be implemented as rule-based knowledge sys-
tems, e.g., in CLIPS, are employed to
{ Supervise query execution
{ Operate as script-based agents to support scenario-based analyses
{ Execute workows, which might extend over the web and might be ex-
pressed in a format such as the one speci�ed by the Workow Manage-
ment Coalition.

Mediators are specialized execution agents, which
{ Determine which resources might have relevant information using help
from brokers

{ Decompose queries to be handled by multiple agents
{ Combine the partial responses obtained from multiple resources
{ Translate between ontologies.

Ontology agents are essential for interoperation. They
{ Provide a common context as a semantic grounding, which agents can
then use to relate their individual terminologies

{ Provide (remote) access to multiple ontologies
{ Manage the distributed evolution and growth of ontologies. A common
context in the form of an ontology or model of the domain can provide
such semantic grounding.

Most agent-based information systems incorporate one or more agents of the
above types.

3 Semantic Integration and Processing in the Large

A major task for the agents in a cooperative information system is to reconcile
the varied semantics of the mostly autonomous resources in the CIS. A focus of
our research in CIS is the development of tools for constructing and browsing
the ontologies that serve as a basis for semantic reconciliation.

The information available in modern networked environments is no longer
just simple text, but now includes multimedia, forms, structured data, and ex-
ecutable code|it has become much more complex than before. As a result, old

8



methods for manipulating information sources are no longer e�cient or even ap-
propriate. Surprisingly, structured data has become more di�cult to �nd and re-
trieve than unstructured text, because keyword searches over previously indexed
documents, which work well for text, are unsuitable for data. Data retrieval
requires schemas, which are often unavailable, incomplete, or incomprehensi-
ble. Mechanisms are needed that allow e�cient querying on diverse information
sources that support structured as well as unstructured information.

In such complex and heterogeneous environments, ontologies appear to be
well suited for not only organizing new information, but also managing the stor-
age and retrieval of existing information. An ontology is a model of some portion
of the world and is described by de�ning a set of representational terms. In an
ontology, de�nitions associate the names of entities in a universe of discourse
(e.g., classes, relations, functions, or other objects) with human-readable text
describing what the names mean, and formal axioms that constrain the inter-
pretation and well-formed use of these terms. For information systems, or for the
Internet, ontologies can be used to organize keywords and database concepts by
capturing the semantic relationships among the keywords or among the tables
and �elds in a database. The semantic relationships provide users with an ab-
stract view of an information space for their domain of interest. Ontologies are
suitable for graphical representation, and can be scaled and viewed at various
levels of abstraction, thereby making them suitable for large information spaces.

As an example of the tools we have been developing for exploiting the bene�ts
of ontologies is the Java Ontology Editor, JOE [?]. JOE provides a graphical user
interface for users to (1) browse and edit ontologies, or (2) construct queries
based on the ontologies.

By being written as a collection of Java applets, JOE can be accessed from
any Java-compatible browser, that the same ontology can be simultaneously
viewed and edited by more than one user. This group-editing feature has many
advantages. It saves storage space since several users can work on copies of a
single original ontology. It also eliminates the problem of keeping di�erent copies
of the same ontology up to date since only one correct version is saved. At the
same time, experts from di�erent �elds can jointly build an ontology over a
length of time or, if desired, merge various small ontologies to create a single
encompassing ontology. This feature is very desirable in large enterprises.

Figure 3 shows JOE in its ontology browsing mode, where it is applying one
of its abstraction mechanisms (a magni�er) to help users view a large ontology.
Figure 4 shows JOE executing in its editor mode, where users can modify an
ontology.

The query mode of JOE is shown in Figure 5. In this mode, users can con-
struct queries by setting constraints on displayed attributes. The constructed
query will be shown on a separate window to the right of the main window.
JOE will internally translate the graphical query to an SQL statement as the
user builds the query. The user can simply submit the query by choosing the
"submit" option in the "Query" menu and the results will be displayed in a third

9



Fig. 3. JOE displaying an entire ontology within its main window and a magni�ed
view of the selected area in the window on the right

Fig. 4. JOE executing in the editor mode

10



window. JOE also provides an editor where the user, if he or she is an expert in
SQL, can directly modify or type in a new SQL statement for execution.

= ‘Johnson’

Fig. 5. JOE executing in the query mode, with the partial query \Get the social
security numbers (ssn) and the ages of all the Patients whose lastname is 'Johnson'
and who were diagnosed-with a Diagnosis named 'cancer' and who live in a City named
'Columbia"'

Now, how can such an ontology be used to facilitate interoperation? It can
provide a shared virtual world in which software agents can ground their beliefs
and actions. When people talk, they rely on the fact that they live in the same
physical world. We know, for example, that a 777 is a type of airliner that
can carry passengers to their destination. When agents talk, the only world
they share is one consisting of bits and bytes|not a very interesting subject
of discussion! An ontology gives the agents a richer and more useful domain of
discourse.

Now, suppose our agents have access to an ontology for travel, with concepts
such as airplanes and destinations, and suppose that one agent tells another
about a ight on a 777. Suppose further that the concept "777" is not a part
of that agent's ontology. How could this agent understand the other? The �rst
agent could explain that a "777" is a kind of airplane, which is a concept in the
travel ontology. The second agent would then know the general characteristics
of a 777. This is illustrated in Figure 6.

4 Commitments

We now turn our attention to the next higher layer of IOP, which deals with
commitments among agents, especially as the commitments relate to the social
and organizational structure of a multiagent system.

The notion of commitments is familiar from databases. However, in databases,
commitments correspond to a value being declared and are identi�ed with the

11



TransportationConveyance

Train
Plane

Boat

Transport Airliner Fighter

DB

id make

Airplane

Ontology

777?

(isA 777 Airplane)

First Agent

Second Agent

Fig. 6. Agents using an ontology to reconcile their semantics

12



successful termination of a transaction. When a transaction terminates success-
fully, it commits, but it is not around any more to modify its commitments. Thus
the commitments are rigid and irrevocable. If the data value committed by one
transaction must be modi�ed a separate, logically independent transaction must
be executed to commit the modi�ed value. Traditional commitments presuppose
that di�erent computations are fully isolated and that locks can be held long
enough that the atomicity of distributed computations can be assured.

Although suitable for traditional data processing, the above reasons cause
traditional commitments to be highly undesirable for modern applications such
as electronic commerce and virtual enterprises, where autonomous entities must
carry out prolonged interactions with one another [9].

Commitments reect an inherent tension between predictability and exi-
bility. By having commitments, agents become easier to deal with. Also, the
desired commitments serve as a sort of requirements on the construction of the
agents who meet those commitments. However, commitments reduce the options
available to an agent.

4.1 Commitments Formalized

We propose an alternative characterization of commitments that is better suited
to agents and multiagent systems. In our formulation the commitments are di-
rected to speci�c parties in a speci�c context. Thus an agent may not o�er the
same commitments to every other agent. The context is the multiagent sys-
tem within which the given agents interact. Sometimes, this multiagent system
is termed a sphere of commitment (SoCom). Our approach provides a natural
mechanism for commitments to be modi�ed dynamically.

The debtor refers to the agent who makes a commitment, and the creditor to
the agent who receives the commitment. Commitments are formed in a context,
which is given by the enclosing SoCom (or, ultimately, by society at large). Based
on the above intuitions, we motivate the following logical form for commitments.

De�nition 1. A commitment C(x; y; p;G) relates a debtor x, a creditor y, a
context G, and a discharge condition p.

4.2 Operations on Commitments

We de�ne the following operations on commitments.

O1. Create instantiates a commitment; it is typically performed as a conse-
quence of an agent adopting a role or by exercising a social policy (ex-
plained below).

O2. Discharge satis�es the commitment; it is performed by he debtor concur-
rently with the actions that lead to the given condition being satis�ed.

O3. Cancel revokes the commitment. It can be performed by the debtor.

13



O4. Release essentially eliminates the commitment. This is distinguished from
both discharge and cancel, because release does not mean success or failure
of the given commitment, although it lets the debtor o� the hook. The
release action may be performed by the context or the creditor of the
given commitment.

O5. Delegate shifts the role of debtor to another agent within the same context,
and can be performed by the new debtor or the context.

O6. Assign transfers a commitment to another creditor within the same con-
text, and can be performed by the present creditor or the context.

Through an abuse of notation, we write the above operations also as propositions,
indicating their successful execution. We de�ne some additional operations and
propositions corresponding to important speech acts. These include notify and
authorize. notify(x; y; q) mean that x noti�es y of q, and authorize(x; y; p)
means that x authorizes y to allow condition p.

4.3 Policies

Social policies are conditional expressions involving commitments and opera-
tions on commitments. Policies have a computational signi�cance, which is that
they can help control the execution of operations on commitments, even with-
out explicit reference to the context. It is their locality that makes policies use-
ful in practice. Agents can commit to social policies just as to other expres-
sions; in this case, the agents' commitments are higher order, and are termed
metacommitments. An example metacommitment is cancel(x;C(x; y; p;G)) )
create(x;C(x; y; q;G)), which means that x can cancel his commitment for p if
instead he adopts a commitment for q (for suitable p and q).

4.4 Applying Commitments

We envisage the following way to apply commitments. Initially, abstract SoComs
are de�ned in terms of their roles. Each role is associated with the capabilities it
requires, the commitments it engenders, and the authorities it creates. The capa-
bilities are the tasks the agent can do, the commitments are what the agent must
do, and the authorities are what the agent may do. The commitments, in par-
ticular, may be metacommitments. Indeed, they usually are metacommitments,
e.g., that the agent will adopt a base commitment upon receiving a request.

At some point, possibly during execution, an agent may decide to enter into a
SoCom as a particular role or roles. To do so, he would have to cause the SoCom
to be instantiated from the abstract speci�cation. To adopt a role, the agent
must have the necessary capabilities, and accept the associated commitments.
In doing so, he also obtains the authorities to properly play the role. The agent
must then behave according to the commitments. Agents can join a SoCom when
con�gured by humans or during execution: this requires publishing the de�nition
of the abstract SoCom.

14



5 Designing Commitments

We consider an example in two parts. The �rst deals with electronic commerce;
the second combines in aspects of virtual enterprises [7]. The commitments are
designed based on the corresponding roles in human society.

5.1 Electronic Commerce

We �rst de�ne an abstract SoCom consisting of two roles: buyer and seller, which
require capabilities and commitments about, e.g., the requests they will honor,
and the validity of price quotes. To adopt these roles, agents must have the
capabilities and acquire the commitments. Example 1 involves two individual
agents who adopt the roles of Buyer and Seller to carry out a simple deal.

Example 1. Consider a situation involving two agents, Customer and Vendor,
with authority over their respective databases. The SoCom manager has an ab-
stract SoCom for buy-sell deals with the roles of Buyer and Seller. Buyer's capa-
bilities include asking for a price quote and placing an order. Seller's capabilities
include responding to price quotes and accepting orders based on checking the
inventory locally. Buyer's commitments include paying the quoted price for any-
thing she orders. Seller's commitments include (a) giving price quotes in response
to requests and (b) ful�lling orders that he has accepted.

Customer asks the manager to instantiate a deal between her (Customer)
as Buyer and Vendor as Seller. The manager asks Vendor if he would like to
join as Seller. When Vendor agrees, and since both agents have the requisite
capabilities, capacities, and resources, the deal is set up.

Customer now wishes to check the price of a valve with a diameter of 21mm.
Upon the receipt of the query from Customer, Vendor|based on its role as
Seller|o�ers an appropriate answer.

5.2 Virtual Enterprises

Example 2 considers a more general situation where the role of Seller is adopted
by an agent who happens to be a Valvano-cum-Hoosier VE|i.e., a SoCom con-
sisting of the hose and valve vendors. Example 3 considers the situation where
the Valvano-cum-Hoosier VE detects a problem in the supply of valves for which
an order has been placed. The VE automatically meets its commitments by re-
vising the order and notifying the customer.

Now we consider the situation where one or more agents may form a cooper-
ative SoCom or team. For simplicity, we assume that teams have a distinguished
agent who handles their external interactions. We refer to this agent as the VE.

Example 2. We now consider two agents with authority over the Valvano and
Hoosier databases, respectively. These agents have similar capabilities to the
Seller of Example 1. They form a VE, called Valvano-cum-Hoosier VE, which
can adopt the role of Seller. Buyer behaves as before and expects Seller to behave

15



according to the buy-sell deal. However, Seller is implemented di�erently, with
commitments among its members, which we do not elaborate here. The possible
commitments of the Valvano-cum-Hoosier VE include the following.

{ The VE will give price quotes to anyone who requests them.
{ The VE will refund the purchase price if an order with matching valves and
hoses cannot be ful�lled. There are still no refunds if an order for matching
valves and hoses can be ful�lled.

{ If the VE cannot ful�ll an order, it will try to �nd an alternative order that
will satisfy Customer's requirements.

Recall that val or hos would not take refunds individually. Thus a customer might
be saddled with valves for which matching hoses could not be found. However,
when dealing with the VE, a customer can get a refund in those situations.

In the above examples, the actions are performed by the constituents of the
SoCom. Sometimes, however, it is useful to perform actions at a higher level
SoCom. Such actions might be necessary when the actions of the member agents
need to be atomically performed or undone.

Example 3. Continuing with Example 2, suppose an order for matching valves
and hoses is successfully placed. It turns out later that the valve manufacturer
discontinued the model that was ordered, but recommends a substitute. The
substitute valve �ts di�erent diameter hoses than the original choice. The VE
knows that the original order could be satis�ed using the new valve and a dif-
ferent set of hoses. The VE can handle this replacement itself and, based on its
prior commitment, not charge the customer any extra. The customer does not
need to know of the internal exchanges among the members of the VE SoCom.

In the above example, the discontinuation of a valve after an order for it was
accepted is a kind of failure that arises after the original interaction had ended.
Traditional approaches would be inapplicable in such a situation.

6 Conclusions and Future Work

We described interaction-oriented programming, and outlined some conceptual
modeling issues in it. IOP o�ers some bene�ts over previous approaches for
building multiagent systems. In the spirit of conceptual modeling, IOP focuses
on higher-level concepts than the underlying implementations. These concepts
provide a superior starting point to the traditional approaches. Speci�cally,

{ coordination, commitment, collaboration are captured as �rst-class concepts
that can be applied directly

{ the underlying infrastructure is separated, leading to improved portability.

Fundamentally, conceptual modeling is as good as the methodologies that one
may use to build conceptual models. Accordingly, we have been considering

16



methodologies that may be applicable to IOP. In the above, we gave a sampler
of some of our preliminary results. These methodologies are presently being
applied by hand, although there is some work afoot to build tools to assist in
their application.

There are some important directions for future research. Of special interest
to conceptual modeling is the development of richer metamodels than we have
at present. A potentially important theme is to identify useful patterns corre-
sponding to the \best practices" in key areas, and incorporating them in our
metamodels. An example area would be contracting among autonomous enti-
ties, which seems to underlie several of the upcoming open applications. Along
with richer metamodels, there is need for a corresponding intuitive semantics.
We have made some progress along this direction [10]. One of the themes that
should be more intensively addressed is the compositionality of conceptual mod-
els. For example, one would like to build separate models for electronic commerce
and virtual enterprises, and dynamically compose them to produce a model for
a commercially engaged virtual enterprises. Lastly, there is great need for ex-
pressive formal tools that support the conceptual models and their semantics.

References

1. Omran A. Bukhres and Ahmed K. Elmagarmid, editors. Object-Oriented Multi-
database Systems: A Solution for Advanced Applications. Prentice-Hall, 1996.

2. Bill Curtis, Marc I. Kellner, and Jim Over. Process modeling. Communications of
the ACM, 35(9):75{90, September 1992.

3. Stan Franklin and Art Graesser. Is it an agent or just a program?: A taxonomy
for autonomous agents. In Intelligent Agents III: Agent Theories, Architectures,
and Languages, pages 21{35, 1997.

4. Michael N. Huhns and Munindar P. Singh. The agent test. IEEE Internet Com-
puting, 1(5):78{79, October 1997. Instance of the column Agents on the Web.

5. Michael N. Huhns and Munindar P. Singh. Agents and multiagent systems:
Themes, approaches, and challenges. In [6], chapter 1, pages 1{23. 1997.

6. Michael N. Huhns and Munindar P. Singh, editors. Readings in Agents. Morgan
Kaufmann, San Francisco, 1997.

7. Anuj K. Jain and Munindar P. Singh. Using spheres of commitment to support
virtual enterprises. In Proceedings of the 4th ISPE International Conference on
Concurrent Engineering: Research and Applications (CE), pages 469{476. Interna-
tional Society for Productivity Enhancements (ISPE), August 1997.

8. Charles J. Petrie, Jr. Agent-based engineering, the web, and intelligence. IEEE
Expert, 11(6), December 1996.

9. Munindar P. Singh. Commitments among autonomous agents in information-rich
environments. In Proceedings of the 8th European Workshop on Modelling Au-
tonomous Agents in a Multi-Agent World (MAAMAW), pages 141{155, May 1997.

10. Munindar P. Singh. An ontology for commitments in multiagent systems: Toward
a uni�cation of normative concepts. Arti�cial Intelligence and Law, 1998. In press.

11. Munindar P. Singh, Philip E. Cannata, Michael N. Huhns, Nigel Jacobs, Tomasz
Ksiezyk, Kayliang Ong, Amit P. Sheth, Christine Tomlinson, and Darrell Woelk.
The Carnot heterogeneous database project: Implemented applications. Distributed
and Parallel Databases: An International Journal, 5(2):207{225, April 1997.

17



12. Peter Wegner. Why interaction is more powerful than algorithms. Communications
of the ACM, 40(5):80{91, May 1997.

13. Gio Wiederhold. Mediators in the architecture of future information systems. In
[6], pages 185{196. 1997. (Reprinted from IEEE Computer, 1992 ).

14. Gio Wiederhold and Michael Genesereth. The conceptual basis for mediation
services. IEEE Expert, 12(5):38{47, September 1997.

15. Darrell Woelk, Philip Cannata, Michael Huhns, Nigel Jacobs, Tomasz Ksiezyk,
Greg Lavender, Greg Meredith, Kayliang Ong, Wei-Min Shen, Munindar Singh,
and Christine Tomlinson. Carnot prototype. In [1], chapter 18, pages 621{648.
1996.

18


