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Summary. This chapter discusses coordination from a commitment basis. Typi-
cally, commitments are established via a process of negotiation between the parties—
the debtor and creditor—involved in the commitment. We define obligations to
be those commitments, sometimes termed norms or social commitments, without
a clearly identifiable creditor. The establishment of a commitment occurs in re-
sponse to the adoption of a goal or the acceptance and performance of a task. Using
a service-oriented computing (SOC) context, we describe an efficient negotiation
process for establishing commitments. We then show how commitments and obliga-
tions can be used to monitor and control the aggregate behavior of a group of agents
to yield coordinated progress towards the agents’ overall objective.

1 Introduction

In service-oriented multiagent environments, the participating agents are dis-
tinguished by the services they provide, the services they seek and the nego-
tiated service agreements to which they commit. As an example, participants
in typical real-world business environments interact by exchanging goods and
providing services to each other. In seeking and providing services, they form
associations by negotiating on service agreements, make promises, commit to
products, quality, and service levels, fulfill what they promised, and attempt
to achieve their intended goals.

The coherent behavior of systems in such an environment is governed by
interactions among the agents, and we believe that commitments and obliga-
tions are the proper abstraction to characterize the interactions for monitoring
and control of the systems. We hypothesize that a commitment is an appropri-
ate abstraction for managing, monitoring, and assuring large-scale distributed
coordination.
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1.1 The Coordination Problem

Coordination is a ubiquitous problem for distributed systems, where the objec-
tive is to achieve coherent and efficient operation while making rapid progress
toward system-wide goals. The problem can appear in many forms, ranging
from managing access to shared resources to engaging the expertise of multiple
participants in reaching an overall goal.

In this chapter, we make several assumptions to limit the scope of the coor-
dination problem that we are considering. First, we assume that the problem
can be cast in terms of a known set of agents performing a dynamic set of
tasks to reach a globally known goal. Second, we assume that there might be
thousands of individual tasks that need to be coordinated, but not millions
and not just a few. Third, we assume that the time and resources needed to
perform an individual task are generally available (not scarce). Fourth, we as-
sume that the time needed to perform an individual task is much less than the
time needed to reach the goal, allowing time for tasks to be created, modified,
redone, cancelled, or reassigned. The individual tasks might be discrete (e.g.,
the task to remove an obstacle) or continuous (e.g., the task to prevent the
introduction of an obstacle). Fifth, we assume that the tasks are organized
into a workflow, which may evolve as commitments are made, resources are
expended, and tasks are decomposed and performed. Sixth, we assume that
the agents are each aware of and have accepted the global goal, but are oth-
erwise self-interested and autonomous. (Sen [21] has shown that societies of
purely selfless agents are inefficient.) Finally, we assume that the environment
where the coordinated behavior takes place has the following characteristics.

1.2 A Service-Oriented Computing Environment

A typical real-world multiagent service-oriented environment is partially ob-
servable, stochastic, sequential, dynamic, and continuous. This environment
consists of two classes of agents: participating agents and non-participating
agents.

The participating agents either play the role of a service provider or that
of a service seeker. These service providers and service seekers negotiate and
reach a service agreement. Negotiation is a process by which agents commu-
nicate and compromise to reach an agreement on matters of mutual interest
while maximizing their utilities. We believe that these negotiated agreements
associate or bind these participating agents with each other and that this as-
sociation can be best represented as the binary relationship of commitments.

In addition to this class of participating agents, there is another class of
non-participating agents in this environment; these are agents that act more
like impartial arbiters. The nonparticipating agents provide the context to
a commitment relationship, termed a Sphere of Commitment (SoCom) [25].
Every agent in the environment is autonomous, hence at any point in time any
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agent may choose to either abide by its commitment or stray from it. The non-
participating arbiters can be used to capture a participating agent’s behavior
with regard to its commitments. Historical information about a participating
agent’s behavior can be utilized to measure its commitment adherence for
future interactions.

We assume that the service providers and service seekers have already
identified each other. How service seekers and service providers locate each
other, how they identify compatible providers or seekers and what structure
of communication and protocol they use are questions beyond the scope of
this chapter.

It is further assumed that in this commitment-driven service-oriented en-
vironment the partial view that an agent has is governed solely by the com-
mitment relationships in which it participates. In other words, agents have
knowledge of other agents with whom they are associated via commitment
relationships. Furthermore, it is assumed that the knowledge about a com-
mitment relationship is governed by commitment operations, i.e., an agent
has knowledge about a commitment association only through operations that
affect that commitment. For example, when a service-seeking agent and a
service-providing agent participate in a commitment relationship, each will
have knowledge of the other agent’s commitment actions and each will have
knowledge of when the commitment gets created, fulfilled, revoked, etc. How-
ever, knowledge such as how that commitment is fulfilled, why it was not
fulfilled, or why it was canceled is not available to the participating agents.

The typical environment for commitments is dynamic and nondetermin-
istic; hence its temporal dimension is best represented as branching time.
The underlying temporal parameter moves forward and branches out like a
tree. Also, an agent’s beliefs, desires and intentions define its internal state of
mind. We use Rao and Georgeff’s BDI framework [19], Emerson’s CTL frame-
work [5], Singh and Huhns’s definitions for commitments and operations on
them [24], and Shrotri and Huhns’s definitions of commitments in terms of
BDI [22].

2 Modeling and Representation

Goals are achieved via interleaved phases of planning and execution. Planning,
which may be done by humans or by the agents responsible for goal achieve-
ment, yields sets of executable tasks and the dependencies among them. The
dependencies will be primarily temporal, e.g., one task must be performed
before another, but they also might be conditional, e.g., one task must be per-
formed only if another fails. The resultant ordering of the tasks is a workflow,
which can exist at several levels of generality as tasks are either aggregated
into composite tasks or decomposed into subtasks.

Each task has associated with it a number of attributes that are used by
an agent to perform the coordination. Each task will have a latest finish time
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(deadline) by which the task must be completed, earliest start time, expected
duration, priority, and worth. Temporal values allow the agent to reason about
when a task can be performed. A task’s priority and worth represent the
value of the task to the goal. Task assignment to a particular agent leads to
determination of values of several additional attributes: expected quality of a
result, expected cost, and expected risk.

Tasks are associated with agents via a process of negotiation as described
in Section 4. The resultant assignments, especially when dependent tasks are
assigned to different agents, are monitored via commitments. A commitment is
a well-defined data structure with an algebra of operations that have a formal
semantics. A commitment has the form C(a; b; p; G), where a is its creditor, b
is its debtor, p the condition the debtor will bring about, and G the organiza-
tional context for the given commitment. The operations on commitments are
create, discharge, delegate, assign, cancel, and release. Commitments capture
the dependencies among the agents with regard to the tasks.

Note that tasks, interactions, and commitments are not completely known
a priori, but can enter the system dynamically. We do not assume that each
agent knows a priori all the possible tasks that it might be asked to per-
form. When it has been assigned and authorized to perform a task, then its
commitment is formed. The dynamic nature of task assignment necessitates
the ability of the system to reason about commitments in a principled way,
thus enabling the agents to have optimized ways of dynamically forming and
breaking commitments as new tasks enter the system.

Explicit representation of commitments helps coordination in the following
two ways:

1. Commitment is an abstraction that explicitly refers to inter-agent depen-
dencies, either through task temporal dependencies, task preconditions, or
through contingencies (i.e., alternative ways of performing a task), thus
allowing agents to recognize focus points in the revision process where
coordination with other agents is needed; focusing the distributed search
this way benefits the efficiency of coordination.

2. During the process of revising its local plan, an agent first tries to revise
task timings that do not involve commitments; this heuristic modularizes
the revision as much as possible, making it more scalable.

The following structures for tasks, goals, and task performers (agents) are
consistent with the above assumptions, and also consistent with the TAEMS
formulation [9]:

Task: a unit of work to be performed in furtherance of an overall goal
• duration (time needed to perform)
• effort required
• deadline (when task must be finished)
• resources required (consumable and non-consumable)
• utility, including cost and quality
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• revocable?
• compensation (if result of task must be revoked and it is not revocable)

Agent: a performer of one or more tasks
• capabilities, including access to resources
• limitations

Goal: an overall mission or objective to be achieved
• workflow or goal decomposition

3 Negotiated Commitments

In supply chains, e-commerce, and Web services, the participants negotiate
contracts and enter into binding agreements with each other by agreeing on
functional and quality metrics of the services they request and provide. The
functionality of a service is the most important factor, especially for discover-
ing services. Once discovered, however, services are engaged, composed, and
executed by the participants’ negotiating over QoS metrics to maximize their
profits.

Negotiation is a process by which agents communicate and compromise
to reach agreement on matters of mutual interest while maximizing their in-
dividual utilities. Negotiation for QoS-aware services is currently limited to
primitive QoS verification methods or sorting and matching algorithms. We
extend current techniques by presenting an optimal negotiation procedure that
considers the cost to reach an agreement for QoS-aware service engagement
and contracting.

3.1 Research Issues

Semantic Web services, as envisioned by Berners-Lee, are intended to be ap-
plied not statically by developers, but dynamically by the services themselves
through automatic and autonomous selection, composition, and execution.
Dynamic selection and composition first require service requestors to discover
service providers that satisfy the requestors’ functional requirements. Second,
the requestors and providers negotiate non-functional requirements (QoS),
including cost and qualities such as response time, accuracy, and availability.

In general, negotiation is the technique for reaching mutually beneficial
agreement through communication among agents. Negotiation in QoS-aware
services involves a sequence of information exchanges between parties to estab-
lish a formal agreement among them, whereby one or more parties will provide
services to one or more other parties. The agreement typically involves QoS
issues [26]. By QoS, we refer to the non-functional properties of services, such
as performance, cost, reliability, and security. To meet the requirements of ser-
vice requestors, multiple issues, including both functional and non-functional,
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need to be taken into account during service advertisement, discovery, compo-
sition, and delivery. Preist [17] discussed how negotiation plays an important
role in reaching a service agreement for a service.

Current standards for Web services do not support QoS negotiations. As
a result, several researchers have attempted to merge negotiation from the
MAS domain into QoS-aware Web services. Ran [18] proposes to enrich cur-
rent UDDI registries by extending the SOAP message format and the UDDI
data structures to describe QoS information. Petrone [16] proposed a con-
versation model to enrich the communication and coordination capabilities of
Web services by adapting agent-based concepts to the communications among
services and users. In [18, 8] researchers extend the Web service model by in-
troducing a third party broker, certifier, or QoS manager for QoS enactment
and enforcement. Their work includes simple QoS verification or match al-
gorithms and permission for the broker to negotiate and make decisions on
behalf of the requestors. This is problematic, especially in situations where
price and payment issues are involved.

Maximilien and Singh [13] propose a Web service agent framework (WSAF)
with a QoS ontology. When a service consumer needs to use a service, WSAF
will create a service agent that can capture a consumer’s QoS preference and
select the most suitable service.

Negotiating for services involves both functional and non-functional issues.
We can not apply existing multiple-issue negotiation models to service negoti-
ation and contracting directly, because existing models often make the limit-
ing assumption that agents know the private information of their opponents,
and their theoretic models do not take computational cost into consideration.
Therefore, these models do not fit the environment of on-line QoS negotiation
for services.

Many researchers have investigated multiple-issue negotiation [10, 14, 6].
Fatima et al. [6] presented an optimal agenda and procedure for two-issue
negotiation by introducing two negotiation procedures: issue-by-issue negoti-
ation and package deal. For n-issue negotiation where n > 2, which is common
in negotiation over QoS issues, the computational cost to reach a package deal
might exceed the benefits obtained by optimizing the participants’ utilities.
By considering both utility optimization and computational efficiency, Dang
and Huhns [2] propose the coalition deal that is suitable for multiple-issue
negotiation, especially in the case of QoS negotiation for services.

In [10] agents know the incomplete preference information about their op-
ponents and exploit this information to reach negotiation efficiency. This work
is thus limited to cooperative negotiation, where agents care about not only
their own utilities, but also equity and social welfare, which is not common in
most application environments.

The outcome of multiple-issue negotiation depends on not only strategies,
but also the procedure by which issues will be negotiated. Different procedures
yield different outcomes. Based on an incomplete information assumption,
Fatima et al. [6] discussed two procedures for multiple issue negotiation: issue-
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by-issue and package deal. For two-issue negotiation, they determined the
equilibrium strategy for these procedures and analyzed the optimal agenda
and procedure. Since their analysis is limited to two-issue negotiation, they
concluded that the package deal is the procedure that provides agents with
optimal utilities; they did not address the computational cost. However, the
computational cost becomes crucial when more issues are involved. We focus
on the optimal strategy of efficiently negotiating multiple QoS issues to reach
an agreement that gives both the requestor and the provider their maximum
utilities.

We hypothesize that a coalition deal negotiation can overcome these limi-
tations. As shown in [2], this is the optimal strategy for service negotiation over
multiple issues when computation cost is considered. The coalition deal miti-
gates the computational cost problem by making a trade-off between optimal
utility and computational efficiency. This chapter makes four contributions to
the advancement of QoS-aware service negotiation and contracting. First, it
describes the coalition deal negotiation for reaching utility optimization and
computational efficiency. Second, it generalizes the analysis of an optimal ne-
gotiation procedure to multiple-issue negotiation over more than two issues.
Third, it tailors negotiation components to fit QoS-aware negotiation. Fourth,
it focuses on agents’ own information; no agent has any information, such as
reserve price, about its opponent.

3.2 QoS Scenario for Negotiation

In order to illustrate the coalition deal for n-issue negotiation over the QoS
metrics of a service, we present a motivating scenario. Consider how one site,
a requestor, might arrange to get a stock quote from a service provider. In this
scenario, a service requestor a (a.k.a. the creditor if a commitment is estab-
lished) locates a GetStockQuote Web service provided by b (a.k.a. the debtor
if a commitment is established) that meets its functionality requirements.
The GetStockQuote service takes the requestor’s inquiring stock number as
an input and a currency symbol as an argument, and provides a stock quote.

During the procedure of service selection, QoS becomes an important fac-
tor to both a and b. Before reaching a service contract, they need to negotiate
over (1) payment method indicates the way a user pays for inquiries (e.g.,
pay per inquiry and pay for bundle); (2) inquiry cost indicates the cost per
inquiry; (3) update interval represents how often the stock quote informa-
tion is updated; (4) response time is the round-trip time between sending
an inquiry and receiving the response; (5) availability represents the proba-
bility that this service is available and ready for immediate use; (6) service
plan cost is the plan cost for service with agreed-upon quality.

Agents a and b could negotiate each issue individually using issue-by-issue
negotiation, but some issues are related to each other and isolating them will
degrade the utility and increase the risk of a conflict deal. A package deal
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allows both a and b to make trade-offs among all six issues, but the compu-
tation is intractable with exponential cost. By using a coalition deal, we can
partition six issues into two partitions where strongly related issues are in the
same partition. For example, payment method, inquiry cost and update inter-
val belong to partition one, while response time, availability, and service plan
cost belong to partition two. a and b can negotiate two partitions in parallel,
where each partition is settled as a package deal and independently of other
partitions. By pursuing a coalition deal, agents can reach a service agreement
while optimizing their utilities with efficient computation. The coalition deal
is explored in the next section.

4 Coalition Deal Negotiation

A service is what an agent performs when it works on and completes a task.
Negotiating for tasks has four components: (1) a negotiation set, which rep-
resents the possible proposal space for both functionality and QoS metrics
of a service; (2) a protocol, which defines the legal proposals that an agent
can make, as defined in a service description and constrained by negotiation
history; (3) a strategy, which determines what proposals the agents will make,
decided by an agent’s private preference and affected by the service discov-
ery result; and (4) a rule enforced by a mediator to determine when a deal
has been struck and what the agreement is. We focus on the negotiation pro-
cedure of multiple-issue negotiation for services, which adopts Rubinstein’s
alternating offers protocol.

As described in our motivating scenario, let a denote the service requestor
and b the service provider. From a service viewpoint, a has a task and tries
to find a service to perform it. From a task viewpoint, b has a service and is
capable of fulfiling certain tasks, so b tries to find a task to work on. We assume
that each agent only has complete information about its own negotiation
parameters. For some private information, such as the opponent’s deadline,
we can use the negotiation protocol in [20] to make truth-telling about a
negotiation deadline the dominant strategy. We use Sa (Sb) to denote the set
of negotiation parameters for agent a (b) and describe the negotiation model
similarly to that in [6].

4.1 Single-Issue Negotiation

Consider a and b negotiating over an issue set I, where I = A and A is one
issue, say, the inquiry price. The agents’ parameter sets are defined as

Sa =
〈
PA

a , UA
a , TA

a , δA
a

〉

Sb =
〈
PA

b , UA
a , TA

b , δA
b

〉
(1)

where PA
a , UA

a , TA
a , and δA

a denote agent a’s reserve price over issue A, util-
ity function over issue A, bargaining deadline, and time discounting factor,
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respectively. Agent b’s negotiation parameters are defined analogously. The
agents’ utilities at price p and at time t are defined as in [6]:

UA
a (p, t) =

{
(PA

a − p)(δA
a )t if t ≤ Ta

0 if t > Ta

UA
b (p, t) =

{
(PA

b − p)(δA
b )t if t ≤ Tb

0 if t > Tb
(2)

The value for δA
a is > 1 when agent a is patient and gains utility with

time, < 1 when a is impatient and loses utility with time, and = 1 when a’s
utility is independent of time. The same holds for agent b. We only consider
δA
a ≤ 1, which is common in a service-oriented environment.

In single-issue negotiation, the preferences of the agents are symmetric, in
that a deal which is more preferred from one agent’s point of view is guar-
anteed to be less preferred from the other’s point of view. At the beginning
of the negotiation, an agent makes an offer that gives it the highest utility
and then incrementally concedes as the negotiation progresses by offering its
opponent a proposal that gives it lower utility. Because of the symmetric pref-
erence of agents, agents have to concede to offer deals that are more likely to
be accepted by their opponents if they prefer reaching an agreement to the
conflict deal. An outcome is individual rational if it gives an agent a utility
that is no less than its utility from the conflict outcome. The maximum pos-
sible utility that agent a (b) can get from an outcome over issue A is denoted
UA

max,a (UA
max,b) and it is individual rational to both agents.

Agent a’s strategy (denoted σa) is a mapping from the previous negotiation
proposals pa,t′<t and Sa to the action Aca,t that it takes at time t: σa :
pa,t′<t × Sa → Aca,t is defined as:

Aca,t =





Quit if t ≥ Ta

Accept if UA
a (pA

b,t, t) ≥ UA
a (pA

a,t+1, t + 1)
Offer pA

a,t+1 at t+1, otherwise.
(3)

where pA
b,t is the offer made by agent b over issue A at time t. pA

a,t+1 is de-
fined analogously. Let PA

a,t denotes the offer that agent a makes at time t in
equilibrium, drawn from agent a’s equilibrium strategy. PA

a,t is determined by:

PA
a,t = (U−1)A

a ((1− yA
a,t)× UA

max,A) (4)

where yA
a,t is agent a’s yield-factor [6] at time t.

4.2 Multiple-Issue Negotiation

We next consider multiple-issue negotiation over issue set I of k issues, where
I = {I1, I2, . . . , Ik}. The agents’ parameter sets can then be defined as follows:
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Sa =
〈
P I

a , U I
a , Ta, δa

〉

Sb =
〈
P I

b , U I
b , Tb, δb

〉
(5)

where P I
a = {P i

a | i ∈ I} denotes agent a’s reserve prices over I and P i
a

denotes a’s reserve price over issue i, U I
a = {U i

a | i ∈ I} denotes agent a’s
utility functions over I, Ta, and δa denote agent a’s bargain deadline and
discount factor. Agent b’s negotiation parameters are defined analogously. We
assume that an agent’s utility from issue set I is the sum of its utilities from
all issues, then we have:

U I
a,t =

∑

i∈I

U i
a,t, U I

max,a =
∑

i∈I

U i
max,a (6)

Two procedures for multiple-issue negotiation have been discussed [6]:
package deal and issue-by-issue negotiation. For a package deal, an offer in-
cludes a value for each issue under negotiation. Thus for k issues an offer is
a package of k values, one for each issue. This allows trade-offs to be made
between issues. Agents can either accept a complete offer or reject a complete
offer. For issue-by-issue negotiation, each issue is settled separately and an
agreement can take place either on a subset of issues or on all of them.

We first describe the procedure for a package deal. Assume that the agents
use the same protocol as described in the previous section for single issue
negotiation, but instead of making an offer on a single issue, an agent offers a
set of offers (an offer consists of a set of values for issues from I, all of which
give it equal utility). This is because when there is more than one issue, an
agent can make trade-offs across issues, resulting in a set of offer sets, all of
which give it equal utility. As an example, Figure 1(a) illustrates the utility for
4 -issue negotiation with two package deals of two issues each. Here, we focus
on the utility frontiers for the issue set I = {A,B}. In this figure the agents’
utilities are measured along two axes, and the origin represents the conflict
outcome. The segment AA′ is the utility frontier for issue A and BB′ that for
issue B. The utility frontier for I is A′′B′′C ′′D′′ (i.e., the sum of all possible
utilities from issue A and issue B). The points along LL′ are pairs of values
for issue A and issue B that give equal utility to agent a, but different utilities
to agent b. L is Pareto-optimal since it is the only one, from all possible pairs
along LL′, that lies on the segment A′′B′′C ′′D′′. Because an agent does not
know its opponent’s utility function, it does not know which of the possible
pairs along LL′ is Pareto-optimal. Therefore, agent a makes trade-offs across
A and B, and then offers a set of pairs that correspond to points along LL′.
The slopes of segments AA′ and BB′ represent how the agents value the issues
A and B. Agent a is said to value issue A more (less) than b if the increase in
a’s utility for a unit change for issue A is higher (lower) than the increase in
b’s utility for a unit change for issue A. Therefore, the slope of the segment
represents the agents’ utility preference for a issue, and is named comparative
interest in [6].
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We define P I
a,t =

〈
P I1

a,t, P
I2
a,t, . . . , P

Ik
a,t

〉
as agent a’s current optimal util-

ity offer for agent b that satisfies U I
b (P I

a,t) = argmax U I
b (pI

a,t) where pI
a,t ∈

Pt(U I
a,t
′) and Pt(U I

a,t
′) =

{〈
pI1

a,t, . . . , p
Ik
a,t

〉
| U I

a (pI1
a,t, . . . , p

Ik
a,t, t) = U I

a,t
′}. There-

fore, agent a’s action Aca,t for the package deal procedure is defined as

Aca,t =





Quit if t ≥ Ta

Accept if U I
a (P I

b,t, t) ≥ U I
a,t+1

′

Offer Pt+1(U I
a,t+1

′) at t+1, otherwise.
(7)

Agent a is playing its equilibrium strategy if U I
a,t+1

′ = (1 − yI
a,t+1)U

I
max,a,

where U I
max,a is the maximum possible utility agent a can get from issue set I

[6]. The equilibrium strategy for agent b is defined analogously. We now turn
to the issue-by-issue procedure. Agent a’s action Aca,t is defined as follows
and proved in [6]:

Aca,t =





Quit if t ≥ Ta

for issue i ∈ I

{
Accept if U i

a,t(p
i
b,t) ≥ U i

a,t(p
i
a,t+1)

Offer pi
a,t+1 otherwise.

(8)

where pi
a,t satisfies the constraints for the equilibrium strategy described in

Section 4.1.

4.3 Coalition Deal Negotiation

We discussed two negotiation procedures: issue-by-issue negotiation and pack-
age deal. The outcome of negotiation depends on different negotiation strate-
gies and procedures. For our example GetStockQuote, issue-by-issue negotia-
tion and package deal may produce different negotiation outcomes and give
agents different utilities. We assume that both a and b prefer agreement to the
conflict deal for every issue. In issue-by-issue negotiation, for example, agents
agree on the issue of payment method with pay for bundle, and they also
reach agreement that p is the inquiry cost. Since agents negotiate these issues
independently, it is possible that p is too high to a if a chooses to pay for the
bundle as its payment method. That means issue-by-issue negotiation may
degrade agents’ utilities. In package deal negotiation, agents can make a set
of values over six issues and propose offers and counter offers by crossing over
issues. Agents may combine different payment methods with different inquiry
costs to reach mutually beneficial agreement over the two issues. However,
the package deal also leads to an exponential growth in the computation cost
to generate the offer sets. Most tasks (services), of course, are more complex
than our example, and when they are composed this computation problem
is significant. To make negotiating for tasks both optimum and efficient, we
introduce the coalition deal.
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Definition and Negotiation Model

We define coalition deal negotiation, which makes a better trade-off between
issue-by-issue negotiation and the package deal procedure, to provide agents
approximately optimized utilities with minimized computation costs.

Definition 1. For a coalition deal, all negotiation issues are partitioned into
disjoint partitions and each partition is negotiated independently of other par-
titions. Like the package deal, issues inside the same partition are negotiated
as a whole and an offer includes a value for each issue in this partition. Fur-
thermore, there is more than one partition in a coalition deal and at least one
partition that has more than one issue.

From this definition, we can see that issue-by-issue negotiation is a specific
case of a coalition deal where one issue per partition. The package deal is also
a coalition deal, where there is only one partition for all issues. Coalition deal
negotiation provides (a) better utility, (b) less computational cost, (c) more
flexible negotiation, and (d) better management of QoS metrics for services.

Consider multiple-issue negotiation with issue set I of k issues, where
I = {I1, I2, . . . , Ik}. From the definition, we know that there exists a partition
IP of size s over I, where IP = {IPj | 1 ≤ j ≤ s}. IP satisfies the constraint:
∀1 ≤ m ≤ s, 1 ≤ n ≤ s,m 6= n, we have IPm ∩ IPn = ∅ and ∪j∈IP ∪i∈j i = I.
Similarly, agents’ parameter sets can be defined as follows:

Sa =
〈
P IP

a , U IP
a , Ta, δa

〉

Sb =
〈
P IP

b , U IP
b , Tb, δb

〉
(9)

where P IP
a = {pi

a | i ∈ j, j ∈ IP} denotes agent a’s reserve prices set over
partitions of issue set I and pi

a denotes a’s reserve price over issue i, which
belongs to partition j, U IP

a = {U i
a | i ∈ IP} denotes agent a’s utility functions

over partition IP where U i
a denotes agent a’s utility function over one partition

i from IP, Ta and δa denotes agent a’s bargaining deadline and discount factor.
Agent b’s negotiation parameters are defined similarly. An agent’s utility from
partition IP of issue set I is the sum of its utilities from all partitions, so then
we have

U IP
a =

∑

j∈IP

U j
a =

∑

j∈IP

∑

i∈j

U i
a, U I

max,a =
∑

j∈IP

∑

i∈j

U i
max,a (10)

For a coalition deal, each partition is negotiated independently of other par-
titions. An agreement can take place either on some or all of the partitions.
For each partition, an offer includes a value for each issue inside the partition
that would be the same as the package deal for this partition. This allows
trade-offs to be made between issues inside the partition. An agreement has
to take place either on all or none of the issues inside the partition.

For each partition, we assume the agents use the same protocol as for the
package deal, but instead of making a set of offers over issue set I, an agent
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makes a set of offers over issues from this partition. An agent can make trade-
offs only across issues in the same partition, resulting in a set of offer sets, all
of which give it equal utility. As an example, Figure 1(a) illustrates the utility
frontiers for issue set I where I = {A,B, C,D}. There exists a partition IP
for I where IP = {{A,B}, {C, D}}. Let IP1 = {A,B}, and IP2 = {C, D}.
The utility frontier for IP1 is A′′B′′C ′′D′′ and the utility frontier for IP2 is
S′′T ′′V ′′U ′′. For IP1, the points along LL′ are pairs of values for IP1 that
give equal utilities to agent a but different utilities to agent b. The points
along RR′′ are pairs of values for IP1 that give equal utilities to agent b but
different utilities to agent a. The utility for IP is the sum of the utilities
from IP1 and IP2 after these partitions are negotiated independently. If we
only consider the optimal outcome from both negotiations over IP1 and IP2,
All optimal outcomes for IP1 lie on the segment MB′′K, and all optimal
outcomes for IP2 lie on the segment XT ′′Y as we described for the package
deal. Therefore, the possible utility frontier for IP is represented by region
OM ′′P ′′QQ′P in Figure 1(b). For a partition IPi of ki issues, we define P IPi

a,t =〈
P

IPi(1)
a,t , . . . , P

IPi(ki)
a,t

〉
as agent a’s current optimal utility offer for agent b

that satisfies U IPi

b (P IPi
a,t ) = argmax U IPi

b (pIPi
a,t ), where pIPi

a,t ∈ Pt(U IPi
a,t ) and

Pt(U IPi
a,t

′
) =

{〈
p

IPi(1)
a,t , . . . , p

IPi(ki)
a,t

〉
| U IPi

a (pIPi(1)
a,t , . . . , p

IPi(ki)
a,t ) = U IPi

a,t

′}
.

Pt+1(U IPi
a,t+1

′
) is defined analogously. For a coalition deal, each partition is

considered using the package deal negotiation protocol. Agent a’s action Aca,t

for the coalition deal procedure is defined as follows:

Aca,t =





Quit if t ≥ Ta

Accept package deal for IPi if U IPi
a (P IPi

b,t ) ≥ U IPi
a,t+1

′

Offer Pt+1(U IPi
a,t+1

′
) for IPi at t+1, otherwise.

(11)

Similarly, we define agent a as playing its equilibrium strategy for the package
deal over a partition if U IPi

a,t+1

′
= (1 − yIPi

a,t+1)U
IPi
max,a, where U IPi

max,a is the
maximum possible cumulative utility agent a can get from partition IPi. The
equilibrium strategy for agent a and agent b over other partitions is defined
analogously.

Coalition Deal Utility

In previous sections, we discussed three different negotiation procedures: issue-
by-issue, package deal, and coalition deal. These three procedures can generate
different outcomes, and consequently give different utilities to the agents. To
decide the optimal procedure that gives the agents highest utilities, we need
to compare agents’ utilities from these procedures for n-issue negotiation.
Fatima et al. [6] introduced the zone of agreement for individual issues where
both agents prefer agreement over no deal. An issue has a zone of agreement
if its utility frontier lies in quadrant Q1. We discuss the common scenario of
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service-oriented computing (SOC) in which both agents are individual rational
(i.e., all issues have a zone of agreement ensured by the service description
and the discovery procedure).

Lemma 1. each agent’s utility from the package deal is no worse than its
utility from issue-by-issue negotiation for two-issue negotiation.

Lemma 1 has been proven in [6]. In a service-oriented environment, there
are many issues concerning functionality and quality that need to be negoti-
ated during service engagement. Can we generalize Lemma 1 to cover more
than two? Here, we compare agents’ utilities from package deal and issue-by-
issue negotiation for n-issue negotiation.

Theorem 1. Each agent’s utility from the package deal is no worse than its
utility from issue-by-issue negotiation for n-issue negotiation, where n > 2.

Theorem 1 has been proven in [2] by induction. From this theorem, we
know that a package deal gives agents better utilities than issue-by-issue ne-
gotiation does. As stated in the previous section, a coalition deal provides
approximately optimized utilities to agents. Then we prove that a coalition
deal give agents utilities better than issue-by-issue negotiation does.

Theorem 2. Each agent’s utility from a coalition deal is no worse than its
utility from issue-by-issue negotiation for n-issue negotiation, where n > 2.

Theorem 2 has been proved by combining Theorem 1 and our assumption
of additive utilities [2]. Both package deal and coalition deal give agents util-
ities better than issue-by-issue negotiation does. The remaining question is
which procedure, package deal or coalition deal, gives agents better utilities.
To answer this question, we first prove that the package deal gives agents
utilities better than a coalition deal of two partitions.

Lemma 2. Each agent’s utility from the package deal is no worse than its
utility from i-by-j negotiation for n-issue negotiation, where i ≥ 1, j ≥ 1, n >
2, and i + j = n.

We have proven that the package deal gives agents utilities better than a
coalition deal of two partitions for n-issue negotiation in [2]. For QoS negoti-
ation for tasks, we need to extend Lemma 2 to the coalition deal with more
than two partitions.

Theorem 3. Each agent’s utility from a coalition deal is no better than its
utility from the package deal for n-issue negotiation, where n > 2 [2].



Agent Coordination via Negotiated Commitments 15

.

Fig. 1. Agents’ utilities for 4-issue negotiation

Coalition Deal Efficiency

From Theorems 1, 2 and 3, we know that each agent’s utility from the package
deal is better than its utility from a coalition deal and issue-by-issue negoti-
ation. Therefore, we should choose the package deal negotiation to maximize
agents’ utilities. However, we need to consider the computational costs, which
can be the primary factor when negotiating for tasks.

Given an issue set I = {I1, I2, . . . , In} and a partition IP = {IP1, IP2, . . . , IPk}
over I, we define the unit computational cost for generating a price value for
one issue as a constant. We assume that every issue in issue-by-issue negoti-
ation can be negotiated in parallel and every partition in a coalition deal can
also be negotiated in parallel. To compare the computational efficiency, we
only need to compare the computational cost of generating an offer in each
round of three different procedures. If we suppose agents need almost the
same rounds of negotiation to reach an agreement in these three negotiation
procedures, we can compare their computational costs by comparing the cost
of generating an offer in each round.

An n-issue negotiation can be viewed as a distributed search through an n-
dimensional space, where each issue has a separate dimension associated with
it. In issue-by-issue negotiation, each issue is negotiated separately, Based on
the above equilibrium strategy, agents will compute a value for each issue.
Therefore, the computational cost in one round is O(n), where n is the size of
the issue set. In the package deal, an offer is a set including a value for each
issue under negotiation. In each round, an agent can make trade-offs across
all n issues to offer a set of offers that give it the same utilities. In the worst
case, the computational cost in one round is O(mn), where we assume each
issue may have m possible values.

The computation problem of generating an offer set is equivalent to search-
ing in an n-dimensional space for all combinations of possible distributions of
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given utility value among all n issues with a utility constraint. This problem
is intractable and takes O(mn) time in the worst case. Even worse, we have
to solve this problem every round during the package deal negotiation proce-
dure. It means that it will be infeasible for an agent to consider every possible
offer given a utility constraint. In coalition deal negotiation, issues are par-
titioned into k disjoint partitions and each partition is settled independently
of the other partitions. Like the package deal, issues inside the same parti-
tion are negotiated as a whole and an offer includes a value for each issue in
this partition. Therefore, the computation problem is reduced to the sum of
k searches where the i-th search is in an ni-dimension space, where ni << n
and

∑k
i=1 ni = n. This problem takes O(kmns) time in the worst case, where

ns = argmax ni. Moreover, we can limit the maximum size of a partition to
a constant C. Therefore, the computational cost of a coalition deal reduces to
O(nmC). The time complexity will be O(mC) if we have several agents, one
for each partition, work together to generate a coalition deal.

In our GetStockQuote service scenario, we divide six issues into two par-
titions. The computational cost is 6 in each round for issue-by-issue negoti-
ation. In package deal, agents need to search through all possible offers in a
6-dimensional space to meet the given utility constraint. The computational
cost is O(a6) in the worst case, where a is the size of possible value per issue.
In a coalition deal, the computational cost is O(a3) in the worst case.

Coalition Deal Negotiation for Services

With much lower computational cost than that for the package deal, agents
earn greater utilities from the coalition deal than from issue-by-issue negoti-
ation. Besides computational cost and agent utility, another advantage of the
coalition deal is that it is natural to partition issues into different categories
and deal with each category separately. For example, in bilateral negotiation
of a labor dispute, it would be easier if money issues such as salary and bonus
are negotiated in a partition separately from issues such as working condition
and healthcare. Of course, it is possible that both sides would benefit if they
could deal with all issues as a package, but the negotiation might become
infeasible.

In QoS-aware service contracting, self-interested service agents negotiate
with each other over multiple issues besides QoS attributes to reach an agree-
ment while maximizing their utilities. The optimal negotiation strategy for
the coalition deal is: (1) Agents reveal their deadlines; honesty about their
real deadline is enforced by the negotiation protocol. For example, the agent
that has the latest deadline will receive better payoff at the time right before
its deadline. (2) Each agent estimates individually the rounds this negotiation
should have before the earliest deadline. (3) Agents are identified by their
time discount factors (≤ 1) from their own utility functions. Agents choose
either the Boulware or conceder discount functions by mapping their discount
factor to different parameters. (4) Agents compute the expected cumulative
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utility by their Boulware/conceder functions and generate a set of offers, all
of which give them equal utility, by crossing over multiple issues inside one
partition.

Since all partitions can be negotiated in parallel and independently, the
fourth steps can be executed in parallel for each partition. A service agent
can breed several negotiation agents, each for one partition. These negotiation
agents cooperate to reach a service agreement with distributed computation.
The coalition among these negotiation agents provides the framework for a
possibly more flexible negotiation procedure in the future.

5 Commitments and Obligations

Now that we have described efficient multiple-issue negotiation, in this sec-
tion we define commitments and obligations and describe various operations
that the participating agents can perform on them. We briefly revisit earlier
formalisms of commitments and their operations [24, 22], and then define an
extension useful for coordination.

5.1 Commitments

Social commitments are legal abstractions associating one entity with another.
These commitments are accessible publicly and represent an interaction be-
tween two participating entities. Commitments are binary relationships that
bind two agents: a “debtor agent” that promises to provide a particular service
for a “creditor agent.” For example, service level agreements, QoS agreements,
online purchases, and service contracts are all real-world instances of commit-
ments.

Earlier works have treated all the information about a commitment as
publicly available or accessible. It is more realistic to treat some of the infor-
mation as partially accessible and some as private. To do this, we refine the
commitment structure in [24, 22] with the key properties of accessibility.

First, the commitment properties that are publicly accessible are

Multiagency: Commitments associate one agent with another. The agent that
promises or commits to satisfying a condition is called the debtor agent
and the agent that wants the condition to be fulfilled by the debtor is
called the creditor agent. Each commitment is directed from its debtor to
its creditor.

Scope: Commitments have a well-defined scope, also known as a Sphere of
Commitment (SoCom), which gives context to the commitment.

Manipulability: Commitments are modifiable. They can become fulfilled,
breached, active, suspended, or revoked, which is public information about
their current status.
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The following two additional parameters are not properties of a commit-
ment per se, but represent an agent’s attitude towards its commitments. These
are also public.

Commitment Adherence Rating: Agents may choose to respect or ignore their
commitments. For effective coordination, fulfilling promises is critical and
determines an agent’s reputation. A participating agent’s history of com-
mitment adherence can be captured and translated into a this rating,
which represents the agent’s reputation in a domain. Nonparticipating
arbiters can be used to measure and maintain this parameter.

Utility Weighting: This is a numerical coefficient in the range (0, 1] that rep-
resents the relative importance of the committed promise on the overall
utility that is desired by the creditor agent. This commitment property is
used for multiple-issue commitments. For single-issue commitments, the
value is always 1. It cannot be 0, as that would represent an issue on which
the creditor agent is completely agnostic.

The next (partially-accessible) property is accessible to the debtor of the
commitment and to the nonparticipating arbiters, defined as follows:

Utility Coefficient: Imagine a scenario where a debtor agent makes false
promises to many service seekers and then does nothing to fulfill the
promises. In the real world there are checks and measures in place to
discourage such behavior. The Utility Coefficient, which represents the
affect of debtor’s behavior on its utility, provides similar discouragement.
Its value in the range [0, 1] captures whether a debtor receives all of the
utility associated with a commitment (value 1) or none of the utility (value
0).

Lastly, we revisit two key commitment properties [22] and redefine them
as properties that represent an agent’s private or internal information.

Life: Commitments have a life cycle; they are created, remain active, and at
some point cease to exist. Continuous commitments are beyond the scope
of this formalism and are a subject of future research.

Degree: We believe that when active, commitments do not necessarily remain
in one constant state; they might age by becoming more or less impor-
tant. This notion of commitment aging is captured by what we define as
the degree of commitment. We believe that for a service-oriented coor-
dination environment, the degree of commitment changes with changing
beliefs, desires, and intentions. Also, specifically in the case of commit-
ment cancellation or revocation, the commitment might not go from an
active state to an inactive state instantaneously, but gradually decrease
its degree until it becomes inactive.

Commitments are represented by a predicate C. The partially accessible
commitment properties are represented inside angle brackets “〈. . . 〉” and the
private properties are represented inside square brackets “[. . . ]”. Commit-
ments have the form C(i, a, b, p, S, W, 〈µ〉, [d]), where
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i : is a unique identifier,
a: is the creditor agent,
b: is the debtor agent,
p: is the promise or the condition that the debtor will bring about,
S : is the context, also known as the sphere of commitment,
W : is the utility weighting,
µ: is the utility coefficient,
d : is the age or degree of commitment.

In this chapter, we do not use all of these properties, but mention them
wherever pertinent. Throughout the rest of this chapter we refer to the creditor
entity as a and the debtor entity as b.

5.2 Obligations

We believe that obligations are closely tied to the notions of duty and respon-
sibility. An obligation is a promise that one makes to oneself; it is driven by
the demand of ones own conscience or custom or socially accepted norms and
it binds one to a specific course of action. We believe that obligations may also
exist between a debtor agent and an abstract creditor agent, which cannot be
represented as one concrete creditor, for instance society or say one’s country.
In this chapter however, we will consider only those obligations that represent
promises one makes to oneself.

We believe that obligations can be represented as a special case of com-
mitments. Obligations, unlike commitments, are best described as unitary and
private in nature. In the described service-oriented environment, obligations
are the abstractions of bindings that an agent imposes on itself. These oblig-
ations or internal bindings are visible only to the agent and are driven solely
by agent’s internal state of mind i.e. beliefs, desires and intentions. We believe
that commitments’ claim over a promise is stronger than that of obligations.

As we are dealing only with unitary obligations, the Multiagency and
Utility Weighting properties are inapplicable. R and µ have special values set
by the debtor agent itself. The other properties of Scope, Manipulability, Life,
and Degree are treated the same as they are for commitments.

Obligations are represented by a predicate O, with their private properties
inside square brackets “[. . . ]”. Obligations have the form: O(i, b, p, S, µ, [d]),
where

i : is a unique identifier,
b: is the debtor agent,
p: is the promise or the condition that the debtor will bring about,
S : is the context, also known as the sphere of commitment,
µ: is the utility coefficient,
d : is the age or degree of obligation.
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5.3 Operations on Commitments and Obligations

As described above, our service-oriented environment is commitment-driven
and participating agents’ knowledge is governed solely by commitment oper-
ations. In this section, we describe commitment operations [23, 12] and their
extension [22]. Commitments are treated as abstract data types that associate
debtor, creditor, promise, and context. The seven fundamental commitment
operations are

1. Create (b, C(i, a, b, p, S)): This operation establishes a commitment C
in the situation S. This operation can only be performed by C ’s debtor.

2. Discharge(b, C(i, a, b, p, S)): This operation indicates that the inherent
promise in the commitment C has been fulfilled; hence the commitment
C has been satisfied.

3. Revoke(b, C(i, a, b, p, S)): This operation cancels the commitment C
and can only be performed by C ’s debtor. This operation also reflects the
autonomy of the participating entity.

4. Release(a, C(i, a, b, p, S)): This operation captures the situation where
a creditor no longer wishes its debtor to fulfill its committed promise and
releases it of its commitment. It can only be performed by C ’s creditor.

5. Assign(a, z, C(i, a, b, p, S)): This operation enables a commitment’s cred-
itor to designate another entity as the creditor. It can only be performed
by C ’s creditor and replaces a with z as C ’s creditor.

6. Delegate(b, z, C(i, a, b, p, S)): This operation enables C ’s debtor to
transfer its commitment promise to another agent. This operation can
only be performed by C ’s debtor and replaces b with z as C ’s debtor.

7. Suspend(b, C(i, a, b, p, S)): This operation can only be performed by C ’s
debtor, and describes a situation where the debtor has put its promised
commitment on hold.

We use predicates to describe whether the commitment C has been satis-
fied, revoked, breached, or still holds, written as satisfied(C), revoked(C),
breached(C), and active(C), respectively.

For obligations, only the following four of the above operations are ap-
plicable: Create(b, C (i, b, p, S)), Discharge(b, C (i, b, p, S)), Revoke(b, C (i,
b, p, S)), and Suspend(b, C (i, b, p, S)). Obligations are unitary, internal, and
private in nature; hence, assignment and delegation is not applicable. Because
obligations can be treated as a special case of commitments, in the remainder
of this chapter we use commitments as the basic abstraction for both binary
and unitary agent bindings.

5.4 Negotiated Agreements as Commitment Promises

As described in Section 1, in service-oriented environments the participating
agents, which play the roles of a service provider and a service seeker, nego-
tiate and commit to a service agreement about the execution and completion
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of a task. During the negotiation, the agents communicate and compromise
to reach an agreement on matters of mutual interest while maximizing their
utilities. In this section we will describe how the negotiated agreements, which
associate or bind these participating agents with each other, can be best en-
capsulated as commitment promises.

Let b denote the service provider or the debtor agent and a denote the
service seeker or the creditor agent as described in Section 4.3. Both a and b
negotiate on issues related to the service and come to an agreement. How they
communicate and their particular negotiation strategy is beyond the scope of
this section.

We first consider agreements over a single issue. Specifically, a and b have
negotiated and agreed upon an issue set I = A, where A represents one issue,
such as the product price in an e-commerce transaction.

Expanding on the agents’ negotiation parameters as defined in Section 4,
we define the agents’ agreement parameters as

Sa = 〈Pa, Ua〉A
Sb = 〈Pa, Ub〉A (12)

where, Pa = Pb = Pagreed is the agreed price or the agreed parameter over
issue A. This is public information.

Ua and Ub are utilities of the respective participating agents. The utilities
are associated with the negotiated agreement on A. It is partially accessible
information known to the owner agent and the non-participating arbiters.
Note that the actual utility, Uactual = µ×U , is awarded to the agent once the
commitment C reaches finality.

The negotiated agreement between agents a and b over issue A is a com-
mitment in which the agreed parameter over A is the commitment promise.
From section 5.1, and because this is a single-issue agreement so that W = 1,
the commitment is represented as C(i, a, b, Pagreed, S, 1, 〈µ〉, [degree, age]).

We now consider multiple-issue negotiated agreements. As an example,
an online transaction between an online bookseller and a buyer would involve
agreement from both sides on the multiple issues of book price, book condition
(new or used), delivery method, etc. All these are sub-issues of the main issue
of “buying a book.”

Let there be an issue set I of k issues, where I = {I1, I2, . . . , Ik}. Expand-
ing on the agents’ negotiation parameters as defined in Section 4, the agents’
agreement parameter sets are defined as:

Sa = 〈Pa, Ua〉I
Sb = 〈Pb, Ub〉I (13)

where, Pa =
∑

i∈I P i
a, and similarly, Pb =

∑
i∈I P i

b

This means that the overall agreed price or agreed parameter over issue
I, which comprises k sub-issues, is the summation of the agreed price or the
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agreed parameter of all the sub-issues. Since a and b are in agreement, Pa =
Pb = Pagreed, it is the overall agreed price or the overall agreed parameter
over the issue A. This is public information, which is available to all the
participants and the non-participating arbiters.

Ua and Ub are overall utilities of the respective participating agents. This
utility is associated with the negotiated agreement on the issue I. This is par-
tially accessible information, which means that it is known to the owner agent
and the non-participating arbiters. Note that the actual utility, Uactual = µ×U
and will be awarded to the agent once the commitment C reaches some kind of
finality. We know that Ua =

∑
i∈I U i

a. Similarly, Ub =
∑

i∈I U i
b . Which means

that the overall utility for an agent to have an agreement on a parameter over
issue set I, which comprises k sub-issues is the summation of utilities it gains
on having an agreement on all the sub-issues.

Now we describe the concept of W in greater detail. As described above,
the overall utility of the debtor agent b over the issue set I is the sum all
the utilities (“sub-utilities”) it gains over all the k sub-issues that make up
the issue set I. We theorize that in the issue set I all of the sub-issues do
not necessarily have an equally significant effect on its overall utility. In our
book-selling example, let us assume that a service provider b and a service
seeker a enter into a commitment relationship in which b promises to deliver
a book to a. Of the many sub-issues that make up the complete transaction,
the “color of the book cover” may not have as significant an impact on b’s
overall utility as does the “condition of the book” or the “delivery time”. W
represents the relative significance of sub-issues that make up an issue set.

Considering the negotiated agreement between agents a and b over the
issue set I as a commitment relationship, the relationship between a and b
can be represented as: Cab =

∑
i∈I Ci

ab, which means that the commitment
relationship between a and b over negotiated agreements on the issue set I,
which comprises k sub-issues, is the summation of all the commitments on all
the k sub-issues. Note that

∑
i∈I Wi

b = 1. Thus, service-oriented environments
where participating agents are involved in negotiated agreements over single
or multiple issues can be modeled by our commitment-driven approach.

6 Commitment-Based Coordination Protocol

Organizational control is needed to ensure that the appropriate information
is communicated among the coordinating agents, so that they can make ef-
fective decisions to advance the overall objective. The key information being
communicated is of three types:

1. Static information, such as authority relationships
2. Dynamic information, such as policies, standard operating procedures,

and communication protocols
3. Contextual information, such as the current state of the overall workflow

or plan and the states of the relevant agents.
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An important aspect of our approach is that it treats organizational con-
trol as an integral aspect of planning, particularly for coordinating in the
face of exceptions. This is a reasonable approach, because the flexibility of an
organization reflects the complexity of its plans, the dynamism of its environ-
ment, and the risks faced by its plans. Thus heuristic techniques for encoding
and using coordination strategies are naturally extended into strategies that
accommodate organizational structure and control.

Moreover, organizational structure can be used to control the complexity
both of the design and configuration of agent systems and of the execution
by individual agents. This improves scalability. Well-designed organizations
naturally yield narrow interfaces so that changes are not unnecessarily propa-
gated and the right information flows at the right time. We cast the problem
of organization design as a natural next step to the representation and design
of agent heuristics, where the heuristics are selected so as to capture and ex-
ploit organizational structure. For example, we could have heuristics to report
exceptions or anticipated exceptions to a supervisory role; to delegate a com-
mitment to a subordinate; to request a peer to accept a delegate; to assign a
resource not needed to a peer; and so on. In this manner, the general approach
for verifying correctness could be made more elaborate to take advantage of
organizational structure. Moreover, a model of the agents’ organization, poli-
cies, and authority can be integrated with coordinated decision making to
ensure the compliance of decisions to organizational policies.

To make this discussion concrete, let’s outline how inter-agent control and
intra-agent control mesh:

1. One or more agents perceive or are notified of an event.
2. Each agent perceiving the event decides (a) whether the event changes its

local plan, and (b) whether to communicate the change (by itself or along
with additional results of its reasoning) to another agent.

3. If an agent decides the event does not affect it or any one of its dependent
agents, then it filters out the event and continues on its prior execution
path. If an agent decides that the event does not affect its own plan, but
could possibly affect plans of its dependent agents, then it communicates
the event to the affected agents.

4. If an agent decides that the change affects its own plan, it reconsiders its
commitments and begins a renegotiation of those that cannot be met.

5. The actions proposed to meet commitments are subjected to a “filter”
that detects any that are in opposition to policies. All agents have an
obligation to act in accordance with appropriate and applicable policies.

6. If the coordinated commitment-revision process encounters difficulties, the
agent who has the most severe difficulty is given its preference and the
coordination continues.

The above process can be captured in a general and flexible manner
through the use of commitments. As explained in Section 5, commitments
provide a natural abstraction to encode relationships among autonomous,
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heterogeneous parties. Commitments are important for organizational control,
because they provide a layer that mediates across the declarative semantics
of organizations from the operational behavior of the team members. Orga-
nizational control based on commitments by a reasoner in an agent has the
advantages that:

1. Commitments can be assigned to roles, so that any unit that fills the role
of “transport troops” will, e.g., inherit a commitment assigned to the role
to move troops from location A to location B.

2. Commitments can be delegated, so that a captain who has the commit-
ment to “transport troops” can delegate the commitment to Helicopter
Unit 1.

3. Commitments can be reassigned. For example, if Helicopter Unit 1 fails to
meet its commitment (the helicopters break down) then the captain can
release Unit 1 from the commitment and delegate it to Unit 2.

4. Commitments can be negotiated. The captain might ask another captain
(a peer) to take over a commitment that could not otherwise be met.

5. Commitments can fail to be met, in which case the failure can be commu-
nicated to an agent with the authority to release the original commitment
and reassign it.

Commitments to follow required policies are a kind of obligation, and are
managed by a deontic reasoner. An organizational model based on obliga-
tions and rights can enable agents to represent and reason about the rela-
tionship between the responsibilities of the agent or group being coordinated
and applicable policies, decision-making constraints, authorities, and overall
objectives. This feature decides which organizational policies apply for the
current situation and marks as unacceptable any intended actions that are
inappropriate.

7 Commitments in Plan Revision

It is clear from the above that coordination is not a one-shot effort that can
be satisfied through one round of planning, but must be carried out repeat-
edly. Further, coordination includes challenges such as unexpected events and
changing situations, and must respect not only physical constraints, but also
organizational challenges.

One aspect of commitments involves scheduling algorithms so that an
agent can manage multiple commitments in the face of external events. Each
agent applies classification to identify the general class of an event, then the
classification is used to choose heuristics most likely to lead to effective coordi-
nated behavior. Each agent maintains the consistency of formally represented
commitments leading to robust, yet flexible coordination reasoning.

This relies upon a temporal semantics for commitments, which naturally
leads to heuristics for ensuring that tasks that can be scheduled are satis-
factorily scheduled given the emerging constraints. Another aspect involves
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reasoning about commitments more directly at the level of coordination as it
relates to communication. To this end, it helps to develop additional repre-
sentations based on commitments. Such representations can be thought of as
patterns of coordination relationships.

Abstract Plan Failures


 
 Delayed resource


 
 Unavailable resource


 
 Insufficient resource


Contingencies


 
 Alternative resource


 
 Additional resource


 
 Accelerated


compensation


 
 Cancel task


 
 Delay task


 
 Reduce task scope


Coordination Strategies


 
 Propagate delay based on


dependencies


 
 Request help based on commitments


 
 Request help from peers


 
 Request help from superior


 
 Propagate resource consumption data


 
 Adopt task


Heuristic Classification
Heuristic Classification


Fig. 2. Elements of a simple domain-independent mechanism for coordinating a
response to conflicts and failures in plans

Commitments provide us with a basis for creating techniques that are
generic and reusable. It is helpful to frame these as first-order patterns of
interaction as well as second-order patterns of how other patterns are mod-
ified. These patterns would be indexed according to different situations and
potential threats such as lost communications, ineffective participants, and
so on. Figure 2 illustrates examples of how certain coordination strategies
can be associated with potential plan failures. This is an example of heuristic
classification in the sense of [1]. In our approach, this heuristic classification
is supported by our semantics for commitments. Commitments are formally
modeled via temporal logic; each agent’s behavior is modeled via a simple
finite-state machine (FSM).

To operationalize a commitment, we represent it as an FSM that processes
commitments. The FSMs corresponding to different patterns can be com-
bined with each other to yield the desired composite structure for the different
agents. Figure 3 illustrates an example of a heuristic for handling a delayed
resource. On the left is a part of an agent’s FSM behavior where it deals with
obtaining a resource from another party. An agent implemented according to
this FSM would wait for the resource to arrive and then process it according
to its current plan. However, such an agent would not be robust under cer-
tain kinds of enactment failures, specifically if the resource fails to materialize
on time. The FSM on the right is an alternative for the same functional be-
havior. An agent implemented according to this FSM would be robust under
the above failure, because it would time-out and generate reminders for the
missing resource.
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Consider Exceptions
Ignore Exceptions


Subplan Complete


Receive(Confirmation) /


Send(TroopDestination)
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Send(TroopTransportRequest)
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Alarm


Start


Subplan Complete
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Wait for


Confirmation


Replan


Send(TroopTransportRequest)


Receive(Decline)


Start


Fig. 3. Operationalizing commitments: an example of a finite-state machine for a
coordinator that handles a delayed resource

The above heuristic is promising, but has an obvious shortcoming in that,
if the resource is dead rather than merely delayed, the agent will keep gen-
erating reminders, whereas it should drop the current plan altogether. As
agents are designed for a rich variety of scenarios, more such heuristics will be
needed. They might be invented at run-time via machine learning or during
configuration when a team of agents is deployed.

We can validate if a set of agents will function together in a manner to
produce the right behaviors. It is known that checking the correctness of a
distributed system of complex components is not tractable. The FSM repre-
sentation of the heuristics hides irrelevant detail and enables the correctness
verification known as model checking. Examples of the kinds of errors that
can be detected early via model checking are: (1) if all the agents in a system
are implemented according to the simple FSM on the left in the figure above,
then such a system will hang when a resource dies, and (2) when resource
sharing, if the receiver of a resource is implemented according to the FSM
on the right, then we can confirm that reminders will be generated in case
of a delay, but there might still be unnecessary delays because the resource
provider cannot notify the resource consumer and the resource consumer will
be unable to terminate its current plan if the resource is in fact dead. Similarly,
we can create additional sets of FSMs and verify their correctness. Previous
work on this problem used a Computational Tree Logic (CTL) model checker
to create FSMs that would guarantee specified combinations of commitment
patterns [28, 27].

In simple terms, the methodology combines the power of heuristics and the
learning of agent behaviors, while providing a sound underpinning in terms of
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commitments and their formal semantics. Heuristic classification is essential
for practical knowledge acquisition and implementation; formalization gives
us the essential guarantees of robustness and reliability that are necessary for
mission-critical situations.

8 Conclusions

Commitments are a powerful representation for modeling intelligent interac-
tions among agents distributed within an organizational structure. Previous
approaches have considered the semantics of commitments and how to check
compliance with them. However, for large-scale applications such as supply
chains or military operations, these approaches do not capture implicit tem-
poral task dependencies or the organizational authority and responsibilities
among the participating entities. Our use of negotiated commitments for co-
ordination lets us capture realistic task dependencies and avoid ambiguities.
Consequently, it enables us to reason about whether, and at what point, a
commitment is satisfied or breached, and whether it is or ever becomes unen-
forceable when replanning must be done.

Our use of deadlines for agent plans is similar to that for commitment
life-cycles [7], which explains how operations can create, modify, delete, and
satisfy commitments. This work operationalizes commitments, and we extend
it to yield agent-internalized BDI semantics for temporal commitments.

The use of policy and organizational reasoning for coordination requires
advances in the representation of policies in terms of commitments and oblig-
ations and an associated deontic reasoning mechanism. A temporal deontic
logic for specifying obligations so that interaction protocols can take deadlines
into account has been developed [4]. Other work on obligations [11] used them
to represent and reason about policies, but did not incorporate commitments,
as we do.

The choice of commitments as a basic data type for coordination enables
the monitoring of performance by recording the satisfaction of prior commit-
ments. This can be used to predict an agent’s computational resource needs,
and can be used to determine when an agent is not meeting expectations.

This chapter also investigates the coalition deal as a strategy for QoS-
aware negotiation over commitments. Using equilibrium strategies, we prove
that it makes better tradeoffs between utility optimization and computational
efficiency than either the package deal or issue-by-issue negotiation.

Many real world systems are becoming service-oriented. In a service-
oriented multiagent system, commitments represent agent associations and
interactions. In such an environment, a participant agent’s beliefs, desires,
and intentions about the commitments in which it is involved are critical
to modeling its behavior. By formalizing commitments in terms of BDI,
we have provided the basic framework on which a more comprehensive
commitment-driven coordination theory could be developed. The advantage
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of this framework is that it blends two established formalisms—BDICTL [3]
and commitments—that together can model a service-oriented multiagent sys-
tem. Our future research involves exploration of how agents decide what to
commit (integrating earlier works on “capability” [15] with commitments),
when to revoke a commitment, how a commitment ages, and how historical
information of an agent’s commitment adherence can be utilized to predict
agent behavior.
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