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On the Use of Agents as Components of Software Systems 

Software agents are increasingly being used as building blocks of complex software systems. In this paper 

we discuss the benefits and the drawbacks that a developer faces when choosing agents for the realization of 

a new system, instead of a more mature technology such as software components. In particular, we first 

compare agents to components and then highlight the differences and similarities engendered by the 

metaphors and abstractions that each provides. Then, we concentrate our comparison on reusability because 

of general agreement that reusability is one of the most important features to consider when adopting a 

development technology. We exploit agent-oriented concepts to define formally an asymptotic level of 

reusability, and we show how agents and components approximate it. The result of such a comparison is that 

agents are intrinsically more reusable than components. 

1. Introduction 

The creation and development of Agent-Oriented Software Engineering (AOSE) [13] in the last decade has 

promoted agents as a viable new way to develop complex software systems. AOSE gives to the developer all 

the flexibility and the expressive power of agents and it helps with the management of the software lifecycle 

in an attempt to improve the quality of the resultant software products. 

During its short history, research on AOSE has undergone an important change of focus: initially it was 

meant only to provide methodologies and tools to build agent-based systems; today it is more concentrated 

on understanding the features that an agent-based approach can bring to the development of conventional 

software. This change of focus is not trivial and it corresponds to a radically different approach in adopting 

agents during the evolution of the software lifecycle. The first approach is based on choosing agents as the 

very basic abstraction of the development, before actually starting the software lifecycle. Such a decision is 

taken for reasons that fall outside of the software lifecycle and is generally based on the nature of the system 

or on the complexity of the problem at hand. 

Choosing agents as the very basic abstraction for development allows adopting the agent-oriented mindset 

for the entire lifecycle, from analysis of early requirements to the retirement of the system, as the Tropos 

methodology [6] suggests. The major drawback of this is that often there is no reasonable motivation for 
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choosing agents to develop conventional systems, e.g., word processors and financial planning systems. This 

is the reason why a more modern approach to AOSE tends to move the decision on adopting agents after (or 

during) the phases for requirement analysis and requirement specification. The developer is not forced to 

envisage his/her system in terms of agents, rather he/she can concentrate on the requirements that will drive 

the subsequent design. The major disadvantage of this approach is that the developer may not exploit 

interesting features of agents, e.g., emergent behavior and generalization, because he/she has concentrated 

too much on the concrete requirements that come directly from the client. 

Besides this drawback, the more recent approach has highlighted the problem of understanding when and 

how the developer should prefer agent technology instead of any more traditional, and possibly more mature, 

technology, such as object-oriented technology. In this paper we address a particular aspect of this problem 

and we present the motivations for choosing agents instead of a technology that resembles agents from many 

points of view: software components [22]. In the following section we compare agents and components by 

taking into account five aspects that they share. Our results have maximal generality, because our analysis is 

not bound to a particular technology. In section 3 we extend the depth of our comparison by concentrating on 

reusability, which is one of the most important aspects of a development technology. We begin this by 

formally defining an asymptotic level of reusability, and then show how agents and components approximate 

it. The result of such a comparison is that agents are intrinsically more reusable than components. Finally, in 

section 4, we briefly discuss the implications of our comparison results. 

2. Software Agents vs. Software Components 

Since the first release of the FIPA specifications in 1997 [9], researchers clearly understood the possibility of 

using agents as software components capable of exhibiting interesting characteristics, e.g., automatic 

reasoning and goal-directed behavior. In addition, FIPA chose to enable communication among agents by 

means of a CORBA interface, and this emphasized even more the strong interrelation between such 

abstractions. The long (and sometimes pointless) debate on the differences between agents and objects (see, 

e.g., [24]) originated from this comparison. 

Component-oriented software engineering proposes extensions of objects, e.g., Web Services [25], 

JavaBeans [20], .NET components [8] and CORBA components [19], as a final answer to the need of 

reusable building blocks that can be assembled to realize complete systems. Such components are 

interoperable across networks and (possibly) languages and operating systems, to give a developer maximal 

freedom in the deployment of a system. Nevertheless, the long-pursued dream of component-oriented 

software engineering does not end with the realization of a technology for reusable units of software, but it 

considers also the following ideas: 
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1. Commercial Off-The-Shelf (COTS) components, i.e., components that are available in a public 

market and that are assembled to create a value-added system. The quality and the cost of the system 

basically depend on the quality and costs of every single COTS component. Market forces should 

help in decreasing costs while increasing the quality of available components. 

2. Automatic assembly, i.e., the possibility of lowering the cost of the process of assembly of 

components through the use of automatic technologies. The quality and cost of the assembly process 

depend directly on the quality and cost of the available technologies for automatic assembly. 

The use of COTS components combined with automatic assembly can lower the cost of a component-based 

system down to the direct investments related to each single component, summed to the cost of the 

technology for automatic assembly. Similarly, the quality of a system increases according to the quality of 

single components and of the technology for automatic assembly. 

Our comparison between agents and components starts from Table 1, where we show some important 

aspects of components and associate them with their agentized counterparts. More precisely, we consider the 

most important features of the agents’ metamodel and compare them with the corresponding features of the 

components’ metamodel. In order to give maximal generality to our results, we avoid considering any 

particular metamodels, e.g., the Microsoft .NET metamodel for components or the SMART framework [15] 

for agents. 

Table 1. Features of the agents’ metamodel and their counterparts of the components’ metamodel 

Feature Agent-oriented Component-oriented 

State Mental attitudes Attributes and relations 

Communication ACL Metaobject protocol 

Delegation of responsibility Task and goal delegation Task delegation 

Interactions between parties Capability descriptors Interfaces 

Interaction with the environment New beliefs Events 

State Representation. Both agents and components are abstractions that comprise a state, but they have 

very different means to describe and to expose it to the outer world. The state of a component is represented 

though a set of attributes and a set of relations with other components. Attributes and relations can be public, 

i.e., other components can manipulate them directly. An agent has a mental state, i.e., its state is represented 

in terms of what it knows, e.g., its beliefs, and what it is currently pursuing, e.g., its intentions. The main 

differences between such models for representing the execution state are: 

1. Agents cannot manipulate the state of another agent directly, but can affect it only through 

communication; 
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2. Agents have an explicit representation of their goals; 

3. Agents have explicit knowledge of their environment, including other agents in the environment; 

4. Except for a unique identifier, agents do not have public attributes. 

One of the main advantages of the agents’ approach is that agents can use general-purpose reasoning 

techniques to support deduction and means-end reasoning. On the contrary, the attributes and relations of a 

component’s state are not structured in a logic framework, so it is difficult to use general-purpose 

techniques; any deduction and planning process must be coded explicitly in the methods of the component. 

Communication. The main difference between agents and components is in the mechanism they use to 

communicate. Agents use declarative Agent Communication Languages (ACLs), while components use 

metaobject protocols [14]. In the agent-oriented approach, a message is sent only in an attempt to transfer 

part of the sender’s mental state to the receiver. Let’s take the FIPA ACL as an emblematic example: it 

defines performatives, i.e., semantic message types, together with feasibility preconditions, which must be 

true for the sender to send the message and rational effects, which are why the sender sent the message. 

When an agent receives a message, it can assert that the feasibility precondition holds for the sender and that 

the sender is trying to achieve the corresponding rational effect. This is basically a rather knotty way to let 

the receiver know that the sender wanted the receiver to know that the feasibility precondition holds for it 

and that it is actually bringing about the rational effect. The advantage of using a structured ACL, instead of 

a more natural exchange of representations of goals, is that it simplifies the development of reactive agents 

capable of complex interactions. Reactive agents with no reasoning capabilities can exploit the performatives 

of the ACL as triggers that activate the state machine of the underlying interaction protocol. This is what 

JADE [2] and similar platforms provide. 

In the component-oriented approach, a message is sent for two reasons. The first is to directly manipulate the 

state of the receiver. This use of communications violates the autonomy of the component, which should be 

solely responsible for its own state. Most real-world technologies for implementing components prohibit 

direct manipulation of their states, in an attempt to satisfy a software engineering goal of minimizing this sort 

of coupling among components. The second reason for sending a message is to force the receiver to execute 

the body of a method for the sender without explicitly communicating to the receiver why it is being forced 

to do so. The responsibility for such an execution is completely that of the sender: it is responsible for 

guaranteeing that preconditions hold and for causing any changes in the rest of the system that might arise 

during the complete execution of the method. 

Delegation of Responsibility. As we have just pointed out, both for agents and for components the 

delegation of responsibility is based on communication and the differences in the way they delegate 

responsibilities justify the differences in their communication models. In the component-oriented model, the 
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sender is solely responsible for the possible outcomes of a message: it does not need to say anything more to 

the receiver than “please do this under my responsibility.” Strictly speaking, components do not delegate 

responsibility to other components at all. 

In the agent-oriented model, the receiver is solely responsible for the outcome of its own actions and the 

sender needs to say also why it is requesting the service. A very important communicative act that an agent 

can perform is delegating one of its goals to another agent, e.g., through the FIPA achieve performative. This 

special communicative act, known as goal delegation [7], is the basic mechanism that agents use to delegate 

responsibilities. 

The components’ metamodel does not comprise an abstraction of a goal and components can only use task 

delegation. Components achieve their (implicit) goals asking by forcing other components to perform 

actions; agents might achieve their (explicit) goals by delegating them to other agents. This is the reason why 

it is common to refer to the agent-oriented communication model as declarative message passing: agents can 

tell other agents what they would like for them to do without explicitly stating how to do it. On the contrary, 

imperative message passing is used for the component-oriented approach, because components cannot say to 

another component what to do without also saying how to do it. 

The possibility of using only task delegation is a strong limitation for components, because goal delegation is 

a more general mechanism. First, task delegation is a special case of goal delegation: the delegated goal has 

the form done(a), where a is an action, just like for the rational effect of the request performative in the FIPA 

ACL. Then, task delegation may inhibit optimizations. Consider, e.g., a component S with a goal g that needs 

component R to perform a1 and a2 to achieve it; S would ask to R to perform a1 and then it would ask R to 

perform a2. As the two requests are not coupled though the underlying idea that S is trying to achieve g, R 

cannot exploit any possible cross-optimization between a1 and a2. 

If S and R were two agents instead of two components, S would simply delegate g to R and then R would 

decide autonomously the way to achieve it, i.e., it would decide how to perform a1 and a2. This approach 

couples a1 and a2 through g, thus enabling R to perform cross-optimizations between a1 and a2. 

Interaction between Parties. The different communication models influence the way agents and 

components open themselves to the outer world. Components use interfaces to enumerate the services they 

provide and to tell clients how to get in contact with them. Sophisticated component models (see, e.g.,  [16]) 

equip interfaces with preconditions and postconditions. 

The agent-oriented approach eliminates interfaces and provides agents with capability descriptors that depict 

what an agent can do, i.e., the possible outcomes of its actions, and how it can interact with other agents. The 

main difference between a capability descriptor and a postcondition is that the first can express how the state 

of the environment changes after the complete execution of an action. A postcondition can only assert how 
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the state of the component changed after the action has been executed, because the environment is not part of 

the component’s metamodel. 

Interaction with the Environment. As we have just mentioned, an environment is a structural part of an 

agent’s metamodel, while it is not part of a component’s metamodel. Agents execute in an environment that 

they can use to acquire knowledge: agents are situated abstractions. Agents can measure the environment and 

they can receive events from it. In both cases, agents react to any change in the environment because of 

changes in their mental state. This is radically different from the component-oriented approach where the 

environment communicates with components only through reified events. Components can react to an event 

only by constructing a relation with a reification of the event itself. 

The component-oriented approach seems to better respect encapsulation than the agent-oriented approach: 

the state of the component is changed only when the component itself decides to change it in reaction to an 

event. If we consider this in more detail, we see that the agent-oriented approach also respects encapsulation. 

Agents have reasoning capabilities that are ultimately responsible for any change in their mental state. Any 

direct push of knowledge from an agent’s sensors to its mental state is ruled through reasoning, and the 

mental state remains encapsulated. 

3. Semantically Reusing Agents and Components 

Since the beginning of computer science, reusability has been considered one of the main properties of a 

development technology. First procedures, and later classes were a direct response to the need for creating 

reusable units of software to, e.g.,: 

1. Speed-up the realization of new systems; 

2. Ensure the quality of systems that are realized though the composition of a number of readymade 

units. 

Component-oriented software engineering has already explored most of the peculiarities related to building a 

system in terms of assembled components, and it identified three concepts that any technology meant to 

improve reusability should take into account: semantic interoperability [11], semantic composability [18] 

and semantic extensibility [10]. No formal definition for such concepts is available in the literature and the 

general feeling is that formalizing such ideas would require concepts that are not part of the components’ 

metamodel. On the contrary, we can give formal definitions of such ideas by taking into account very basic 

elements of the agents’ metamodel. 

Semantic Interoperability. Previous research on software components has explored the problem of 

semantic interoperability in many ways, and the agent community has also begun investigating the subject. 

For example, the recent work on the characterization of the capabilities of Web Services [16] follows the 
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lines of established results (see, e.g., [12]). Strangely enough, there is no agreed upon definition for semantic 

interoperability and some variants of this concept are available in the literature with different names, even 

though this name has been in use for a while. 

The idea of semantic interoperability comes from a reasonable extension of syntactic interoperability of 

components, i.e., the sort of interoperability that CORBA and “standards” with similar aims (e.g., DCOM 

and Java RMI) provide. CORBA allows components to exchange messages and provides an agreed upon 

syntax for such messages. The semantics of the exchanged messages is implicit, i.e., the semantics of a call 

to a method of a CORBA interface is implicitly defined as follows: the call to the method actually causes the 

execution of the body of the method. Nothing is said on the concrete outcome of the call, i.e., what would 

happen to the world outside of the component that executed the body of the method after such an execution 

would be completed. This outcome is considered application specific and relies completely on the 

programmer, who is responsible for reading the documentation of the interface for deciding when and how to 

call the method. 

Syntactic interoperability inhibits automatic assembly of components, because a client has no means to 

reason about the effects of a call it might have decided to perform on one of the methods of a service-

provider component. Semantic interoperability is about extending the interface of a component with an 

explicit formalization of the outcome of a method call in order to allow a client to decide autonomously 

when and how to invoke that method. 

What we have just described can be applied to agents if we concur that invoking a method on a component is 

somehow similar to asking an agent to perform an action. Exploiting the characteristics of agents, we can 

formalize semantic interoperability as follows: 

Definition (Semantic Interoperability, Client Standpoint) Given two agents C and S∈acquaintanceC, they 

are said to be semantically interoperable if and only if: 

∀g∈goalsC, (g∈goalsS)∈goalsC ⇒ [(g∈goalsS)∈goalsC]∈knowledgeS 

where (note that all sets are time-variant, but time is not included in the notation for simplicity): 

goalsA:  set of goals that A is pursuing; 

knowledgeA: set of propositions that A knows; 

acquaintanceA: set of components that A knows; 

∈ denotes the set-element relationship. 

This definition states that if (at some point in time) an agent C wants to achieve g, and it wants to delegate 

such a goal to S, then S will know of such a desire. In this way we can easily capture the lack of information 
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loss, which is the core of semantic interoperability: if an agent has a goal, then it can transmit that goal to a 

service-provider agent without any loss of precision. It does not really matter how the goal is communicated, 

the only important result of the communication is the delegation of the goal to the service provider. 

This definition of semantic interoperability takes the client standpoint, because C is the originator of g and 

nothing is said about S wanting to provide its services to a set of possible clients. A similar definition is 

trivially possible taking the server standpoint, but such a definition is basically equivalent to the one we 

showed and its discussion would not add much to the aims of this paper. 

A fairly interesting consequence comes from this definition of semantic interoperability: if we consider a 

multiagent system where agents are only intended to interoperate semantically, then a very basic ACL with 

the achieve performative only is sufficient. This is not strange at all, because it easily generalizes the 

available work on ACLs, as discussed in the previous section. 

Achieving semantic interoperability is not only a way for improving reusability, it is also a possible way for 

promoting optimization. With everyday syntactic interoperability, agents achieve their goals by possibly 

asking other agents to perform actions, i.e., exploiting task delegation towards other agents in an attempt to 

achieve their goals. Semantic interoperability exploits goal delegation and this may promote cross-

optimization, as discussed briefly in the previous section. 

Semantic Composability. The assembly of agents to realize a multiagent system is not only a matter of 

making agents communicate in the best way, but also allowing them to find each other. Interoperability is 

necessary, but not sufficient, for composability, Semantic interoperability requires S∈acquaintanceC and we 

need to elaborate on this to achieve full semantic composability. 

Semantic composability has been studied for a long time in the literature of component-oriented software 

engineering, starting from well-known results on the composability of objects obtained by researchers who 

are now active in the community of aspect-oriented programming [1]. The basic idea behind semantic 

composability is that a component should be free to compose the services provided by a set of service-

provider components with no constraints deriving from locating the right service providers or from possible 

mismatches between the interfaces of such service providers.  It requires that the things being composed not 

only have compatible interfaces, but also make consistent assumptions about the world. 

Semantic composability has already been extended to agents [21], and we can make it more formal by 

exploiting the same technique that we used for semantic interoperability. We can say that two agents are 

semantically composable if no constraint is imposed on the way agents delegate goals and, more formally, 

we can define semantic composability as follows: 

Definition (Semantic Composability) Given a set of n agents MAS={A1, A2, …, An}, they are said to be 

semantically composable if and only if: 



Bergenti and Huhns 

On the Use of Agents as Components of Software Systems 

- 9 - 

∀C∈MAS, ∀g∈goalsC, ∃S∈MAS : (g∈solvesS) ⇒ [(g∈goalsS)∈goalsC]∈knowledgeS 

where (note that all sets are time-variant, but time is not included in the notation for simplicity): 

solvesA:  set of goals that A can solve. 

This definition states that if an agent C has a goal and there is an agent S available in the multiagent system 

capable of achieving such a goal, then C can delegate the goal to S with no loss of precision caused by 

communication. In this way we can capture the lack of information loss that semantic interoperability entails, 

without the need of requiring C to know S and to desire to delegate its goal to that S. It does not really matter 

how or to whom the goal is communicated, the ultimate result of the composition is that an agent of the 

multiagent system would achieve the goal for C. 

This definition does not require the client to know the service-provider agent prior to the delegation, and it 

does not guarantee that the chosen service provider would be known after the delegation. This is compatible 

with the common approach of explicitly choosing the service provider, because the two approaches are both 

captured by the definition: the client can identify the service provider of choice in its goal. For example, if an 

agent C wants S to achieve goal k for it, then the goal that C is bringing about is actually 

g=[(k∈goalsS)∈goalsC]∈knowledgeS. 

Semantic Extensibility. Taking the literature on component-oriented software engineering into account, we 

see that reusability is pursued not only by means of composing reusable components, but also by making 

such components extensible [5]. Extensibility provides mainly two possibilities of reuse: 

1. Implementation of new components as extensions of available components; 

2. Substitution of an existing component with a different one with (possibly) no changes in the rest of 

the system. 

The first approach is traditionally considered the base of object-oriented programming: it supports the 

creation of new classes of objects by means of inheritance and polymorphism. This is still a good way to 

bring about reusability, but nowadays the second approach is preferred because it allows reusing entire 

systems and not only single classes. This so-called framework-based reusability relies on the possibility of 

substituting a component with another component without the rest of the system (i.e., the framework) being 

aware of such a substitution. 

Object-oriented and component-oriented paradigms achieve framework-based reusability by means of 

inheritance and polymorphism, because they assume that if two components belong to the same class, i.e., 

they are of the same type, then they are substitutable. This is obviously not enough and some extensions to 

such an approach have been already proposed [17]. In particular, the main problem of approximating 

substitutability with type equivalence is that two classes may provide the same methods, but the semantics of 
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such methods, i.e., what they do on the world outside of the component, may be completely different. In 

other words, two classes may be structurally identical, but semantically different [10]. 

The idea behind semantic extensibility is that we want to have the possibility of substituting a component 

with another component extending the features provided by the first component, while preserving the 

semantics of the operations that clients were able to perform before the substitution. 

Taking the agent-oriented mindset and exploiting the formalisms that we have introduced previously in this 

section, we can formally define semantic extensibility as follows: 

Definition (Semantic Extensibility) Given two agents B and D, we can say that D is a semantic extension of 

B if and only if: 

solvesB ⊆ solvesD 

This definition states that (at each point in time), what B can solve is also solved by D, i.e., from the point of 

view of any possible client interested in the services that B may provide, they are substitutable. 

Semantic extensibility together with semantic composability maximizes the reusability of agents, at least if 

we adopt the assumption of considering agents as the atomic units of reuse. Agents are composed freely on 

the basis of their goals and they can be substituted with other agents with extended capabilities with a 

complete reuse of the multiagent system surrounding the substituted agents. 

Approximating Semantic Reusability. The model of reusability that we have just discussed is obviously 

idealistic, because it does not provide any operational means for supporting composability and extensibility. 

Nevertheless, if we make the sets goalsA and solvesA public and explicit, then semantic composability is just 

a matter of passing a goal from a client to a service provider and, in the most general case, it is just a matter 

of communication. We could exploit a matchmaker agent capable of connecting a client with a service 

provider, or we might rely on the middleware infrastructure. In this last case, e.g., we could exploit a tuple 

space forwarding goals from clients to service providers, or we could rely on a direct message passing that 

the programmer coded explicitly in the program of the client. 

Similarly, making solvesA public and explicit guarantees semantic extensibility, because a client can always 

check solvesS before requesting a service from a service provider S. 

Unfortunately, goalsA and solvesA cannot be computed in the most general case and we can only rely on 

public and explicit approximations of such sets. Components and agents provide different approximations of 

such sets and the advantages that agents have over components in terms of reusability derive from these 

different approximations. 

The ParADE framework [3] was designed to maximize the interoperability of agents and it approximates 

semantic reusability as follows [4]: 
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1. beliefsA ≈ knowledgeA: the knowledge of an agent is approximated with what the agent believes, i.e., 

what it has deduced by applying steady rules to its measurements of the environment; 

2. intentionsA ≈ goalsA: the set of goals of an agent is approximated with the set of intentions that it 

calculates from its beliefs and from the rules that drive its planning engine; 

3. capabilitiesA ≈ solvesA: the set of goals an agent can solve is approximated with the set of post-

conditions of its feasible actions. These postconditions take into account the state of the agent and of 

the environment after the complete execution of an action. 

The components’ metamodel relies on even stronger assumptions: 

1. stateA ≈ knowledgeA: the knowledge of the component is approximated with the state of the 

component, i.e., the values of its attributes and its relationships with other components; 

2. postcondition-of-next-callA ≈ goalsA: the set of goals of a component is approximated with a 

singleton set that contains the postcondition of the method that the component is about to invoke; 

3. postconditionsA ≈ solvesA: the set of goals a component can solve is approximated with the set of 

postconditions of its methods. Such postconditions are defined on the state of the component after 

the complete execution of a method and nothing is said about the state of the environment. 

Roughly, agents approximate semantic reusability better than components, because the element of the 

architecture that is in charge of enabling the flow of information between a client and a service provider, e.g., 

the matchmaker agent, has more precise information to perform its job. 

Agents approximate semantic extensibility better than components because the capability descriptors that 

they use comprise conditions on the environment surrounding the agents, while the postconditions of the 

methods of components consider only the state of a service provider after the complete execution of a 

method. Therefore, agents can give very precise information on the outcome of an action for the purpose of 

guaranteeing semantic extensibility. 

4. Discussion 

Agents not only are suited for uncommon types of applications where the advanced characteristics of agents, 

such as learning and autonomy, are required, but also represent a valid alternative to other solid technologies 

because agents: 

1. Provide the developer with higher level abstractions than any other technology available today [3]; 

2. Have concrete advantages over components in terms of reusability. 
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The first point, i.e., working with higher level abstractions, has well-known advantages, but it also has a 

common drawback: slower speed of execution. In order to fully exploit the possibilities of agents, we need to 

implement an agent model with some reasoning capabilities and agents of this sort are likely to be slow. 

Nowadays, this does not seem a blocking issue because speed is not always the topmost priority, e.g., time-

to-market and overall quality are often more important. 

As far as the second point, reusability, is concerned, the improvement that agents obtain comes at a cost: 

slower speed again. The use of goal delegation instead of task delegation requires, by definition, means-end 

reasoning and we face the reasonable possibility of implementing slow agents. 

Fortunately, in both cases the performances of agents degrade gracefully. We can choose how much 

reasoning, i.e., how much loss of speed, we want for each and every agent. In particular, we may use 

reasoning for agents that: 

1. Are particularly complex and could benefit from higher level abstractions; 

2. We want to extend and compose freely in many different projects. 

On the contrary, we can rely on reactive agents, or components, when we have an urge for speed. This 

decision criterion seems sound, because the more complex and value-added an agent is, the more we want to 

reuse it and compose it with other agents. Moreover, reactive agents are perfectly equivalent to components 

and we do not loose anything using the agent-oriented approach instead of the component-oriented approach. 
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