
* Submitted to Journal of High Speed Networks. A preliminary version will appear at the 2nd
International Workshop on Assurance in Distributed Systems and Networks (ADSN 2003).

Convergence of IPsec in Presence of Resets

Chin-Tser Huang Mohamed G. Gouda E. N. Elnozahy∗

Department of Computer Sciences
The university of Texas at Austin

Austin, Texas 78712-1188

∗ System Software Department
IBM Austin Research Lab

11400 Burnet Rd., M/S 9460, Austin, TX 78758

{chuang, gouda}@cs.utexas.edu, mootaz@us.ibm.com

Abstract. IPsec is the current security standard for the Internet Protocol IP.
According to this standard, a selected computer pair (p, q) in the Internet
can be designated a “security association”. This designation guarantees that
all sent IP messages whose original source is computer p and whose
ultimate destination is computer q cannot be replayed in the future (by an
adversary between p and q) and still be received by computer q as fresh
messages from p. This guarantee is provided by adding increasing sequence
numbers to all IP messages sent from p to q. Thus, p needs to always
remember the sequence number of the last sent message, and q needs to
always remember the sequence number of the last received message.
Unfortunately, when computer p or q is reset these sequence numbers can
be forgotten, and this leads to two bad possibilities: unbounded number of
fresh messages from p can be discarded by q, and unbounded number of
replayed messages can be accepted by q. In this paper, we propose two
operations, “SAVE” and “FETCH”, to prevent these possibilities. The
SAVE operation can be used to store the last sent sequence number in
persistent memory of p once every Kp sent messages, and can be used to
store the last received sequence number in persistent memory of q once
every Kq received messages. The FETCH operation can be used to fetch the
last stored sequence number for a computer when that computer wakes up
after a reset. We show that the following three conditions hold when SAVE
and FETCH are adopted in both p and q. First, when p is reset, at most 2Kp
sequence numbers will be lost but no fresh message sent from p to q will be
discarded if no message reorder occurs. Second, when q is reset, the number
of discarded fresh messages is bounded by 2Kq. In either case, no replayed
message will be accepted by q.
Keywords: IPsec, sequence number, anti-replay, reset.

 1

1. Introduction
IPsec is the current security standard for the Internet Protocol IP [KA98a, KA98b,
KA98c, MSS+98, Orm98]. According to this standard, a selected computer pair (p, q) in
the Internet has to establish a unidirectional “security association”, or SA for short,
before computer p can start sending messages to computer q. The components of the SA
from computer p to computer q include authentication and encryption keys and shared
secrets, algorithms used for authentication and encryption, lifetimes of the keys, a
sequence number at computer p used for sending messages to q, an anti-replay window at
computer q, and some other parameters. The keys and algorithms specified in the SA
from p to q will be used to authenticate or encrypt the messages whose original source is
p and whose ultimate destination is q in order to provide integrity or confidentiality
services to these messages. The sequence number at p and the anti-replay window at q,
on the other hand, are used to check whether the received messages are replayed or not,
so as to provide anti-replay service to these messages.

IPsec uses an anti-replay window protocol, which exploits the sequence number at p and
the anti-replay window at q, to provide anti-replay service. The anti-replay window
protocol guarantees that every replayed message inserted by an adversary toward
computer q will be detected and discarded by q. This guarantee is provided by adding
increasing sequence numbers to all IP messages sent from p to q. Thus, p needs to always
remember the sequence number of the last sent message, and q needs to always
remember the sequence number of the last received message. However, this guarantee
only holds when both computers p and q stay up and no reset occurs to them. If computer
p or q is reset during the lifetime of the SA from p to q, these sequence numbers can be
forgotten, and this leads to two bad possibilities: unbounded number of fresh messages
sent from p to q can be discarded by q, and unbounded number of replayed messages can
be accepted by q. In this paper, we propose two operations, “SAVE” and “FETCH”,
which can be added to the anti-replay window protocol such that these bad possibilities
can be prevented.

The remainder of this paper is organized as follows. In Section 2, we formally specify the
anti-replay window protocol. In Section 3, we point out the problems with the anti-replay
window protocol in presence of resets. In Section 4, we discuss how the two operations,
“SAVE” and “FETCH”, can be added to the anti-replay window protocol. In Section 5,
we show that the new anti-replay window protocol can converge to the resynchronization
of computer p and computer q after a reset occurred at p or q. We conclude our
presentation in Section 6.

The protocols in this paper are specified using a version of the Abstract Protocol Notation
presented in [Gou98]. We use this notation because it provides a well-defined set of
semantics that is suitable for distributed environment and is not provided by
programming languages like C/C++. In this notation, each process in a protocol is
defined by a set of constants, a set of variables, and a set of actions. For example, in a
protocol consisting of two processes x and y, process x can be defined as follows.
process x
const <name of constant> : <type of constant>
 …

 2

 <name of constant> : <type of constant>
var <name of variable> : <type of variable>

 …
 <name of variable> : <type of variable>

begin
 <action>

[] <action>
 …
[] <action>
end
The constants of process x have fixed values. The variables of process x can be read and
updated by the actions of process x. Comments can be added anywhere in a process
definition; each comment is placed between the two brackets { and }.
Each <action> of process x is of the form:

<guard> → <statement>

The guard of an action of x is either a boolean expression over the constants and variables
of x or a receive guard of the form rcv <message> from y.
Executing an action consists of executing the statement of this action. Executing the
actions (of different processes) in a protocol proceeds according to the following three
rules. First, an action is executed only when its guard is true. Second, the actions in a
protocol are executed one at a time. Third, an action whose guard is continuously true is
eventually executed.

The <statement> of an action of x is a sequence of <skip>, <assignment>, <send>,
<selection>, or <iteration> statements of the following forms:

<skip> : skip
<send> : send <message> to y
<assignment> : <list of variables of x> := <list of expressions>
<selection> : if <boolean expression> → <statement>
 …
 [] <boolean expression> → <statement>
 fi
<iteration> : do <boolean expression> → <statement>
 od

Note that the <assignment> statement simultaneously can assign new values to multiple
variables. Consider for example the following <assignment> statement

wdw[j], j := false, j+1
In this statement, the j-th element of the boolean array wdw is assigned the value false, and the
value of variable j is incremented by one.

2. Anti-Replay Window Protocol in IPsec
In the anti-replay window protocol, a process p sends a continuous stream of messages to
another process q. The sent messages may be lost or reordered before they are received

 3

by q. A message m is said to suffer a reorder of degree w iff the w-th message sent (by p)
after m is received (by q) before m.

At any instant, an adversary can insert in the message stream from p to q a copy of any
message t that was sent earlier by p. Because of the inserted messages, there is a
possibility that process q receives and delivers multiple copies of the same message. To
prevent this possibility, the two processes p and q are designed such that the following
two conditions are satisfied for a given value w.

w-Delivery:
Process q delivers at least one copy of every message that is neither lost
nor suffered a reorder of degree w or more after it is sent by p.
Discrimination:
Process q delivers at most one copy of every message sent by p.

To satisfy these two conditions, p attaches a unique sequence number to each message
before sending the message to q, and process q maintains a window of w consecutive
sequence numbers. For each sequence number s in the window, q maintains a boolean
variable indicating whether or not q has already received the message whose sequence
number is s. The right edge of the window stands for the largest sequence number in the
window.

There are three cases to consider when process q receives a message whose sequence
number is s. First, if s is smaller than all sequence numbers in the window, then q cannot
determine whether it has received this message before, and to be on the safe side, q
assumes that this message has been received before and discards it. Second, if s is one of
the sequence numbers in the window, q can determine whether it has received this
message before (and so it discards this message) or it has not received this message
before (and so it delivers this message). Third, if s is larger than all sequence numbers in
the window, then q determines that it has not received this message before. In this case q
delivers the message, and slides the window such that s becomes the new right edge of
the window.

Next, we present the anti-replay window protocol using the Abstract Protocol Notation
introduced in the Introduction. Process p can be specified as follows.
process p
var s : integer
begin
 true → s := s+1;
 send msg(s) to q;
end

Process p has one action, in which p increments the sequence number s by 1 and sends
the next message msg(s) to process q.

Process q has the following two variables
var wdw : array [1 .. w] of boolean {window}

 4

 r : integer {right edge of window}

Array wdw is the window, and variable r represents the right edge of this window, which
carries the largest sequence number in this window. For each i, 1 ≤ i ≤ w, wdw[i] is true
iff process q has already received msg(x), where x = r-w+i. Process q can be specified as
follows.
process q
const w : integer
var wdw : array [1 .. w] of boolean {window}
 r : integer {right edge of window}
 x, i, j : integer
begin
 rcv msg(x) from p →
 if x ≤ r – w → skip
 [] r – w < x ≤ r →
 i := x – r + w;
 if wdw[i] → {discard} skip
 [] ~ wdw[i] → wdw[i] := true
 fi
 [] r < x →
 r, i, j := x, x – r + 1, 1;
 do i ≤ w → wdw[j], i, j := wdw[i], i + 1, j + 1 od;
 do j < w → wdw[j], j := false, j + 1 od
 fi
end

Process q has one action, in which q receives msg(x) from p, and decides whether to
discard or deliver the message according to the value of x and the status of wdw.

3. Problems with IPsec in Presence of Resets
The anti-replay window protocol presented in Section 2 can be used to detect replayed
messages. Although in some cases this protocol may discard a large amount of good
messages when severe message reorders occur [GHL00], it guarantees that each replayed
message will be detected and discarded. However, this guarantee will not hold in the case
where process q in the anti-replay window protocol is reset and wakes up later. In this
case, unbounded number of replayed messages can be accepted by q. Moreover, in
another case when process p in the protocol is reset and wakes up again, unbounded
number of fresh messages from p can be discarded by q. The following three paragraphs
elaborate how the two bad possibilities can occur.

First, consider the case where process q is reset and wakes up later. When q wakes up, q
has lost all previous information about its anti-replay window, including the right edge of
the window, r. Thus q resumes its operation with r set to 0 and each entry of array wdw
set to false, and any message received next by q with a sequence number larger than 0
will be accepted by q. Suppose the last fresh sequence number received by q before the
reset is x, which is unbounded. In this case, an adversary can replay in order all the

 5

messages with sequence numbers within the range from 1 to x, and all these replayed
messages will be unsuspectedly accepted by q.

Next, consider the case where process p is reset and wakes up later. When p wakes up, p
has forgotten the last sequence number s it used on the last message sent to q. Thus p
resumes its operation with s set to 0, and the next fresh message p sends to q will be
msg(0), and the next fresh message p sends to q will be msg(1), and so on. Suppose the
current right edge of the anti-replay window at q is y, which is unbounded. In this case,
all fresh messages sent from p to q with sequence numbers less than y-w+1, which is the
left edge of the window, will be regarded as replayed messages and will be discarded by
q. (All fresh messages sent from p to q with sequence numbers within the range from y-
w+1 to y will be either discarded or accepted according to the status of the anti-replay
window.)

Last, consider the case where both process p and process q are reset and wake up later.
When p wakes up, p resumes the protocol with s set to 0. When q wakes up, q resumes its
operation with r set to 0 and every entry of array wdw set to false. In this case, an
adversary gets the chance to replay messages sent before the reset, and the adversary can
disrupt the communication between p and q if the adversary replays messages with
sequence numbers larger than the current value of s in p and convinces q to shift the right
edge of its anti-replay window to exceed s in p.

To block any chance for an adversary to replay messages, the IPsec Working Group at
IETF suggests that if either peer of an IPsec SA is reset, then no matter the reset peer
wakes up after a while or not, the entire IPsec SA should be deleted and reestablished
once the reset is detected [HBR01, KK00]. In this way, all old messages cannot pass
integrity check under the new SA, and thus cannot be used by an adversary for replaying.
However, reestablishing the entire IPsec SA is very expensive. It takes the recomputation
of most attributes of this SA, especially the keys and shared secrets, and the renegotiation
of all these attributes using a secured connection. Moreover, a host may have multiple
SAs existing at the same time, either for the same peer or for different peers. Requiring a
host with multiple existing SAs to drop and reestablish all the existing SAs because of a
reset stands for a huge amount of overhead for this host. In fact, a closer observation
reveals that the deletion and reestablishment of the entire SA is unnecessary. More
specifically, the only attributes of an SA that keep changing along with every packet this
SA secures are the sequence number and the anti-replay window. The other attributes,
like authentication and encryption keys and shared secrets, algorithms, and lifetimes of
the keys, remains the same during the lifetime of this SA. Therefore, if the two
communicating peers of an SA can keep a state of those unchanging attributes of the SA
and remember a recent state of their sequence numbers, then the SA should be still usable
after a reset by recalling the state of those unchanging attributes and by recalling the last
state of the sequence numbers prior to the reset. In the next section, we discuss how two
operations, “SAVE” and “FETCH”, can be added to the anti-replay window protocol so
as to rescue and reuse the whole SA after a reset occurred to one or both of the two
communicating peers.

 6

4. A Protocol with SAVE and FETCH Operations
The anti-replay window protocol in IPsec is susceptible to reset because computer p (or
q) forgets the last sent (or received) sequence number after a reset occurs to it. In this
section, we propose two operations, “SAVE” and “FETCH”, which can be used to
somewhat “remember” the sequence number and thus can protect the communication
between p and q from the impact of resets.

The functions of SAVE and FETCH are straightforward. When the SAVE operation is
executed at a computer, the last sequence number kept in the memory of that computer
will be stored in the persistent memory of that computer. We assume that the content of
the persistent memory of a computer will not be corrupted or erased by a reset of that
computer; an example of persistent memory is a hard disk. When the FETCH operation is
executed at a computer, the last stored sequence number will be loaded from the
persistent memory into the memory. (SAVE and FETCH can be implemented by write-
to-file and read-from-file operations in an operating system.)

SAVE and FETCH can be used in designing a new anti-replay window protocol that can
avoid the impact of resets. A computer that executes the new anti-replay window protocol
can regularly execute SAVE to store a copy of a recent sequence number in its persistent
memory. If this computer is reset and wakes up shortly, then although the last sequence
number kept in its memory has been forgotten, this computer can execute FETCH to
reload the sequence number stored in its persistent memory into its memory, such that
this computer does not need to restart its sequence number from 0.

To make sure the new protocol is correct, however, two considerations need to be
addressed before the reloaded sequence number can be used for the next sent (or
received) message of the resumed traffic. Firstly, the execution of SAVE takes some
time, during which the computer can still send (or receive) messages. Hence there can be
a gap between the reloaded sequence number (which is the last stored sequence number)
and the sequence number of the last message sent (or received) by this computer before
the reset. If a computer that plays the sender uses the reloaded sequence number directly
and the size of the gap between the reloaded sequence number and the last sent sequence
number before the reset is n, then the first n sent messages will be regarded as replayed
messages by the receiver and will be discarded. If a computer that plays the receiver uses
the reloaded sequence number directly, then an adversary can replay old messages whose
sequence numbers are in the gap between the reloaded sequence number and the last
received sequence number. These replayed messages will be accepted by the receiver
because their sequence numbers look fresh to the receiver. In order to avoid these bad
possibilities, a leap number should be added to the reloaded sequence number to leap
over the gap before it can be used. This leap number must be large enough to ensure that
after adding it to the reloaded sequence number, the resulting new sequence number is
larger than all previously used sequence numbers. We will discuss how large the leap
number should be in the next section.

 7

Secondly, another reset can occur to the same computer that just waked up and has not
yet executed the first SAVE after the last reset. In this case, those sequence numbers that
have been used before the second reset occurs will be reused (or can be replayed) after
the machine wakes up again. To avoid this problem, the computer should first execute a
SAVE after the leap number is added to the reloaded sequence number. If this computer
plays the sender, it will wait for the SAVE to finish before it sends the next message. If
this computer plays the receiver, it will temporarily keep the messages that are received
before the SAVE finishes in a buffer. After the SAVE completes its execution, messages
kept in the buffer will be either delivered or discarded based on their sequence numbers.

Moreover, we have to decide how frequently the SAVE operation should be executed. On
one hand, we do not want to execute SAVE too frequently because this can generate too
much overhead. On the other hand, we do not want to execute SAVE too infrequently so
that the saved sequence number is not recent enough. Our choice of the interval between
two SAVEs is the maximum number of messages that can be sent (or received) during
the execution time of SAVE. (For example, on a Pentium III 730-MHz machine running
Linux 2.4.18, a write-to-file operation takes 100µs and sending a 1000-byte message
takes 4µs on average. In this case, we can set the interval between two SAVEs to be at
least 25.) Note that we measure the interval between two SAVEs in terms of the number
of messages, rather than in terms of time, because the rate of message generation may
change over time. At some time, the rate of message generation can be very low. In this
case, measuring the interval in terms of time leads to wasteful SAVEs because when the
interval to the next SAVE expires, the sequence number has not advanced much since the
last SAVE was executed. Note also that the amount of time taken by every execution of
SAVE can be different according to the current load of CPU. Therefore, we pick a
reasonable upper bound of the execution time of SAVE, and determine the maximum
number of messages that can be sent (or received) during this amount of time.

Next, we present the new anti-replay window protocol augmented with SAVE and
FETCH. The new process p has two constants Kp and Tp, and has two additional
variables ls and wait. Kp is the interval between the two stored sequence numbers of two
consecutive SAVE operations in process p. Tp is the execution time of a SAVE operation
at p. Variable ls is the last stored sequence number. Variable wait is a boolean that is set
to true only when process p wakes up after a reset and is storing the new sequence
number resulting from adding the leap number to the reloaded sequence number. The
new process p can be specified as follows.

process p
const Kp, Tp : integer
var s, ls : integer
 wait : boolean
begin
 ~ wait → s := s+1;
 send msg(s) to q;
 if s ≥ Kp + ls → ls := s;
 SAVE(s) {will be executed}
 {in background}

 8

 [] s < Kp + ls → skip
 fi

[] {system is reset and wakes up} →
 FETCH(s);
 SAVE(s + 2Kp);
 wait := true;
 activate timeout action after Tp time units

[] timeout → wait := false;
 s := s + 2Kp;
 ls := s
end

In the first action of process p, p increments the sequence number s by 1 and sends the
next message msg(s) to process q when p is not waiting for a SAVE that executes after a
FETCH to finish. Meanwhile, p also checks whether s has become Kp greater than the
last stored sequence number, ls. If so, p executes SAVE to store s into persistent memory.
(This SAVE should be executed in the background so that it does not block the normal
communication between p and q.) In the second action, when p wakes up after a reset, p
executes FETCH to reload the last stored sequence number, executes SAVE to store the
result of the reloaded sequence number adding the leap number, and sets off a timer
waiting for the SAVE to finish. In the third action, the timer expires after Tp time units
(which means that the SAVE should have finished), so p stops waiting and sets s to its
new value. Since variable wait has been set to false, the first action is enabled again and p
can send the next message msg(s) to q.

The new process q that supports SAVE and FETCH has two additional constants Kq and
Tq, and three additional variables cnt, wait, and buff. Kq is the interval between the two
stored sequence numbers of two consecutive SAVE operations in process q. Tq is the
execution time of a SAVE operation at q. Variable cnt keeps track of the number of good
messages received after a regular SAVE was executed last. Variable wait is a boolean
that is set to true only when process q wakes up after a reset and is storing the new
sequence number resulting from adding the leap number to the reloaded sequence
number. Variable buff is an array that buffers the sequence numbers received while a
SAVE that executes after a FETCH has not yet finished. The new process q can be
specified as follows.

process q
const w : integer
 Kq, Tq : integer
var wdw : array [1 .. w] of boolean
 r, lr : integer
 x, i, j, k : integer
 cnt : integer
 wait : boolean
 buff : array [integer] of integer {initially all entries are 0}
begin

 9

 rcv msg(x) from p →
 if ~ wait →
 if x ≤ r – w → skip
 [] r – w < x ≤ r →
 i := x – r + w;
 if wdw[i] → {discard} skip
 [] ~ wdw[i] → wdw[i], cnt := true, cnt + 1
 fi
 [] r < x →
 r, cnt, i, j := x, cnt + 1, x – r + 1, 1;
 do i ≤ w → wdw[j], i, j := wdw[i], i + 1, j + 1 od;
 do j < w → wdw[j], j := false, j + 1 od
 fi
 [] wait →
 i , finish := 0, false;
 do buff[i] ≠ 0 ∧ ~ finish →
 if buff[i] = x → {discard msg(x)}
 finish := true
 [] buff[i] ≠ x → i := i + 1
 fi
 od;
 if ~ finish → buff[i] := x
 [] finish → skip
 fi
 fi;

if cnt ≥ Kq ∧ r ≥ Kq + lr → lr, cnt := r, 0;
 SAVE(r)
[] cnt < Kq ∨ r < Kq + lr → skip
fi

[] {system is reset and wakes up} →
 FETCH(r);
 SAVE(r + 2Kq);
 wait := true;
 activate timeout action after Tq timeunits

[] timeout → wait := false;
 r := r + 2Kq;
 lr, cnt := r, 0;
 i := 1;
 do i ≤ w → wdw[i], i := true, i + 1 od;
 i := 0;
 do buff[i] ≠ 0 →
 if buff[i] < r → {discard msg(buff[i])} skip
 [] buff[i] ≥ r → {deliver msg(buff[i])}

r, cnt, j, k := buff[i], cnt + 1, buff[i] – r + 1, 1;
 do j ≤ w → wdw[k], j, k := wdw[j], j + 1, k + 1 od;
 do k < w → wdw[k], k := false, k + 1 od
 fi; buff[i], i := 0, i + 1

 10

 od
end

There are three actions in process q. In the first action, q receives msg(x) from p and
checks whether it is waiting for a SAVE that executes after a FETCH to finish. If q is not
waiting, then q decides whether to discard or deliver the message according to the value
of x and the status of wdw. If q is waiting, then q keeps the message in a buffer.
Meanwhile, q also checks whether it has received at least Kq messages since last SAVE
and whether r has become at least Kq greater than the last stored sequence number, lr. If
so, q executes SAVE to store r into persistent memory. In the second action, when q
wakes up after a reset, q executes FETCH to reload the last stored sequence number,
executes SAVE to store the new sequence number resulting from adding the leap number
to the reloaded sequence number, and sets off a timer waiting for the SAVE to finish. In
the third action, the timer expires after Tq time units (which means that the SAVE should
have finished), so q stops waiting and sets r to its new value. q also sets the whole array
wdw to true, because every sequence number less than r should be assumed to be already
received. Finally, q delivers the buffered messages whose sequence numbers are at least
r, and discards the other buffered messages whose sequence numbers are less than r.

5. Convergence of IPsec with SAVE and FETCH
In this section, we show why the sender or the receiver can converge to a fresh sequence
number after a reset by using the new anti-replay window protocol. Our objective is to
show that after adding a leap number to the reloaded sequence number, the resulting new
sequence number is larger than the last sequence number used before the reset occurs,
hence no old sequence number can be reused to send fresh message and no old message
can be replayed and accepted by the receiver. We analyze the aforementioned two cases:
when a reset occurs at the sender and when a reset occurs at the receiver. (From the
analysis of the two cases it is straightforward to verify the third case when both the
sender and the receiver are reset.) After showing that the new sequence number used after
the reset is guaranteed to be fresh, we show that the following two conditions hold under
the new protocol. First, when the sender is reset, a bounded number of sequence numbers
will be lost but no fresh message will be discarded by the receiver if no message reorder
occurs. Second, when the receiver is reset, the number of discarded fresh messages is
bounded.

First, we analyze the case when a reset occurs at the sender. Assume that process p is
executing SAVE to store the sequence number s into persistent memory, and that a reset
occurs before the next SAVE starts. From Figure 1, there are two possible cases to
consider: the reset occurs before the current SAVE finishes, or the reset occurs after the
current SAVE finishes. To check the first case, suppose the reset occurs at sequence
number s + t, where t < Kp because the next sequence number to be stored will be s + Kp.
The sequence number fetched by p after it wakes up is s – Kp, as SAVE(s) has not
completed. The gap between the reset sequence number and the fetched sequence number
can be computed by
 (s + t) – (s – Kp) ≤ (s + Kp) – (s – Kp) = 2Kp

 11

To check the second case, suppose the reset occurs at s + u, where u < Kp. The sequence
number fetched by p after it wakes up is s, as SAVE(s) has completed. The gap between
the reset sequence number and the fetched sequence number can be computed by
 (s + u) – s ≤ (s + Kp) – s = Kp
Therefore, if we add a leap number of 2Kp to the fetched sequence number, as we did in
the specification of process p, the next sequence number used by p is guaranteed to be
fresh.

s s+t

SAVE(s-Kp)
ends

SAVE(s)
starts

s+Kp

SAVE(s)
ends

Reset
occurs
here

SAVE(s+Kp)
starts

t (t < Kp)

Reset
occurs
here

sequence
number
at process p

or

s+u

u (u < Kp)

Figure 1. Analysis of reset occurring at process p.

Second, we analyze the case when a reset occurs at the receiver. Assume that process q is
executing SAVE to store the sequence number r into persistent memory, and that a reset
occurs before the next SAVE starts. From Figure 2, there are two possible cases to
consider: the reset occurs before the current SAVE finishes, or the reset occurs after the
current SAVE finishes. To check the first case, suppose the reset occurs at sequence
number r + t, where t < Kq because the next sequence number to be stored will be r + Kq.
The sequence number fetched by q after it wakes up is r – Kq, as SAVE(r) has not
completed. The gap between the reset sequence number and the fetched sequence number
can be computed by
 (r + t) – (r – Kq) ≤ (r + Kq) – (r – Kq) = 2Kq
To check the second case, suppose the reset occurs at r + u, where u < Kq. The sequence
number fetched by q after it wakes up is r, as SAVE(r) has completed. The gap between
the reset sequence number and the fetched sequence number can be computed by
 (r + u) – r ≤ (r + Kq) – r = Kq

 12

r r+t

SAVE(r-Kq)
ends

SAVE(r)
starts

r+Kq

SAVE(r)
ends

Reset
occurs
here

SAVE(r+Kq)
starts

t (t < Kq)

Reset
occurs
here

right edge
of window
at process q

or

r+u

u (u < Kq)

Figure 2. Analysis of reset occurring at process q.

Therefore, if we add a leap number of 2Kq to the fetched sequence number, as we did in
the specification of process q, it is guaranteed that q will not accept any replayed
message.

Next, we verify that the following two conditions hold under the new protocol.

i. When the sender is reset, a bounded number of sequence numbers will
be lost but no fresh message will be discarded by the receiver if no
message reorder occurs.
Note that process p may lose some sequence numbers after a reset because
p adds a leap number 2Kp to the reloaded sequence number. Suppose s-Kp
is the last stored sequence number when a reset occurs at p. Then when p
wakes up, p resumes with sequence number s+Kp because p first reloaded
s-Kp and added 2Kp to it. The worst case that can occur is s-Kp+1 has not
been used by p when a reset occurs. In this case, p loses 2Kp sequence
numbers because p resumes with s+Kp and all numbers between s-Kp and
s+Kp become unusable. Therefore, the total number of lost sequence
number is bounded by 2Kp. Moreover, since s+Kp is larger than all
previously used sequence numbers, no fresh message will be discarded by
the receiver unless any fresh message sent after the reset arrives earlier
than any fresh message sent before the reset.

ii. When the receiver is reset, the number of discarded fresh messages is
bounded.
Note that process q may discard some fresh messages after a reset because
q adds a leap number 2Kq to the reloaded sequence number. Suppose r-Kq
is the last stored sequence number when a reset occurs at q. Then when q
wakes up, q resumes with sequence number r+Kq because q first reloaded
r-Kq and added 2Kq to it. The worst case that can occur is that r-Kq+1 has
not been received by q when a reset occurs. In this case, q may discard at
most 2Kq fresh messages if no message loss occurs, because q resumes
with r+Kq, and all fresh messages with sequence numbers between r-Kq

 13

and r+Kq will be regarded as replayed messages by q. Therefore, the total
number of discarded fresh messages is bounded by 2Kq.

6. Concluding Remarks
In this paper, we propose two operations, “SAVE” and “FETCH”, which can be added to
the anti-replay window protocol in IPsec to prevent two bad possibilities caused by reset:
unbounded number of fresh messages can be discarded, and unbounded number of
replayed messages can be accepted. When the SAVE operation is executed at a computer,
the last sequence number kept in the memory of that computer will be stored in the
persistent memory of that computer. When the FETCH operation is executed at a
computer, the last stored sequence number will be loaded from the persistent memory
into the memory. We show that when SAVE and FETCH are adopted, then although
bounded number of sequence numbers can be unutilized by the sender or bounded
number of messages can be discarded by the receiver, no replayed message will be
accepted by the receiver.

One may be tempted to think about the possibility of requiring the reset host to send its
peer a special message saying “I was reset; let us both reset the sequence number to 0 or
to a specific number”. The problem with this approach is that the special message can be
replayed by an attacker at any time to induce the receiver of this special message to reset
its sequence number. Therefore, it seems that the only way to keep a IPsec SA alive in
presence of reset is to keep a state of the sequence number in persistent memory, as our
new anti-replay protocol does.

The main benefit of our scheme is that the new anti-replay window protocol can tolerate
transient resets, such that the efforts to delete and reconstruct the whole IPsec SA can be
saved in presence of resets. Moreover, our scheme can also overcome prolonged resets as
follows. Note that usually an IPsec communication between two hosts is bi-directional,
which means that a sender is also a receiver and vice versa. After one host in an IPsec
communication detect the unavailability of its peer by receiving the ICMP undeliverable
message [Pos81], this host keeps the SAs (both the one for sending and the one for
receiving) alive for a certain period of time. When the reset host wakes up, it can send a
secured message to inform its peer that it has become up. This message should contain
the new sequence number resulting from adding the leap number to the reloaded
sequence number. When the host that remains up receives a message from the reset host,
it can check whether this message is a replayed message by comparing the sequence
number of the message against the right edge of its anti-replay window. If the sequence
number of the message is less than the right edge of anti-replay window, then the host
discards this message because every sequence number used after a reset should be larger
than all sequence numbers used before the reset. Otherwise, the host can resume sending
fresh messages to its peer. However, the waiting time for which SAs are kept alive cannot
be too long, otherwise an adversary will have enough time to apply cryptographic
analysis on previously sent messages and compromise the SAs between the two hosts.

 14

References

[Gou98] M. Gouda, Elements of Network Protocol Design, John Wiley & Sons, New York,

NY, 1998.
[GHL00] M. Gouda, C.-T. Huang, E. Li, “Anti-Replay Window Protocols for Secure IP”,

Proceedings of 9th International Conference on Computer Communications and
Networks, Las Vegas, October 2000.

[HBR01] G. Huang, S. Beaulieu, D. Rochefort, “A Traffic-Based Method of Detecting Dead
IKE Peers”, Internet Draft, draft-ietf-ipsec-dpd-01.txt, August 2001.

[KA98a] S. Kent and R. Atkinson, “Security Architecture for the Internet Protocol”, RFC
2401, November 1998.

[KA98b] S. Kent and R. Atkinson, “IP Authentication Header”, RFC 2402, November 1998.
[KA98c] S. Kent and R. Atkinson, “IP Encapsulating Security Payload (ESP)”, RFC 2406,

November 1998.
[KK00] A. Krywaniuk and T. Kivinen, “Using Isakmp Heartbeats for Dead Peer

Detection”, Internet Draft, draft-ietf-ipsec-heartbeats-01.txt, July 2000.
[MSS+98] D. Maughan, M. Schertler, M Schneider, J. Turner, “Internet Security Association

and Key Management Protocol (ISAKMP)”, RFC 2408, November 1998.
[Orm98] H. Orman, “The OAKLEY Key Determination Protocol”, RFC 2412, November

1998.
[Pos81] J. Postel, “Internet Control Message Protocol”, RFC 792, September 1981.

 15

	References

