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Mutual Information Applied to Anomaly Detection
Yuliya Kopylova, Duncan A. Buell, Chin-Tser Huang and Jeff Janies

Abstract: Anomaly detection systems play a significant role in pro-
tection mechanism against attacks launched on a network. The
greatest challenge in designing systems detecting anomalous ex-
ploits is defining what to measure. Effective yet simple, Shannon
entropy metrics have been successfully used to detect specific types
of malicious traffic in a number of commercially available IDS’s.
We believe that Renyi entropy measures can also adequately de-
scribe the characteristics of a network as a whole as well as detect
abnormal traces in the observed traffic. In addition, Renyi entropy
metrics might boost sensitivity of the methods when disambiguat-
ing certain anomalous patterns. In this paper we describe our ef-
forts to understand how Renyi mutual information can be applied
to anomaly detection as an offline computation. An initial analysis
has been performed to determine how well fast spreading worms
(Slammer, Code Red and Welchia) can be detected using our tech-
nique. We use both synthetic and real data audits to illustrate the
potentials of our method and provide a tentative explanation of the
results.

Index Terms: Fast spreading worms, Network anomaly detection,
Renyi mutual information.

I. INTRODUCTION

Network monitoring systems have become a vital component
in security infrastructures because they allow the detection of
policy violations ranging from attempts to gain unauthorized
access from the outside to wormlike activities emanating from
within the network. Proliferation of computers and internet ser-
vices combined with the rising complexity of modern networks
lead to more elaborate attack patterns. Detecting such patterns
is a necessary step in taking proactive corrective actions. Most
intrusion monitoring systems, as shown in surveys [1], [3],
[8], employ statistical techniques to establish profiles of “nor-
mal” system activities in order to identify anomalous behavior
through observing significant deviations from the normal system
activities. The major challenge of this approach is in defining
parameters that accurately describe “normal” behavior without
imposing constraints hindering adaptivity. That is, user behavior
can change too rapidly for the learning system to adapt to this
new behavior, and such deviations could result in false positive
alarms. Another widely accepted alternative relies on data min-
ing for signature-based anomalous patterns to single out known
threats. The major handicap of this approach is inability to de-
tect previously unseen attacks with different signatures. Worse
yet, as discussed in [1], the proprietary nature of the signatures
for most commercial ID systems makes a detailed discussion of
their accuracy and adequacy difficult. Aside from the quality
of the signatures, the timeliness of response in releasing detec-
tion signatures when new attack mechanisms have been identi-
fied is a major limitation of signature-based intrusion detection
systems since there is a conflict in addressing the two goals of
timeliness and quality.

It has been suggested in [6] and [11] that an information

theoretic approach has a very strong potential for determining
the state of a network as well as capturing the dynamics of the
network traffic. Specifically, a set of metrics based on general-
ized Rényi entropies reflects the patterns of average topological
order and disorder of a network. An abnormal variance of these
entropy functions is hypothesized to reflect anomalous topolog-
ical structural changes, which are indicative of a possible attack,
of malicious activities, or of system failure.

The main objective of this paper is to demonstrate the fea-
sibility of using Rényi entropy functions in the context of an
intrusion detection environment and to validate the working hy-
pothesis stated above. In this paper, we will briefly summarize
what we consider to be the key events in understanding how
Rényi mutual information can be utilized to signal that a sys-
tem under observation is undergoing a significant change. We
will also address specifics of the data simulation process and the
expected tendencies based on the underlying theory. Following
that, we will discuss possible interpretations of the experimen-
tal results based on analysis of traffic due to three fast spreading
worms (Slammer, Code Red and Welchia). Finally, we describe
what we think is a realistic scenario for future work.

II. THEORETICAL BACKGROUND

In this section, we will discuss a few information-theoretic
metrics used in our experiments and explain how they character-
ize regularities (that is, patterns) in audit and simulated network
traffic data.

Generalized Shannon-Rényi entropy measures the uncer-
tainty, variability or complexity of a collection of data items.
Definition 1: For a system X with a finite set of M possible
states {x1, x2, . . . , xM} the Shannon entropy of X is defined as

H(X) = −
xM∑

i=1

P (xi) log P (xi),

where P (xi) is the probability that the system X is in state xi.
Shannon entropy is typically interpreted as the average informa-
tion content of the data source, that is, it allows one to determine
the expected capacity of a channel required to transmit the en-
coding of how evenly the states of X are distributed. The en-
tropy value is smaller when the data distribution is skewed, that
is, when the data exhibits a pattern. The entropy value is larger
when the data distribution is more symmetric, that is, when the
data exhibits higher randomness [11].
Definition 2: For a system X with a finite set of M possible
states {x1, x2, . . . , xM} and system Y with a finite set of N
possible states {y1, y2, . . . , yN}, the conditional entropy of X
given Y is in state yj is defined as

H(X|Y = yj) = −
M∑

i=1

P (xi, Y = yj) log P (xi|Y = yj).

The conditional entropy of X given Y is the average over Y of
the conditional entropy of X given y
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H(X|Y ) = −
M,N∑

i=1,j=1

P (xi, yj) log P (xi|yj)

The conditional entropy measures how much entropy (or un-
certainty) is eliminated in X by observing Y . In other words,
if the combined system can be described with H(X,Y ) bits of
information, and we learn how many bits are required to encode
X , then upon the removal of Y , encoding of the resulting system
will require the remaining H(X|Y ) bits of information.
Definition 3: For a system X with a finite set of M possible
states {x1, x2, . . . , xM} the generalized Rényi entropy of order
q, for q > 0, is defined as

Hq(X) =
1

1− q
log

M∑

i=1

P (xi)q ,

where P (xi) is the probability that X is in state xi.
The Rényi entropies constitute a more general family of

information measures than the Shannon entropy, which is
limq→1 Hq(X) = H(X). For the Shannon entropy measure,
data items with high or low probability do not contribute much
to the resultant value. With the generalized Rényi entropy for
q > 1, higher probability events contribute more to the value
than lower probability events do. The larger the q, the greater
the weighting in the sum from probabilities having higher val-
ues.
Definition 4: For a system X with a finite set of M possible
states {x1, x2, . . . , xM} and system Y with a finite set of N
possible states {y1, y2, . . . , yN}, the mutual information of X
relative to Y is defined as

I(X; Y ) =
M,N∑

i=1,j=1

P (xi, yj) log
P (xi, yj)

P (xi)P (yj)
.

Mutual Information represents the average amount of informa-
tion about X that can be gained by observing Y ; that is, it mea-
sures the amount of reduction of uncertainty in X after Y is
known. There is a relationship between entropy, conditional en-
tropy, and mutual information: I(X;Y ) = H(X) −H(X|Y ).
Since H(X|Y ) represents the amount of information shared be-
tween X and Y , I(X; Y ) corresponds to the intersection of the
information in X with the information in Y .

III. PROPOSED MODEL

This section outlines how we apply elements of information
theory to data processing in an attempt to capture network traffic
abnormalities and details the process of obtaining parameters we
use to make inferences. This model was suggested by Gudkov
et al. in [6], [7] and our discussions outside of the scope of this
paper related to a separate joint project.

A network in this model is viewed as a set of n nodes, some
pairs of which are connected with a representative non-negative
weight indicating the strength of connection. A state of the net-
work at a given time slice ti can be represented by a connectiv-
ity matrix Cij whose values are m if a connection is established
(initiated from node i with node j as destination)and 0 other-
wise. The value of m indicates the strength of the connection,
either in number of connections made or number of bytes trans-
ferred in a given time slice.

To apply probability concepts, the entropy calculations start
by normalizing the connectivity matrices C obtained by process-
ing the transaction log data:

∑

i,j

Cij = 1

The total probability of the established connections initiated
from the node i is

Pi =
∑

j

Cij

The corresponding entropy characterizing uncertainty of the
row connections, namely, the uncertainty that a given node in
the network has established active connections originated from
that node in a given time slice

H(row) = −
∑

j

Pi log Pi

Similarly, uncertainty that some connections have been estab-
lished to a given node is characterized by entropy

H(col) = −
∑

i

Pj log Pj

The mutual information obtained from the connectivity ma-
trix describes the state of the network at a given time slice as

I(C) = H(row) + H(col)−H(col|row) =

−
∑

i,j

Cij log
Cij

PjPj

Finally, in the general case, the mutual information is com-
puted using the generalized Rényi entropy as

MI = Hq(row) + Hq(col)−Hq(col|row) =
1

1− q

log(
∑

j P q
j ) log(

∑
i P q

i )
log(

∑
i,j Cq

ij)

In this paper we describe our efforts to understand how mu-
tual information based on generalized Rényi entropy can be ap-
plied to anomaly detection as an offline computation.

There are three major differences separating our method from
recent emerging information-theory-based anomaly detection
methods:
1. We take into consideration row and column entropies; this al-
lows for greater flexibility in determining patterns (signatures).
In conventional methods the overall entropy is calculated de-
scribing the aggregate configuration of the network (that is,
seeking transformation of one time frame into another in its en-
tirety, versus seeking transformation of row configurations into
column configurations within the same frame and from frame to
frame in our method). In other words, we believe it is possible
to detect the presence of anomalous behavior (using frame to
frame dynamics), as well as to identify the type of anomalous
behavior (within frame patterns).
2. We use Rényi information, which appears to be more sensi-
tive than Shannon information due to its asymmetry. Unlike the
Shannon measure, the average logarithm is replaced by the aver-
age of powers. This change results in the shift of relative contri-
butions of an individual event to the total sum. We believe this
property is highly desirable when disambiguating certain types
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of patterns (for example, scenario 1: many connections from the
host A to host B within the same time frame; versus scenario 2:
numerous unique connections from host A to a range of hosts).
3. We use a diluting technique to alleviate deterioration in the
sensitivity of the method due to repeated occurrence of patterns
of the same type. This technique addresses the subtlety, asso-
ciated with the severity of infection (the greater the number of
infected hosts, the less profound the patterns become). The idea
is to introduce a “reference” point into each sliding window by
diluting the data in the current window with the data from a win-
dow characterized by low entropy.

IV. THE EXPERIMENTS

In this section we describe results obtained from experiments
and their relation regarding the theoretical definitions discussed
earlier. From here on, the data refers to pre-processed times-
tamped audit records consisting of a set of features (IP address,
origination and destination ports, etc.)

A. Data

The data of interest is a complete set of logical connections
(traffic) in the network under observation made within a spec-
ified time. There are two main approaches to obtaining such
data: generating synthetic data and obtaining the data from an
operational network using a packet capturing program.

We focused our research efforts exclusively on fast spread-
ing worms. Their rapid propagation leaves no chance for a
prompt human-mediated response, thus making them an ideal
case study for the feasibility analysis. However, we can cer-
tainly hypothesize how our methods would behave if applied to
the slow spreading worms:
• Aggressive, but slower spreading worms will still exhibit ex-
ponential growth pattern. Thus, adjusting (increasing) the win-
dow size discussed in the subsequent section IV-B should suf-
fice to catch up with the worm’s speed. This assumption should
hold for the slower spreading worms that spike outbound com-
munication patterns and/or affect the volume of outbound con-
nections.
• Truly stealthy worms evoke no communication patterns by
hiding their scanning activities in normal traffic. It is highly
doubtful our technique would be useful for these types of
worms.

Our first case study (the Slammer worm) is based on syn-
thetic data. To generate representative Slammer traffic, we su-
perimposed the generated Slammer worm traffic onto the base-
line background traffic to obtain a 5GB log file of raw data re-
sembling a TCP header dump. Our second case study (the Code
Red worm) is based on the real data collected from a sniffer lo-
cated on the network segment behind the Internet router and in
front of the firewall. The data is recorded before and during the
Code Red worm outbreak (spanning 48 hours) and is filtered to
reflect all attempts from external hosts requesting connections
to port 80 on random IP addresses in class B network behind the
firewall. Our third case study (the Welchia worm) is based on
real data collected directly from the router of an attacked net-
work. It corresponds to the audit file reflecting all activities over

a 24-hour period on the day of a confirmed Welchia worm out-
break.

We point out that there are problems in using either real or
synthetic data. With synthetic data, we run the risk of examin-
ing phenomena that are not sufficiently “real”. With real data,
the phenomena are real, but we cannot control the character-
istics exhibited in the data. We use both types of data in our
experiments in order to compensate the limitation of both types.

A.1 Slammer

Due to its extreme speed of infection, Slammer provides an
adequate lower bound for sensitivity analysis of the proposed
method. Regardless of normal traffic patterns, the presence of
this worm in a network increases the traffic load to maximum
capacity and quickly infects all susceptible nodes. Therefore,
the worm presents itself as an anomaly with the characteristics
of extreme bandwidth consumption to the point of inflicting a
Denial of Service (DoS) attack on the infected network.

When infected with the Slammer worm, machines transmit
376-byte UDP packets to random IP addresses to propagate the
infection. Since UDP protocol does not require acknowledge-
ment, there is no penalty incurred by the scanning host if a
randomly selected IP address does not exist. With the above
medium, an infection propagates in less than 1 millisecond in
modern sub-networks. The total propagation time is calculated
by adding together the transmission delay and propagation delay
of a 376-byte UDP packet in a 100 Mbps network. The trans-
mission delay is usually defined as the ratio of the total number
of bits in a packet to the rate of the network. The propagation
delay is considered negligible and does not factor into determi-
nation of infection rate [10].

In simulating the Slammer infection, several assumptions are
made about the nature of the network and the behavior of the
worm:
• The window of recorded traffic is at most 30 minutes: By lim-
iting the time of the infection, two advantages are gained. First,
many variants in network activity can be limited. For instance,
network workloads vary greatly through the course of a given
day or week, but traffic for a finite amount of time can be con-
sidered constant, if the window of time is small. Second, the
size of the generated log files is far less than logs of greater du-
rations of time. Both aid in analysis for accuracy and storage
requirements.
• The probability of infecting is constant: The probability that
an outside infection hits a random IP address that is active in the
sub-network being monitored is considered to be constant and
independent of time. Though this is not entirely accurate, it is
arguable that in using short windows of data collection, the rates
do not vary drastically enough to affect the results negatively.
• A certain amount of network traffic is not malicious: Though
the infectious traffic will eventually dominate the networks traf-
fic load, it is assumed that a certain percentage of the traffic
recorded is not malicious.
• The network size is greater than 100 nodes and all network
traffic is visible to the IDS: If all routers and switches report
relayed packets to the IDS, then it is conceivable that the IDS
has a global view of the network.

The simulation package is divided into three components:
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background generation, worm generation, and merging. The
background generator has little variance in operation; it pro-
duces a log of transactions according to a predetermined param-
eter list. These parameters include density of the network, the
number of nodes in the network, the percentage of communica-
tions from this network to the outside world, and the duration of
the traffic. The log produced by this generator is random non-
malicious activity native to the network’s normal operations.

The worm traffic generator evaluates the network according to
current time slices (1 millisecond for the purposes of this exper-
iment) and user specified parameters. At a given time slice all
infected computers or hosts are evaluated according to their state
and user specified parameters and appropriate actions are taken.
Evaluation of this nature provides for the possibility of several
hosts propagating the infection in the same time slice, a charac-
teristic that is entirely possible in large networks. The additional
parameters specify infection rate, miss penalties, and propaga-
tion delay. The probability of infection is indicative of the rate at
which an external host accurately predicts an IP address within
the network. The number of infections from external hosts in a
given time slice is the result of a Poisson distribution with prob-
ability equal to the probability of infection. When an internal
node is attempting to propagate an infection, the probability of
success and the intended destination are determined by the re-
sult of a Poisson distribution. The choice of Poisson distribution
is consistent with the nature of infections and is also made in
related works such as [13]. There are three possibilities: the
node can infect an internal host, infect an external host, or miss
(select an IP address not in use). If the Poisson distribution indi-
cates that the infection will succeed, a random number generator
is used to generate an infecting IP address. If the IP address ex-
ists within the subnet and can be infected, the destination host
becomes infected. Otherwise the IP address is assumed to be
external. In both cases the host waits for the propagation delay
value number of time steps. Otherwise, the host waits for the
miss penalty value number of time steps.

By adjusting the infection rate, miss penalties, and propaga-
tion delay values, the lower bound of sensitivity can adequately
be assessed. At present the infection rate is set to .005; with
the current random number generator, the first malicious packet
appears after 53 milliseconds. Due to the nature of the medium
used to transfer the packet, the miss penalty is set to 0 millisec-
onds, and the propagation delay is set to 1 milliseconds. Though
the miss penalty and propagation delay are assumed to be con-
stant, we choose to make these values adjustable for future test-
ing.

Finally, the merger is used to combine the logs generated by
the background generator and the worm generator.

A.2 Code Red

The first incarnation of the Code Red worm was launched on
July 13th, 2001. It exploited a common vulnerability of the Mi-
crosoft IIS web servers known as buffer overflow. Once a host
gets infected, the worm spreads by initializing 99 threads gen-
erating random IP addresses, and then probing those addresses
to see if it can connect to tcp/80 and compromise the hosts us-
ing the same vulnerability. The bug in random subnet generation
routine in the original version of the worm (static seed) was later

fixed to prevent re-infecting exactly the same systems multiple
times.

The data set we obtained from a second party contains fil-
tered traffic collected on the network segment behind the Inter-
net router and in front of the firewall protecting a class B net-
work. The filter was set to reflect the flow of the traffic destined
to port 80 and rejected by the firewall since no designated web
servers resided outside of DMZ. The log consists of initial SYN
packets without acknowledgements before and on the day of the
attack (July 18th through 19th, corresponding to the Code Red
v2 worm outbreak).

A.3 Welchia

Similar to the Slammer worm, the Welchia worm spread
throughout the world in a matter of hours. However, unlike
Slammer, this worm uses TCP connections to propagate, which
require a three way handshake for establishing a connection be-
tween two hosts. Since TCP is a connection-oriented protocol
and the packet size is larger, the spread of this worm is slower,
than that of Slammer. Furthermore, a miss in scanning results in
a TCP timeout delay in which the initiating host must wait until
the expiration of an interval of time before determining that the
destination address is not in use.

The data set provided to us by the second party is approxi-
mately 3600 seconds in duration. However, the only data that
is recorded is from packets entering and leaving the network.
Therefore, intra-network traffic is lost. This may result in a
skewed or limited view of the network as a whole but accurate
to real world deployment strategies for an IDS.

B. Data Processing with respect to Sliding Window

In reading the data, the transaction log is partitioned into slid-
ing windows with overlap. From each window a connectivity
matrix is derived representing the state of the network at time
frame ti. Once the whole transaction log file is processed, a
unique index is assigned to each network node participating in
transactions. The index representing a node is static and does
not change from window to window; this allows us to pinpoint a
particular node and examine its activity in relation to the system
as a whole. Given a connectivity matrix, the entropy measures
are calculated using the procedures outlined in Section III.

One of the important tunable parameters is the size of the slid-
ing window; this was empirically determined and greatly influ-
enced by the density of connections observed per window and
the sampling rate of the data. The premise is quite simple: we
can detect common behavior from window to window if their
content is identical or structurally similar, that is if the window
size is small enough, common behavior can be isolated despite
the variation in the overall structure of the connectivity matrix.
A great source discussing theoretical foundation of determin-
ing the appropriate sliding window size to analyze sequences of
events in order to discover recurrent episodes can be found in
[14]. However, it emphasizes the following point: “... to be con-
sidered interesting, the events of an episode must occur close
enough in time. The user defines how close is close enough
by giving the width of the time window.” In other words, de-
termining if a recurrent event falls into the sliding window can
be computationally confirmed, whereas the exact window size
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is determined through a tedious and subjective process of trial
and errors. For the Slammer worm, the size of the sliding win-
dow was set to 1 millisecond, whereas it was set to 1 minute for
the Welchia worm traffic, reflecting a much slower propagation
rate. For the Code Red worm, the sliding window was set to
30 seconds to examine the overall dynamics; we used a smaller
window size (5 seconds) to zoom into the incipient phase. Too
large of a window results in denser traffic that leads to deteriora-
tion of the resolution of the proposed metrics. As the sampling
period increases, the data becomes more homogeneous because
more data both from the past and the future are included, mak-
ing mutual information look more deterministic (it increases in
value and smoothes out). Too small of a window, on the other
hand, make random uncorrelated patterns stand out.

Data description Slammer Welchia Code Red
Type of traffic simulated real real

(all) (rejected)
Simulation Infection Rate 0.005
Parameters Miss Penalty 0 ms N/A N/A

Propag. Delay 1 ms
Duration of log file 30 min 24 h 24 h (of 48 h)
Sampling rate 1 ms 5 sec 5 sec
Window size 1 ms 1 min 30 sec

Fig. 1. Summary of parameters and data description for the three exper-
iments

C. Expected Tendencies

C.1 Shannon Entropy

In the context of anomaly detection, entropy can be used in a
similar way to measure the regularity of audit data. Assigning
a set of attributes (IP address, origination port, and destination
port) to an entry in a data log is sufficient to “label” a transac-
tion. It is clear that the same labels will be assigned to a num-
ber of records that differ in their timestamps but are otherwise
indistinguishable. Entropy grows when distinctions lose their
meaning and the system spreads into every possible configura-
tion. Entropy is reduced when only one of many possibilities is
prevalent. That is, the smaller the entropy, the fewer the num-
ber of different records (the higher the redundancy), indicative
of more regularity (the presence of patterns) in the audit log. In
other words, a few hyperactive nodes spanning many connec-
tions within a short period of time or hitting the same ports over
and over again will cause the overall entropy value to drop.

C.2 Rényi Entropy

Generalized Rényi entropy can be applied to anomaly detec-
tion under the same scenarios for which Shannon entropy is
believed to be useful. However, the Rényi entropy might be
more sensitive when disambiguating certain types of patterns.
Because the relative contribution of events to the total sum is
changed to favor events with higher probability, it should be eas-
ier to pick up repeated transactions in the audit data since those
transactions receive larger weights.

C.3 Mutual Information

Mutual information, interpreted as a measure of uncertainty,
can be thought of as the reduction in the uncertainty of X (rows)

due to the knowledge of Y (columns). Applied to the context of
our model, we can consider entries of a connectivity matrix as
outcomes of a random variable when operating within the same
time-slice (same connectivity matrix). Joint entropy and mutual
information characterizing two different time slices will change
with every geometrical alignment of entries in the connectivity
matrix. Rows and columns with common values are regarded as
small information sources, whereas uncommon-valued entries
are appraised as more information. This suggests that the mu-
tual information should be sensitive to certain symmetries in the
connectivity matrix. For example, the simultaneous presence of
a defined row and column in the connectivity matrix will result
in decrease of the mutual information parameter.

D. Experimental Results

D.1 Slammer Worm

Slammer was one of the fastest computer worms in history.
Activity of this worm is readily identifiable on a network by the
presence of 376-byte UDP packets. These packets will appear
to be originating from seemingly random IP addresses and des-
tined for port 1434/udp.

The synthetic log file we examined in our first case study con-
tained nine instances of Slammer infection. When analyzing the
mutual information plot, Slammer’s particular behavior (scan-
ning without acknowledgments) corresponds to a change in lev-
els of the mutual information (MI). There are a few plateaus on
the plot, each corresponding to introduction of a new infected
host.

As shown in Fig. 2, the very first anomaly is clearly identi-
fiable as a sudden dive at window 1800. The smaller MI value
suggests that a new pattern has been detected. Moreover, this
new pattern is drastically different from what have been seen
before. The second instance of infection is at window 2050,
when MI decreases, thus indicating the presence of another pat-
tern. However, the value change in this case is less pronounced
because both patterns are similar.
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Slammer: MI based on Renyi Entropy (q=2)

Fig. 2. Slammer: MI Plot for the incipient stages of infection. The
plateaus on the plot correspond to introduction of new infected hosts.
The initial drop in the MI value can be ascribed to within-frame dy-
namics associated with particular nodes’ alignments, whereas the
rise following it can be explained by the frame-to-frame dynamics re-
flecting a persisting pattern.

The initial drop in the MI value can be ascribed to within-
frame dynamics accociated with particular nodes’ alignments,
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whereas the rise following it can be explained by the frame-
to-frame dynamics. The further infection progresses, the more
information is embedded in the previous time frame. In other
words, with more and more nodes involved in abnormal activi-
ties, the MI value starts changing in the opposite direction. This
is because what was earlier perceived as an extraordinary event
(that is, in disagreement with what have been seen) is now per-
ceived as a part of a consistent trend. In other words, introducing
new abnormalities of the same type loses its “shock” value as the
overall pattern becomes apparent.

D.2 Diluting Technique

This subtlety, associated with the severity of infection (the
greater the number of infected hosts, the less profound patterns
become), is explained by the concave shape of the entropy func-
tion. There exists some minimum point, beyond which the mu-
tual information will increase in value either due to introduction
of a new pattern of the same type of abnormal activity (as the
abnormal activity now becomes the majority and hence entropy
decreases) or due to removal of an existing pattern (which signi-
fies the trend moving toward normal status). Therefore, at such
a point it is difficult to disambiguate the behavior of the mutual
information (increase or decline of abnormal activities) without
taking into consideration the history of the previous trends.
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4.2 not diluted (bottom)
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not diluted 

Fig. 3. Slammer: Effect of diluting.

To address this subtlety, we propose to use a diluting tech-
nique. The idea of diluting is to introduce a “reference” point
into each sliding window by diluting the data in the current win-
dow with the data from a window corresponding to a baseline in
which there is no abnormal traffic. In this case, although the in-
troduction of a new pattern of the same type adds to the overall
proportion of the abnormal activity within the window, the ab-
normal activity remains in the minority because the calculation
is diluted by the baseline traffic. Therefore, the aforementioned
ambiguity is removed, because introduction of a new pattern
will increase the mutual information whereas removal of an ex-
isting pattern will decrease the mutual information. Although a
window corresponding to the baseline traffic is not readily avail-
able, the diluting can still be partially but effectively achieved
by sampling both a previous window and the current window;
in our experiments, we took every second record in both win-
dows. The effect of applying the diluting technique is shown in
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Code Red: MI based on Renyi entropy (q=2)

Fig. 4. Code red: MI Plot. Three phases are observable: random prob-
ing activities (up to window 400) followed by acute worm outbreak
(manifesting itself in high MI values) concluded by decline of activi-
ties (MI begins to subside).

Fig.3, where it is evident in the shift of the point of concavity.
When the diluting technique is not applied, the MI curve (the
bottom curve) starts climbing after reaching a minimum point
and results in an ambiguity. We disambiguate by applying the
diluting technique that results in the top curve of the graph, and
we observe that the MI curve continue to decrease. Thus we can
deduce that the ambiguity is due to the introduction of a new
pattern of the same type, rather than the removal of an existing
pattern. In summary, by using both the diluted and the original
data we can make inferences on the presence of anomalies and
their severity and tell if the increase of the MI value can be as-
cribed to the elevation of abnormal activities or to their decline.

It can be argued that in realistic scenarios it is extremely hard
to hypothesize what would constitute the “baseline” behavior
(time of the day (load), presence of a server(s), specific connec-
tions characteristic of this particular network, etc). However,
assuming the overall model is valid, low entropy values (but not
necessarily high MI values) must capture the essence of the nor-
mal behavior. In other words, the reference point can be done
not with respect to the hypothetical ordinary traffic, but with re-
spect to the portions of the traffic characterized by low entropy
(i.e. likely to be “ordinary” mathematically speaking).

Another way to dilute traffic is by using an adaptive reference
frame that is equivalent to remembering the direction of the last
change. This approach allows to redefine the baseline behavior
as the system evolves and reduce the “fatigue” from the patterns
of the same type by continuously shifting the concave point.

D.3 Code Red

Code Red (v2) was another virulent worm that wrought havoc
and infected more than 350,000 computers overnight. The prop-
agation of this worm is identifiable by the presence of packets
destined to a multitude of hosts on port tcp/80. Our second case
study was based on real traffic captured by a sniffer placed at
the entry point of a class B network protected by a firewall.
The data we examined consist of initial SYN packets to port
80 rejected by the firewall over the period of 48 hours. It is
not the case that all of the packets were generated by the worm;
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some of them were contributed by probing and hacking activi-
ties. Nonetheless, the patterns detected are undoubtedly due to
the worm propagation once the number of connections starts to
skyrocket. The outbreak of Code Red is evident through observ-
ing changes in MI values shown in Fig.4. The starting point of
infection obtained from the original log file translates to win-
dow 400 on the plot. This means that patterns prior to window
400 describe the background noise consisting of random prob-
ing activities. Once anomalous activities establish themselves
as persistent patterns, the MI value starts to climb. Once again,
the further the infection progresses, the more information is em-
bedded in the previous time frame, which, in terms of frame-to-
frame dynamics, is characterized by higher MI values. The last
portion of the plot indicates decline in activities after contain-
ment measures were put in place.

By window 500 the worm had been spreading for five hours.
It would be interesting to investigate, whether there is some
within-frame dynamics that could suggest anomalous activities
before it is too late. To “zoom in”, we adjusted (lowered) the
sliding window size to further investigate the portion of the traf-
fic corresponding to windows 400-500 in Fig.4, hoping to bring
to focus some tendencies lost when examined on a bigger scale.
Fig.5 compares Shannon and Rényi MI behavior immediately
after the first signs of infection.
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Code Red: MI based on Renyi entropy (q=2)
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Code Red: MI based on Shannon Entropy

Fig. 5. Code Red: Comparison of Rényi (left) vs. Shannon (right) MI
plots immediately after infection.

Similar to the Slammer experiment (but not quite as pro-
nounced), we observed a decline in Rényi MI values prior to
their increase (windows 1070-1200 corresponding to 15 minutes
of traffic in real time). Shannon MI, though very similar in gen-
eral shape, stayed relatively flat for the duration of the windows
of interest. We hypothesize that this behavior might be ascribed
to the higher sensitivity of Rényi entropy to particular connec-
tivity matrix configurations. In this case, the peculiarity of con-
figuration can be thought of as distinct row patterns (without
column patterns like in Welchia worm discussed below). These
patterns exists when scanning is attempted by a single host to
multiple destinations without acknowledgement. Thus, within-
frame dynamics takes prevalence when only a few geometric
alignments are distinguishable (but not too few to make differ-
entiation from random noise possible). It goes away when these
alignments get lost due to the sheer volume of patterns, that is

when frame-to-frame dynamics take over.

D.4 Welchia

Our third case study was based on a real traffic audit file cap-
turing the outbreak of a Welchia worm in real time. Activity
of this worm is identifiable by the presence of packets on port
tcp/135 broadcast to multiple IP addresses. Scans consistent
with the Welchia behavior (initiation of a large /16 network scan
starting at A.B.0.0. and counting up to at least A.B.255.255 ex-
haustively followed by a complete halt of scanning activities)
were first confirmed to exist in the log file.
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Fig. 6. Welchia Worm: snapshot of MI. Well defined dives in MI value
correspond to a broadcasting node after acknowledgments have
been received. The first occurrence is at window 306, and the sec-
ond occurrence is at window 359.

These scans are clearly detectible from both connectivity
plots and mutual information graphs and correlate with the ev-
idence from the log file. As shown in Fig.6, the patterns that
are most characteristic of the worm’s behavior manifest them-
selves in a significant drop of mutual information when rows
and columns of the connectivity matrix form an unmistakable
pattern reflecting scans followed by acknowledgments. Quite
puzzling, we observed negative values for the MI in the figure
presented above. We are not attempting to interpret the phys-
ical meaning of such values at this phase of our effort. In our
opinion, the fact that patterns were clearly isolated is of great
importance and cannot be ignored even though the values might
be off. Moreover, we believe this matter can be resolved by more
careful normalization without compromising the overall model.

V. Conclusions and Future Work

These investigations based on both synthetic and real data
have indicated that mutual information based on generalized
Rényi entropy can be quite useful for certain attack scenarios.
Our observations suggest that anomalous traffic will be likely
accompanied by a sudden change in mutual information com-
pared to the baseline traffic. Under intrusion, the mutual infor-
mation might increase or decrease, depending on the nature of
the attack and the status of the traffic before the attack. Using
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our diluting technique, we can alleviate deterioration in sensitiv-
ity of the method due to repeated occurrence of patterns of the
same type.

We acknowledge that our model is an over-simplification of
real network traffic. We make simplifying assumptions both
about the structure of the network and the nature of attacks. We
felt these simplifications were justifiable for the initial investiga-
tion and shed the light on the intuition behind the effectiveness
of the technique. In future work, we will conduct more com-
prehensive experiments, consider an alternative normalization
process, validate the results statistically, and extend our studies
to a broader class of attacks beyond fast spreading worms.
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