

Containing Hitlist-Based Worms with
Polymorphic Signatures

Theodor Richardson* and Chin-Tser Huang†

*Dept. of Computer and Information Sciences †Dept. of Computer Science and Engineering
 Towson University University of South Carolina

 trichardson@towson.edu huangct@cse.sc.edu

Abstract—Worms are a significant threat to network systems,

both through resource consumption and malicious activity. This
paper examines the spread of a class of hitlist-based worms that
attempt to propagate by searching for address book files on the
host system and using the host’s mail program to spread to the
addresses found. This threat becomes more severe when the
worms are assumed to be polymorphic in nature – able to
dynamically change their signature to elude capture. Because
the method of propagation for these worms is predictable, it is
possible to contain their spread through the use of honeytoken e-
mail addresses in the client address book. Any e-mail received
by the honeytoken address will be immediately recognized as
malicious and can therefore be used to flag client machines as
infected. This paper provides a complete description of a method
to allow for better containment of this class of worms. The
results of the proposed method are examined and compared to a
previous method of capturing this type of worm.

Index Terms—worm capture, worm containment, polymorphic
worms, honeytokens

I. INTRODUCTION
Worms are a significant threat to networks. They are self-

contained executable programs capable of generating a large
amount of traffic and performing malicious activity on a host
system. They have the ability to copy themselves and
propagate to other vulnerable hosts. Left unchecked, a worm
will experience exponential growth as each copy of the worm
continues to propagate. A worm can also contain a malicious
payload that can disrupt, clog, or break an infected host.

Worms can typically be classified by their means of
propagation. The two primary methods for worms to spread
are by scanning and by hitlist. A scanning worm examines
open ports across the network to determine possible hosts;
when a connection can be made, the worm can spread without
the action of a user. The scanning nature of these worms can
often be used to detect when an attack is occurring and
identify the machine responsible by the connection attempts
[11][15][16].

The type of worm considered in this paper is the hitlist-
based worm. A hitlist-based worm scans the host’s system for
address book files and other types of files typically containing

e-mail addresses. These lists are then used to propagate the
worm through the host’s e-mail client. The difficulty in
detecting these types of worms comes from their selection of
existing addresses, meaning there is no randomness in their
connection attempts. Typically, the only detectable activity
for this type of worm is a disproportionately large volume of
email being sent from a host, which could also be caused by
benign means. This type of worm requires user interaction to
infect the host, usually a user clicking on an attachment in an
e-mail.

Detection of worms becomes a more difficult process when
worms cannot be found by matching a consistent signature.
The extraction of signatures becomes difficult when
polymorphic worms are introduced. Such worms change their
structure to evade detection. In [4], polymorphism is shown
to be employed by the worm encrypting itself, reordering
instructions, or other obfuscation techniques. As the
malicious software changes, so does the signature. By
switching registers or transposing code, a limited amount of
variants are constructed that would increase the requirements
for recorded signatures. However, a worm combining these
techniques with a sophisticated encryption scheme could
generate an immense number of different signatures. These
worms can defy most standard signature-based malicious
software detection systems, creating an even bigger threat
once a host has been infected.

An encrypted worm cannot be executed without first being
decoded. It must be rendered into an executable loaded into
memory. However, Madou [7] explains techniques to break
the code apart into different memory regions or to only
decrypt small pieces when they are required. Even if this
could be traced, the email client does not watch memory for
executing programs. It is looking for the signatures of the
email being transmitted. If this polymorphic worm is sending
variants to each destination, multiple signatures would be
required. The Storm worm used a number of techniques to
generate over 40,000 known variants and transmitting
thousands of emails per hour [1][17]. As the number of
signatures increase, their use alone becomes increasingly
impractical. Other techniques must therefore be applied to
prevent the spread of polymorphic worms.

This paper presents a method for containing the spread of a
hitlist-based polymorphic worm through a network by
extending previous work on the use of a honeytoken e-mail
account to detect malicious activity. The method proposed
will allow the insertion of multiple honeytoken e-mail
addresses into a client address book to increase the likelihood
of a worm sending an infected email to a honeytoken as
opposed to a legitimate address. The penalty system for an
account sending to the honeytoken e-mail systems must also
be revised to accommodate the lack of consistent signature for
the polymorphic worm.

The remainder of this paper is organized as follows.
Section II presents an overview of the work relevant to this
paper, including methods for worm capture and containment
and a summary of the previous honeytoken e-mail approach to
containing hitlist-based worms. Section III provides a
detailed description of the method and measures taken to
prevent exploit and circumvention of the system. Section IV
presents the experimental results from deploying the method
and a comparison to the prior method. Section V presents a
brief summary and conclusion.

II. RELATED WORKS
The typical method for detecting propagating worms is

through a network intrusion detection system (NIDS), which
will determine anomalous behavior when certain conditions
are met. This can be either signature-based/misuse or
anomaly detection. Signature-based NIDS detect attacks by
comparison of network traffic against known attack
signatures. Anomaly detection NIDS attempt to compare
traffic against an expected baseline of ‘normal’ activity.
However, the definition of this baseline is a complex problem
[4]. The difficulty of applying these methods to a hitlist-based
worm is that the only characteristic of the attack is an increase
in the volume of email sent from a client, which could easily
be caused by benign usage.

Similarly, methods have been developed to handle scanning
worm behavior, typically by examining the number of scans
versus the number of successful connections [15][16].
However, with hitlist-based worms, there are typically no
failed attempts to connect since the worm will use the existing
address book of the client to target potential hosts. Even
signature-based comparisons on outgoing email are
insufficient when attempting to contain a polymorphic worm
that changes signature nonlinearly upon propagation.

This work makes use of the concept of honeytokens,
intentionally inserted pieces of information that are enticing to
a malicious user. These honeytokens have no legitimate usage
within a system, so any traffic directed to a honeytoken
immediately identifies a misbehaving client. For the purpose
of this work, the honeytokens used are email addresses with
no legitimate associated user in the system such that any email
directed to the honeytoken address can be identified as
malicious. All of these honeytoken addresses are directed to a
running email daemon that will intercept the email and record

the address and signature of the mail received and apply the
appropriate penalty to the sender.

The work most closely related to this is the concept
proposed for containing non-transformative worms by
recording signatures received by a single dummy e-mail
address [3]. Therefore, by scanning all incoming email for the
signature(s) that are being penalized, the worm can be
contained. However, even a single bit change in an email
payload can cause a nonlinear change in the signature, making
this system unsuitable for containing a polymorphic worm.
Additionally, the capture rate can be improved (and the false
positive rate reduced) by the use of a more complex system of
assigning and maintaining the honeytoken email addresses, as
demonstrated herein.

III. PROPOSED METHOD
There is currently no precise method for distinguishing

automatically between legitimate and infected emails, and the
most common method for determining whether an email is
safe is by a comparison of its signature against the signature
of a known malicious payload. This is typically insufficient,
especially when considering the case where a benign email
happens to have the same signature as the worm. In that case,
a legitimate email would be blocked as a false positive for
infection.

However, one proven method for definitively determining
an email to be malicious is to use a honeytoken email account
that under normal operation of the network would not receive
any traffic. Therefore, any traffic destined to the honeytoken
address can be assumed to be malicious. This method has
been successfully applied to the capture of a non-
transformative worm [3]. The honeytoken address is
supported by a daemon that will receive the email and take
appropriate action against the sender. The signature is also
recorded and penalized in any future email while the signature
is on the blacklist. However, this method is ineffective
against polymorphic worms and results in a high number of
false positive emails.

This concept can be modified and extended to allow for the
containment of non-transformative worms and polymorphic
worms with a much lower rate of false positives. The
components of the system include the mail server, any number
of clients, and a mail daemon to receive malicious email. The
server is charged with maintaining a list of honeytoken
addresses which will be inserted into each client address book
prior to the send/receive of mail. It must also direct all mail
destined for addresses in the list of honeytoken addresses to
the daemon (which may be housed on the mail server itself).
The only responsibility of the client machine is to house the
honeytoken addresses in the address book (which may contain
addresses outside of the mail server domain without effect on
the utility of the method). This can be verified by the server
prior to allowing the transfer of mail. The daemon is then
responsible for penalizing misbehavior of any client sending
an email destined to a honeytoken address.

A. Inserting the Honeytoken Email Addresses
The mail server is responsible for maintaining the list of

honeytoken email addresses. These addresses must be
generated in such a way that they do not overlap with
legitimate clients on the network (assuming the server is
responsible for all addresses in the network domain), but care
must also be taken to avoid the addresses looking completely
random since some worms have the potential to avoid
addresses that look randomly generated. Following [27], the
generation of an email address is done such that it includes a
first initial, a proper name, and 2 to 3 digits to conform to the
typical active username on a business/academic network.

It has also been demonstrated that evolving worms can
filter addresses they have already seen a certain number of
times t. Any instances of the address observed greater than t
times will be ignored [3]. To prevent this from occurring, a
more dynamic system for inserting honeytoken email
addresses has been developed for this method. Each
honeytoken address is therefore assigned a random time-to-
live (up to a predefined value t) upon creation. This will
mitigate the case where a worm will observe the address
greater than t times and therefore ignore the address in
propagation. The update of the current honeytoken addresses
can be completed prior to the send/receive phase of the
TCP/IP connection. The server must maintain the expired
honeytoken addresses in its list for a time equivalent to the
largest lifetime lmax possible for any address in order to capture
any infected emails that were delayed in delivery either by the
worm or network routing.

When any email is destined to a honeytoken address on the
server’s master list, it will be delivered to the daemon. All of
the honeytoken addresses can be routed to the same daemon
through standard forwarding techniques as long as the
originating IP address and the signature remain intact. Some
worms carry with them a lightweight SMTP server that is used
on the infected client machine to contact external email
servers to send mail. However, any mail destined to the
honeytoken address will still pass through the server for
delivery and get routed to the daemon.

Special care must be given to the distribution of the
randomly generated honeytoken addresses in the address book
to be sure that they have the maximum likelihood of being
targeted by the worm. Worms generally attack target
addresses in either a linear or random fashion. To account for
both types of address book parsing, the list of honeytoken
addresses must contain an address that comes alphabetically
before any of the legitimate addresses in the address book as
well as an address that comes alphabetically after the last
legitimate address. It is possible that a client machine will
have addresses in his/her contact list that are alphabetically
before or after the honeytoken addresses, but these would be
outside of the protected domain, and, following [18] can be
ignored.

The rest of the addresses should be dispersed randomly
throughout the address book such that the locations of
honeytoken addresses cannot be predicted between updates.

For example, in an address book A of n total legitimate and
honeytoken entries, position A[0] and A[n-1] will be
occupied by honeytoken addresses and any other honeytoken
address may be structured alphabetically to occupy any
position from A[1] to A[n-2]. Even if a worm arbitrarily
bypasses a certain number of addresses within the address
book, it still has a high probablility of encountering at least
one of the honeytoken addresses. If a client address book is
not organized alphabetically, measures must be taken to assert
that the honeytoken addresses are inserted at the beginning,
the end, and in suitably random positions throughout.

B. Send All
With the previous approach of capturing malicious email

discussed in [3], a client would get penalized every time it
chose to send to every address in its address book, because the
address book includes the honeytoken addresses. To
accommodate this function correctly, it is necessary for a
client to offload this ‘Send All’ function to the mail server.
By placing this on the server side, a client will not be
penalized for a standard request since the server can easily
filter out the honeytoken addresses.

However, the ‘Send All’ request must be suitably protected
such that a worm cannot pass itself as a payload in the request
and therefore bypass the honeytoken addresses completely.
This can be accomplished by password-protecting the request
to send to all entries in the address book. While this adds
some nuisance to the client, it prevents bypass as well as
eliminating the possibility of using the ‘Send All’ request to
bottleneck the server by repeated requests without
authentication credentials. To prevent replay of the
authentication, a fresh token can be issued by the server at the
time of the request for a ‘Send All’ such that this token must
be returned as part of the request (along with the password).
The message exchange between a client C and the server S for
this occurs as follows:

1.) C → S: Request to Send All || IDC || H(M)
2.) S → C: H(KS || IDC || H(M))
3.) C → S: IDC || Epassword(H(KS || IDC || H(M))) || M

where M is the email message, IDC is the identity of the client,
H is an appropriate hash function such as SHA-1, E is a
symmetric encryption using C’s password as the encryption
key, and KS is the current authentication key for a ‘Send All’
request such that the request cannot be replayed with a
different payload. In this way, a client cannot request a ‘Send
All’ for one message payload and replace it with another
message payload. The server response in Message 2 is a
simple hash operation, which is relatively inexpensive even in
quantity. This request is also assumed to happen during a
send/receive, so a server cannot be clogged with messages
requesting a ‘Send All’ outside of the standard mail upload
and delivery time. If a particular session of send/receive is
overpopulated with this type of request, the server can be
limited by a threshold to process only a certain number per
session (which would be a reasonable limitation based on

expected use of the ‘Send All’ function).
This method has two advantages that make it more secure.

First, the user can be prompted to enter the password, so the
password does not need to be saved on the client machine and
the worm cannot find the password from the files. Second, the
password is only used to encrypt the fresh token issued by the
server, so the password itself does not need to be transmitted
over the network.

C. Penalizing Misbehavior
When an email is delivered to the daemon, the client must

immediately be penalized to prevent the worm from spreading
to other clients within the network. Unlike the previous
method for containing worms, it is not the specific signature
that is most relevant in containing polymorphic worms but
rather the client must be prevented from sending further email
regardless of the signature of the email received. The
signature received by the daemon, however, should still be
penalized such that a non-transformative worm can still be
captured and quarantined by this method.

This method can be managed by the use of threat indices.
Each client will have an associated threat index as will each
possible email signature. There is a predefined threshold T
such that any client with a threat score greater than T will be
blacklisted from delivering email. Similarly, any email with a
signature matching a signature with threat greater than T will
be quarantined. Whenever an email is received by the
daemon, the following two steps are performed:

1.) The client threat index is increased by the maximum
penalty Pmax (where Pmax > T)

2.) The signature threat is increased by a penalty Ps

Therefore, whenever an email is sent to a honeytoken
address, the threat of the client will immediately exceed the
threshold T and cause the user to be immediately blacklisted
from sending further email. Additionally, any email with a
signature whose threat is higher than T will be quarantined.
Any email directed from the client who has sent an email to
the honeytoken account will cause the threat score of the
signature of the email to increment by 1. If the attack
signature of the worm is non-transformative, the worm will
then be detected and contained by the use of this threat score
on email signatures. Periodically, all threat scores should be
decremented to allow benign signatures and clients who
accidentally email the honeytoken address to eventually
recover privileges. The threshold T should be set higher than
1 such that a polymorphic worm will not blacklist each of the
large number of signatures it generates. Users must also be
blacklisted on the basis of IP or MAC address as opposed to
their email address such that they cannot be blacklisted by an
externally generated email intentionally targeting a
honeytoken address. It is also only necessary to maintain
threat scores for clients within the email domain of the mail
server such that the system resources cannot be clogged by
spamming the daemon with false account names.

IV. EXPERIMENTS AND DISCUSSION
The method proposed herein is tested using vmware [28] on

an isolated machine cluster. One virtual machine is used to
simulate the email clients sending mail and another virtual
machine is used to simulate the SMTP mail server along with
the daemon. The virtual machines are connected by TCP/IP
as in real mail systems. Reports are maintained by both
machines and compiled to produce the evaluative results. A
text dump of a Microsoft Outlook Express address book is
used as the client address book for each client. It should be
noted that an SMTP server that supports authentication is
expected to prevent address spoofing attacks [12].

The client and server establish a TCP/IP connection for
mail transfer. The client will provide authentication
information (in this case username and password). After the
client identity has been verified, the server will update the
honeytoken addresses in the client address book. The client
mail system must send an acknowledgement when this process
is completed or the server cannot allow the upload of mail
from the client machine. During the phase of send/receive
mail, any requests uploaded from the client to ‘Send All’ must
be handled by the server. This will involve the server
responding with a token to uniquely identify the request and
requesting the client to provide authentication details for the
request; this will prevent an autonomous worm from replaying
requests for the ‘Send All’ function to bypass the honeytoken
addresses as well as preventing server clog by repeated
requests. Upon completion of the session, any mail uploaded
by the client machine is tested against the threat score of the
client and the signatures of each email are tested against the
threat score of each signature. If a client threat score is higher
than the threshold T, all of the client’s outgoing mail will be
quarantined and each corresponding mail signature will be
penalized by 1. If any of the mail signatures have a threat
score higher than T, that mail message will be quarantined.

Any messages that are not quarantined are free to be
delivered to recipients. Any mail destined to an address on
the list of honeytoken addresses will be sent to the mail
daemon, which will then record the IP address of the sender
and the signature of the message. The sender will then receive
the maximum threat increase Pmax and the signature threat will
be increased by Ps. The signature is penalized more heavily in
this case because the email is known to be malicious.

Using this configuration, the goal of the test in vmware was
to simulate usage of the email server on a network under
attack to determine the accuracy and adequacy of the response
provided. To configure the network, client load and values
similar to those in [3] are used in order to provide a more
thorough comparison to the previous use of this type of worm
capture. For any of the attack scenarios, it is assumed that
there are 21 infected clients and 25 legitimate clients with an
overlap of 5 mutual addresses that will deliver both infected
and legitimate emails.

For the timing of the simulation, the following parameters
were used: 0-4 seconds between consecutive injections of
emails from the clients (both infected and legitimate), 2.5
seconds between checks of the daemon to assign penalty, 5
seconds between gathering the state of the email server, and

an lmax of 3 seconds. Based on this specific experimentation, it
was determined that a maximum of 10 honeytoken addresses
in the address book (consisting of 40 entries) were sufficient
to contain the spread of the worm; more than 10 addresses
will deliver a decrease in the rate of false positive mail
messages at the cost of server overhead in a diminishing
return relationship. These times were chosen both to compare
against the prior method experimentation and to examine the
effectiveness of the method in extreme cases in which threat
scores are diminished quickly, possibly without providing
significant containment of the infected client.

The penalty assignment was structured such that a client
will be penalized heavily for sending to a honeytoken address
to assure capture of a polymorphic worm. The signature
penalty is also significant to capture the signature of a non-
transformative worm but the severity is less than the penalty
incurred by the client such that a polymorphic worm will not
cause the quarantine of a large number of signatures.
Therefore, the client penalty Pmax is set to 30 while the
signature penalty Ps is set to 15.

The results of the experimentation are seen below in Tables
I-IV. The capture rate in any attack is consistently 100%; in
reality, it is reasonable to expect less than a perfect capture
rate under real conditions but it should not fall significantly.
Table I and II present the results from an attack of a non-
transformative worm, the target for containment in the
previous approach. Whereas the prior test conducted in [3]
places the false infected rate at a maximum of 63.4% for a
linear scanning worm and 21.6% for a random scanning
worm, this method provides a much lower rate of 14.83% at
maximum for any of the attacks. Each simulation was run for
240 seconds to observe the behavior over time to find a
stabilization point of the expected percentage of email to the
honeytoken address as well as the false infected rate; this
point usually occurs when the rate does not incur any regular
growth or decline in value. As seen in the tables below, the
method proposed is sufficient to contain attacks by hitlist-
based worms even when the worms are polymorphic in nature.

TABLE I
LINEAR SCANNING NON-TRANSFORMATIVE WORM ATTACK

Seconds
%To

Honeytoken
Address

%False
Infected

%True
Infected

15 0.90 6.38 100
30 0.44 6.47 100
45 0.29 6.85 100
60 0.22 7.00 100
75 0.17 7.30 100
90 0.14 7.05 100
105 0.12 7.21 100
120 0.11 7.23 100
135 0.09 7.69 100
150 0.08 8.36 100
165 0.08 9.14 100
180 0.07 9.80 100
195 0.06 10.97 100
210 0.06 10.84 100
225 0.05 10.36 100
240 0.05 10.19 100

TABLE II
RANDOM SCANNING NON-TRANSFORMATIVE WORM ATTACK

Seconds
%To

Honeytoken
Address

%False
Infected

%True
Infected

15 0.88 8.00 100
30 0.44 6.47 100
45 0.29 7.20 100
60 0.22 7.35 100
75 0.17 7.24 100
90 0.14 7.11 100

105 0.12 7.06 100
120 0.11 7.24 100
135 0.09 7.46 100
150 0.08 8.60 100
165 0.08 9.27 100
180 0.07 10.10 100
195 0.06 11.37 100
210 0.06 11.44 100
225 0.05 11.51 100
240 0.05 11.48 100

TABLE III
LINEAR SCANNING POLYMORPHIC WORM ATTACK

Seconds
%To

Honeytoken
Address

%False
Infected

%True
Infected

15 0.90 6.75 100
30 0.44 6.14 100
45 0.29 6.52 100
60 0.22 7.32 100
75 0.18 7.44 100
90 0.15 7.34 100

105 0.12 7.29 100
120 0.11 7.36 100
135 0.09 7.39 100
150 0.08 7.21 100
165 0.08 7.72 100
180 0.07 8.16 100
195 0.06 8.79 100
210 0.06 9.22 100
225 0.06 10.05 100
240 0.06 10.89 100

TABLE IV
RANDOM SCANNING POLYMORPHIC WORM ATTACK

Seconds
%To

Honeytoken
Address

%False
Infected

%True
Infected

15 0.89 6.85 100
30 0.44 7.88 100
45 0.29 8.03 100
60 0.22 7.90 100
75 0.17 7.65 100
90 0.14 7.55 100

105 0.12 7.32 100
120 0.11 8.00 100
135 0.09 8.72 100
150 0.08 9.47 100
165 0.08 10.69 100
180 0.07 12.50 100
195 0.06 13.99 100
210 0.06 14.83 100
225 0.06 14.48 100
240 0.06 14.33 100

V. CONCLUSION
This paper presents an extension of the method for using

honeytoken email addresses to capture and contain hitlist-
based worms. The focus of this work is the containment of
polymorphic worms that are capable of generating a large
number of signatures thereby making signature matching an
inadequate measure for quarantine. However, through the use
of multiple honeytoken addresses, it is likely that any hitlist-
based worm will target one of the false addresses and identify
the client as infected. This information can then be used to
quarantine the client and prevent the worm from spreading.
The use of signature penalties is also included such that non-
transformative worms can be captured by signature matching.
This work also extends the use of the ‘Send All’ ability within
most mail clients such that a client will not be penalized for
sending mail to all accounts in his/her address book.

The approach described herein is also extensible to
detection of spamming accounts since most spamming
behavior targets a subset of the full range of addresses in a
domain. When the daemon receives a spam email from an
external source, it can then block that sender by IP from
delivering mail in the domain while the threat score is
significantly high. Care must again be taken in this case to
prevent address spoofing.

REFERENCES

[1] E. Chien, “The Perfect Storm”,
http://www.symantec.com/enterprise/security_response/weblog/2007
/01/the_perfect_storm.html
[2] A. Gupta and R. Sekar, “An Approach for Detecting Self-
Propagating Email Using Anomaly Detection”, Proceedings of RAID
2003, Pittsburgh, PA, Sep. 2003.
[3] C.-T. Huang, N. Johnson, J. Janies, A. Liu, “On Capturing and
Containing E-mail Worms”, Proceedings of the 25th IEEE
International Performance Computing and Communications
Conference (IPCCC), April 2006.
[4] C. Kruegel, E. Kirda, D. Mutz, W. Robertson, G. Vigna,
“Polymorphic Worm Detection Using Structural Information of
Executables”,
http://www.auto.tuwien.ac.at/~chris/research/doc/raid05_polyworm.p
df
[5] C. Kruegel and G. Vigna, “Anomaly Detection of Web-based
Attacks”, Proceedings of CCS 2003, Washington, DC, Oct. 2003.
[6] W. E. Leland, M. S. Taqqu, W. Willinger, D. V. Wilson, “On
the Self Similar Nature of Ethernet Traffic”, Proceedings of
SIGCOMM93, San Francisco, 1993.
[7] M. Madou, B. Anckaert, P. Moseley, S. Debray, B. Sutter, K.
Bosschere, “Software Protection through Dynamic Code Mutation”,
http://trappist.elis.ugent.be/~banckaer/documents/madou05software.p
df
[8] J. McHugh, “Intrusion and Intrusion detection”, International
Journal of Information Security, Volume 1 Issue 1 (2001), pp 14-35,
2001.
[9] D. Moore, V. Paxson, S. Savage, C. Shannon, S. Staniford, and
N. Weaver, “Slammer Worm Dissection: Inside the Slammer Worm”,
IEEE Security & Privacy, Vol. 1, No. 4, pp. 33-39, Jul. 2003.
[10] D. Moore, C. Shannon, and J. Brown, “Code-Red: a case study
on the spread and victims of an internet worm”, Proceedings of the
Internet Measurement Workshop 2002, Marseille, France, Nov. 2002.

[11] D. Moore, C. Shannon, G. M. Voelker, and S. Savage, “Internet
Quarantine: Requirements for Containing Self-Propagating Code”,
Proceedings of IEEE INFOCOM 2003, San Francisco, CA, Mar.
2003.
[12] J. Myers, “SMTP Service Extension for Authentication,” RFC
2554, Mar. 1999.
[13] V. Paxson, “BRO: A System for Detecting Network Intruders
in Real Time”, Proceedings of the 7th USENIX Security Symposium,
San Antonio, TX, Jan. 1998.
[14] M. Roesch, “Snort – Lightweight Intrusion Detection for
Networks”, Proceedings of the USENIX LISA ’99 Conference,
November 1999.
[15] S. Sellke, N. B. Shroff, S. Bagchi, “Modeling and Automated
Containment of Worms”, to appear in Proceeding of International
Conference on Dependable Systems and Networks (DSN), June
2005.
[16] S. Staniford, V. Paxson, N. Weaver, “How to 0wn the Internet
in Your Spare Time”, Proceedings of the 11th USENIX Security
Symposium, 2002.
[17] J. Vijayan, “RSA: New Threats Could Make Traditional
Antivirus Tools Ineffective”,
http://www.computerworld.com/action/article.do?command=viewArt
icleBasic&articleId=9010460&intsrc=article_more_bot
[18] N. Weaver, S. Staniford, V. Paxson, “Very Fast Containment of
Scanning Worms”, Proceedings of the 13th USENIX Security
Symposium, 2004.
[19] M. M. Williamson, “Throttling Viruses: Restricting propagation
to defeat malicious mobile code”, Proceedings of 18th Annual
Computer Security Applications Conference (ACSAC), December
2002.
[20] C. Wong, S. Bielski, J. M. McCune, C. Wang, “A Study of
Mass-mailing Worms”, Proceedings of the 2004 ACM workshop on
Rapid malcode, Washington DC, October 2004.
[21] J. Xiong, “ACT: attachment chain tracing scheme for email
virus detection and control”, Proceedings of the 2004 ACM
workshop on Rapid malcode, Washington DC, October 2004.
[22] C. C. Zou, W. Gong, D. Towsley, L. Gao, “The Monitoring and
Early Detection of Internet Worms”, to appear in IEEE/ACM
Transactions on Networking, 2005.
[23] C. C. Zou, D. Towsley, W. Gong, “Email worm modeling and
defense”, Proceedings of the 13th International Conference on
Computer Communications and Networks (ICCCN’04), October
2004.
[24] The Honeynet Project, http://www.honeynet.org/.
[25] Symantec Security Response, W32.Sobig.F@mm,
http://securityresponse.symantec.com/avcenter/venc/data/w32.sobig.f
@mm.html
[26] Symantec Security Response, W32.Mydoom.A@mm,
http://securityresponse.symantec.com/avcenter/venc/data/w32.novarg
.a@mm.html
[27] “Email Naming Standard for MS Exchange”,
http://intranet.uml.edu/it/email/documents/Email%20Naming%20Sta
ndard%20for%20MS%20Exchange.pdf
[28] vmware, http://www.vmware.com

	I. INTRODUCTION
	II. Related Works
	III. Proposed Method
	A. Inserting the Honeytoken Email Addresses

	IV. Experiments and Discussion
	V. Conclusion

