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Abstract—Worms are a significant threat to network systems, 

both through resource consumption and malicious activity.  This 
paper examines the spread of a class of hitlist-based worms that 
attempt to propagate by searching for address book files on the 
host system and using the host’s mail program to spread to the 
addresses found.  This threat becomes more severe when the 
worms are assumed to be polymorphic in nature – able to 
dynamically change their signature to elude capture.  Because 
the method of propagation for these worms is predictable, it is 
possible to contain their spread through the use of honeytoken e-
mail addresses in the client address book.  Any e-mail received 
by the honeytoken address will be immediately recognized as 
malicious and can therefore be used to flag client machines as 
infected.  This paper provides a complete description of a method 
to allow for better containment of this class of worms.  The 
results of the proposed method are examined and compared to a 
previous method of capturing this type of worm. 
 

Index Terms—worm capture, worm containment, polymorphic 
worms, honeytokens 
 

I. INTRODUCTION 
Worms are a significant threat to networks.  They are self-

contained executable programs capable of generating a large 
amount of traffic and performing malicious activity on a host 
system.  They have the ability to copy themselves and 
propagate to other vulnerable hosts.  Left unchecked, a worm 
will experience exponential growth as each copy of the worm 
continues to propagate.  A worm can also contain a malicious 
payload that can disrupt, clog, or break an infected host. 

Worms can typically be classified by their means of 
propagation.  The two primary methods for worms to spread 
are by scanning and by hitlist.  A scanning worm examines 
open ports across the network to determine possible hosts; 
when a connection can be made, the worm can spread without 
the action of a user.  The scanning nature of these worms can 
often be used to detect when an attack is occurring and 
identify the machine responsible by the connection attempts 
[11][15][16]. 

The type of worm considered in this paper is the hitlist-
based worm.  A hitlist-based worm scans the host’s system for 
address book files and other types of files typically containing 

e-mail addresses.  These lists are then used to propagate the 
worm through the host’s e-mail client.  The difficulty in 
detecting these types of worms comes from their selection of 
existing addresses, meaning there is no randomness in their 
connection attempts.  Typically, the only detectable activity 
for this type of worm is a disproportionately large volume of 
email being sent from a host, which could also be caused by 
benign means.  This type of worm requires user interaction to 
infect the host, usually a user clicking on an attachment in an 
e-mail. 

Detection of worms becomes a more difficult process when 
worms cannot be found by matching a consistent signature.  
The extraction of signatures becomes difficult when 
polymorphic worms are introduced.  Such worms change their 
structure to evade detection.  In [4], polymorphism is shown 
to be employed by the worm encrypting itself, reordering 
instructions, or other obfuscation techniques.  As the 
malicious software changes, so does the signature.  By 
switching registers or transposing code, a limited amount of 
variants are constructed that would increase the requirements 
for recorded signatures.  However, a worm combining these 
techniques with a sophisticated encryption scheme could 
generate an immense number of different signatures. These 
worms can defy most standard signature-based malicious 
software detection systems, creating an even bigger threat 
once a host has been infected. 

An encrypted worm cannot be executed without first being 
decoded.  It must be rendered into an executable loaded into 
memory.  However, Madou [7] explains techniques to break 
the code apart into different memory regions or to only 
decrypt small pieces when they are required.  Even if this 
could be traced, the email client does not watch memory for 
executing programs.  It is looking for the signatures of the 
email being transmitted.  If this polymorphic worm is sending 
variants to each destination, multiple signatures would be 
required.  The Storm worm used a number of techniques to 
generate over 40,000 known variants and transmitting 
thousands of emails per hour [1][17].  As the number of 
signatures increase, their use alone becomes increasingly 
impractical.  Other techniques must therefore be applied to 
prevent the spread of polymorphic worms. 



 

This paper presents a method for containing the spread of a 
hitlist-based polymorphic worm through a network by 
extending previous work on the use of a honeytoken e-mail 
account to detect malicious activity.  The method proposed 
will allow the insertion of multiple honeytoken e-mail 
addresses into a client address book to increase the likelihood 
of a worm sending an infected email to a honeytoken as 
opposed to a legitimate address.  The penalty system for an 
account sending to the honeytoken e-mail systems must also 
be revised to accommodate the lack of consistent signature for 
the polymorphic worm. 

The remainder of this paper is organized as follows.  
Section II presents an overview of the work relevant to this 
paper, including methods for worm capture and containment 
and a summary of the previous honeytoken e-mail approach to 
containing hitlist-based worms.  Section III provides a 
detailed description of the method and measures taken to 
prevent exploit and circumvention of the system.  Section IV 
presents the experimental results from deploying the method 
and a comparison to the prior method.  Section V presents a 
brief summary and conclusion. 

II. RELATED WORKS 
The typical method for detecting propagating worms is 

through a network intrusion detection system (NIDS), which 
will determine anomalous behavior when certain conditions 
are met.  This can be either signature-based/misuse or 
anomaly detection.  Signature-based NIDS detect attacks by 
comparison of network traffic against known attack 
signatures.  Anomaly detection NIDS attempt to compare 
traffic against an expected baseline of ‘normal’ activity.  
However, the definition of this baseline is a complex problem 
[4].  The difficulty of applying these methods to a hitlist-based 
worm is that the only characteristic of the attack is an increase 
in the volume of email sent from a client, which could easily 
be caused by benign usage. 

Similarly, methods have been developed to handle scanning 
worm behavior, typically by examining the number of scans 
versus the number of successful connections [15][16].  
However, with hitlist-based worms, there are typically no 
failed attempts to connect since the worm will use the existing 
address book of the client to target potential hosts.  Even 
signature-based comparisons on outgoing email are 
insufficient when attempting to contain a polymorphic worm 
that changes signature nonlinearly upon propagation. 

This work makes use of the concept of honeytokens, 
intentionally inserted pieces of information that are enticing to 
a malicious user.  These honeytokens have no legitimate usage 
within a system, so any traffic directed to a honeytoken 
immediately identifies a misbehaving client.  For the purpose 
of this work, the honeytokens used are email addresses with 
no legitimate associated user in the system such that any email 
directed to the honeytoken address can be identified as 
malicious.  All of these honeytoken addresses are directed to a 
running email daemon that will intercept the email and record 

the address and signature of the mail received and apply the 
appropriate penalty to the sender. 

The work most closely related to this is the concept 
proposed for containing non-transformative worms by 
recording signatures received by a single dummy e-mail 
address [3].  Therefore, by scanning all incoming email for the 
signature(s) that are being penalized, the worm can be 
contained.  However, even a single bit change in an email 
payload can cause a nonlinear change in the signature, making 
this system unsuitable for containing a polymorphic worm.  
Additionally, the capture rate can be improved (and the false 
positive rate reduced) by the use of a more complex system of 
assigning and maintaining the honeytoken email addresses, as 
demonstrated herein. 

III. PROPOSED METHOD 
There is currently no precise method for distinguishing 

automatically between legitimate and infected emails, and the 
most common method for determining whether an email is 
safe is by a comparison of its signature against the signature 
of a known malicious payload.  This is typically insufficient, 
especially when considering the case where a benign email 
happens to have the same signature as the worm.  In that case, 
a legitimate email would be blocked as a false positive for 
infection. 

However, one proven method for definitively determining 
an email to be malicious is to use a honeytoken email account 
that under normal operation of the network would not receive 
any traffic.  Therefore, any traffic destined to the honeytoken 
address can be assumed to be malicious.  This method has 
been successfully applied to the capture of a non-
transformative worm [3].  The honeytoken address is 
supported by a daemon that will receive the email and take 
appropriate action against the sender.  The signature is also 
recorded and penalized in any future email while the signature 
is on the blacklist.  However, this method is ineffective 
against polymorphic worms and results in a high number of 
false positive emails. 

This concept can be modified and extended to allow for the 
containment of non-transformative worms and polymorphic 
worms with a much lower rate of false positives.  The 
components of the system include the mail server, any number 
of clients, and a mail daemon to receive malicious email.  The 
server is charged with maintaining a list of honeytoken 
addresses which will be inserted into each client address book 
prior to the send/receive of mail.  It must also direct all mail 
destined for addresses in the list of honeytoken addresses to 
the daemon (which may be housed on the mail server itself).  
The only responsibility of the client machine is to house the 
honeytoken addresses in the address book (which may contain 
addresses outside of the mail server domain without effect on 
the utility of the method).  This can be verified by the server 
prior to allowing the transfer of mail.  The daemon is then 
responsible for penalizing misbehavior of any client sending 
an email destined to a honeytoken address. 



 

A. Inserting the Honeytoken Email Addresses 
The mail server is responsible for maintaining the list of 

honeytoken email addresses.  These addresses must be 
generated in such a way that they do not overlap with 
legitimate clients on the network (assuming the server is 
responsible for all addresses in the network domain), but care 
must also be taken to avoid the addresses looking completely 
random since some worms have the potential to avoid 
addresses that look randomly generated.  Following [27], the 
generation of an email address is done such that it includes a 
first initial, a proper name, and 2 to 3 digits to conform to the 
typical active username on a business/academic network. 

It has also been demonstrated that evolving worms can 
filter addresses they have already seen a certain number of 
times t.  Any instances of the address observed greater than t 
times will be ignored [3].  To prevent this from occurring, a 
more dynamic system for inserting honeytoken email 
addresses has been developed for this method. Each 
honeytoken address is therefore assigned a random time-to-
live (up to a predefined value t) upon creation.  This will 
mitigate the case where a worm will observe the address 
greater than t times and therefore ignore the address in 
propagation.  The update of the current honeytoken addresses 
can be completed prior to the send/receive phase of the 
TCP/IP connection.  The server must maintain the expired 
honeytoken addresses in its list for a time equivalent to the 
largest lifetime lmax possible for any address in order to capture 
any infected emails that were delayed in delivery either by the 
worm or network routing.   

When any email is destined to a honeytoken address on the 
server’s master list, it will be delivered to the daemon.  All of 
the honeytoken addresses can be routed to the same daemon 
through standard forwarding techniques as long as the 
originating IP address and the signature remain intact.  Some 
worms carry with them a lightweight SMTP server that is used 
on the infected client machine to contact external email 
servers to send mail.  However, any mail destined to the 
honeytoken address will still pass through the server for 
delivery and get routed to the daemon. 

Special care must be given to the distribution of the 
randomly generated honeytoken addresses in the address book 
to be sure that they have the maximum likelihood of being 
targeted by the worm.  Worms generally attack target 
addresses in either a linear or random fashion.  To account for 
both types of address book parsing, the list of honeytoken 
addresses must contain an address that comes alphabetically 
before any of the legitimate addresses in the address book as 
well as an address that comes alphabetically after the last 
legitimate address.  It is possible that a client machine will 
have addresses in his/her contact list that are alphabetically 
before or after the honeytoken addresses, but these would be 
outside of the protected domain, and, following [18] can be 
ignored.   

The rest of the addresses should be dispersed randomly 
throughout the address book such that the locations of 
honeytoken addresses cannot be predicted between updates.  

For example, in an address book A of n total legitimate and 
honeytoken  entries, position A[0] and A[n-1] will be 
occupied by honeytoken addresses and any other honeytoken 
address may be structured alphabetically to occupy any 
position from A[1] to A[n-2].  Even if a worm arbitrarily 
bypasses a certain number of addresses within the address 
book, it still has a high probablility of encountering at least 
one of the honeytoken addresses.  If a client address book is 
not organized alphabetically, measures must be taken to assert 
that the honeytoken addresses are inserted at the beginning, 
the end, and in suitably random positions throughout. 

B. Send All 
With the previous approach of capturing malicious email 

discussed in [3], a client would get penalized every time it 
chose to send to every address in its address book, because the 
address book includes the honeytoken addresses.  To 
accommodate this function correctly, it is necessary for a 
client to offload this ‘Send All’ function to the mail server.  
By placing this on the server side, a client will not be 
penalized for a standard request since the server can easily 
filter out the honeytoken addresses.   

However, the ‘Send All’ request must be suitably protected 
such that a worm cannot pass itself as a payload in the request 
and therefore bypass the honeytoken addresses completely.  
This can be accomplished by password-protecting the request 
to send to all entries in the address book.  While this adds 
some nuisance to the client, it prevents bypass as well as 
eliminating the possibility of using the ‘Send All’ request to 
bottleneck the server by repeated requests without 
authentication credentials.  To prevent replay of the 
authentication, a fresh token can be issued by the server at the 
time of the request for a ‘Send All’ such that this token must 
be returned as part of the request (along with the password).  
The message exchange between a client C and the server S for 
this occurs as follows: 

1.) C → S: Request to Send All || IDC || H(M) 
2.) S → C: H(KS || IDC || H(M)) 
3.) C → S: IDC || Epassword( H(KS || IDC || H(M)) ) || M 

where M is the email message, IDC is the identity of the client, 
H is an appropriate hash function such as SHA-1, E is a 
symmetric encryption using C’s password as the encryption 
key, and KS is the current authentication key for a ‘Send All’ 
request such that the request cannot be replayed with a 
different payload.  In this way, a client cannot request a ‘Send 
All’ for one message payload and replace it with another 
message payload.  The server response in Message 2 is a 
simple hash operation, which is relatively inexpensive even in 
quantity.  This request is also assumed to happen during a 
send/receive, so a server cannot be clogged with messages 
requesting a ‘Send All’ outside of the standard mail upload 
and delivery time.  If a particular session of send/receive is 
overpopulated with this type of request, the server can be 
limited by a threshold to process only a certain number per 
session (which would be a reasonable limitation based on 



 

expected use of the ‘Send All’ function). 
This method has two advantages that make it more secure. 

First, the user can be prompted to enter the password, so the 
password does not need to be saved on the client machine and 
the worm cannot find the password from the files. Second, the 
password is only used to encrypt the fresh token issued by the 
server, so the password itself does not need to be transmitted 
over the network. 

C. Penalizing Misbehavior 
When an email is delivered to the daemon, the client must 

immediately be penalized to prevent the worm from spreading 
to other clients within the network.  Unlike the previous 
method for containing worms, it is not the specific signature 
that is most relevant in containing polymorphic worms but 
rather the client must be prevented from sending further email 
regardless of the signature of the email received.  The 
signature received by the daemon, however, should still be 
penalized such that a non-transformative worm can still be 
captured and quarantined by this method. 

This method can be managed by the use of threat indices.  
Each client will have an associated threat index as will each 
possible email signature.  There is a predefined threshold T 
such that any client with a threat score greater than T will be 
blacklisted from delivering email.  Similarly, any email with a 
signature matching a signature with threat greater than T will 
be quarantined.  Whenever an email is received by the 
daemon, the following two steps are performed: 

1.) The client threat index is increased by the maximum 
penalty Pmax (where Pmax > T) 

2.) The signature threat is increased by a penalty Ps 

Therefore, whenever an email is sent to a honeytoken 
address, the threat of the client will immediately exceed the 
threshold T and cause the user to be immediately blacklisted 
from sending further email.  Additionally, any email with a 
signature whose threat is higher than T will be quarantined.  
Any email directed from the client who has sent an email to 
the honeytoken account will cause the threat score of the 
signature of the email to increment by 1.  If the attack 
signature of the worm is non-transformative, the worm will 
then be detected and contained by the use of this threat score 
on email signatures.  Periodically, all threat scores should be 
decremented to allow benign signatures and clients who 
accidentally email the honeytoken address to eventually 
recover privileges.  The threshold T should be set higher than 
1 such that a polymorphic worm will not blacklist each of the 
large number of signatures it generates.  Users must also be 
blacklisted on the basis of IP or MAC address as opposed to 
their email address such that they cannot be blacklisted by an 
externally generated email intentionally targeting a 
honeytoken address.  It is also only necessary to maintain 
threat scores for clients within the email domain of the mail 
server such that the system resources cannot be clogged by 
spamming the daemon with false account names. 

IV. EXPERIMENTS AND DISCUSSION 
The method proposed herein is tested using vmware [28] on 

an isolated machine cluster.  One virtual machine is used to 
simulate the email clients sending mail and another virtual 
machine is used to simulate the SMTP mail server along with 
the daemon.  The virtual machines are connected by TCP/IP 
as in real mail systems.  Reports are maintained by both 
machines and compiled to produce the evaluative results. A 
text dump of a Microsoft Outlook Express address book is 
used as the client address book for each client.  It should be 
noted that an SMTP server that supports authentication is 
expected to prevent address spoofing attacks [12]. 

The client and server establish a TCP/IP connection for 
mail transfer.  The client will provide authentication 
information (in this case username and password).  After the 
client identity has been verified, the server will update the 
honeytoken addresses in the client address book.  The client 
mail system must send an acknowledgement when this process 
is completed or the server cannot allow the upload of mail 
from the client machine.  During the phase of send/receive 
mail, any requests uploaded from the client to ‘Send All’ must 
be handled by the server.  This will involve the server 
responding with a token to uniquely identify the request and 
requesting the client to provide authentication details for the 
request; this will prevent an autonomous worm from replaying 
requests for the ‘Send All’ function to bypass the honeytoken 
addresses as well as preventing server clog by repeated 
requests.  Upon completion of the session, any mail uploaded 
by the client machine is tested against the threat score of the 
client and the signatures of each email are tested against the 
threat score of each signature.  If a client threat score is higher 
than the threshold T, all of the client’s outgoing mail will be 
quarantined and each corresponding mail signature will be 
penalized by 1.  If any of the mail signatures have a threat 
score higher than T, that mail message will be quarantined. 

Any messages that are not quarantined are free to be 
delivered to recipients.  Any mail destined to an address on 
the list of honeytoken addresses will be sent to the mail 
daemon, which will then record the IP address of the sender 
and the signature of the message.  The sender will then receive 
the maximum threat increase Pmax and the signature threat will 
be increased by Ps.  The signature is penalized more heavily in 
this case because the email is known to be malicious. 

Using this configuration, the goal of the test in vmware was 
to simulate usage of the email server on a network under 
attack to determine the accuracy and adequacy of the response 
provided.  To configure the network, client load and values 
similar to those in [3] are used in order to provide a more 
thorough comparison to the previous use of this type of worm 
capture.  For any of the attack scenarios, it is assumed that 
there are 21 infected clients and 25 legitimate clients with an 
overlap of 5 mutual addresses that will deliver both infected 
and legitimate emails. 

For the timing of the simulation, the following parameters 
were used: 0-4 seconds between consecutive injections of 
emails from the clients (both infected and legitimate), 2.5 
seconds between checks of the daemon to assign penalty, 5 
seconds between gathering the state of the email server, and 



 

an lmax of 3 seconds.  Based on this specific experimentation, it 
was determined that a maximum of 10 honeytoken addresses 
in the address book (consisting of 40 entries) were sufficient 
to contain the spread of the worm; more than 10 addresses 
will deliver a decrease in the rate of false positive mail 
messages at the cost of server overhead in a diminishing 
return relationship.  These times were chosen both to compare 
against the prior method experimentation and to examine the 
effectiveness of the method in extreme cases in which threat 
scores are diminished quickly, possibly without providing 
significant containment of the infected client. 

The penalty assignment was structured such that a client 
will be penalized heavily for sending to a honeytoken address 
to assure capture of a polymorphic worm.  The signature 
penalty is also significant to capture the signature of a non-
transformative worm but the severity is less than the penalty 
incurred by the client such that a polymorphic worm will not 
cause the quarantine of a large number of signatures.  
Therefore, the client penalty Pmax is set to 30 while the 
signature penalty Ps is set to 15. 

The results of the experimentation are seen below in Tables 
I-IV.  The capture rate in any attack is consistently 100%; in 
reality, it is reasonable to expect less than a perfect capture 
rate under real conditions but it should not fall significantly.  
Table I and II present the results from an attack of a non-
transformative worm, the target for containment in the 
previous approach.  Whereas the prior test conducted in [3] 
places the false infected rate at a maximum of 63.4% for a 
linear scanning worm and 21.6% for a random scanning 
worm, this method provides a much lower rate of 14.83% at 
maximum for any of the attacks.  Each simulation was run for 
240 seconds to observe the behavior over time to find a 
stabilization point of the expected percentage of email to the 
honeytoken address as well as the false infected rate; this 
point usually occurs when the rate does not incur any regular 
growth or decline in value.  As seen in the tables below, the 
method proposed is sufficient to contain attacks by hitlist-
based worms even when the worms are polymorphic in nature. 
 

TABLE I 
LINEAR SCANNING NON-TRANSFORMATIVE WORM ATTACK 

Seconds 
%To 

Honeytoken 
Address 

%False 
Infected 

%True 
Infected 

15 0.90 6.38 100 
30 0.44 6.47 100 
45 0.29 6.85 100 
60 0.22 7.00 100 
75 0.17 7.30 100 
90 0.14 7.05 100 
105 0.12 7.21 100 
120 0.11 7.23 100 
135 0.09 7.69 100 
150 0.08 8.36 100 
165 0.08 9.14 100 
180 0.07 9.80 100 
195 0.06 10.97 100 
210 0.06 10.84 100 
225 0.05 10.36 100 
240 0.05 10.19 100 

TABLE II 
RANDOM SCANNING NON-TRANSFORMATIVE WORM ATTACK 

Seconds 
%To 

Honeytoken 
Address 

%False 
Infected 

%True 
Infected 

15 0.88 8.00 100 
30 0.44 6.47 100 
45 0.29 7.20 100 
60 0.22 7.35 100 
75 0.17 7.24 100 
90 0.14 7.11 100 

105 0.12 7.06 100 
120 0.11 7.24 100 
135 0.09 7.46 100 
150 0.08 8.60 100 
165 0.08 9.27 100 
180 0.07 10.10 100 
195 0.06 11.37 100 
210 0.06 11.44 100 
225 0.05 11.51 100 
240 0.05 11.48 100 

TABLE III 
LINEAR SCANNING POLYMORPHIC WORM ATTACK 

Seconds 
%To 

Honeytoken 
Address 

%False 
Infected 

%True 
Infected 

15 0.90 6.75 100 
30 0.44 6.14 100 
45 0.29 6.52 100 
60 0.22 7.32 100 
75 0.18 7.44 100 
90 0.15 7.34 100 

105 0.12 7.29 100 
120 0.11 7.36 100 
135 0.09 7.39 100 
150 0.08 7.21 100 
165 0.08 7.72 100 
180 0.07 8.16 100 
195 0.06 8.79 100 
210 0.06 9.22 100 
225 0.06 10.05 100 
240 0.06 10.89 100 

TABLE IV 
RANDOM SCANNING POLYMORPHIC WORM ATTACK 

Seconds 
%To 

Honeytoken 
Address 

%False 
Infected 

%True 
Infected 

15 0.89 6.85 100 
30 0.44 7.88 100 
45 0.29 8.03 100 
60 0.22 7.90 100 
75 0.17 7.65 100 
90 0.14 7.55 100 

105 0.12 7.32 100 
120 0.11 8.00 100 
135 0.09 8.72 100 
150 0.08 9.47 100 
165 0.08 10.69 100 
180 0.07 12.50 100 
195 0.06 13.99 100 
210 0.06 14.83 100 
225 0.06 14.48 100 
240 0.06 14.33 100 

 



 

V. CONCLUSION 
This paper presents an extension of the method for using 

honeytoken email addresses to capture and contain hitlist-
based worms.  The focus of this work is the containment of 
polymorphic worms that are capable of generating a large 
number of signatures thereby making signature matching an 
inadequate measure for quarantine.  However, through the use 
of multiple honeytoken addresses, it is likely that any hitlist-
based worm will target one of the false addresses and identify 
the client as infected.  This information can then be used to 
quarantine the client and prevent the worm from spreading.  
The use of signature penalties is also included such that non-
transformative worms can be captured by signature matching.  
This work also extends the use of the ‘Send All’ ability within 
most mail clients such that a client will not be penalized for 
sending mail to all accounts in his/her address book.   

The approach described herein is also extensible to 
detection of spamming accounts since most spamming 
behavior targets a subset of the full range of addresses in a 
domain.  When the daemon receives a spam email from an 
external source, it can then block that sender by IP from 
delivering mail in the domain while the threat score is 
significantly high.  Care must again be taken in this case to 
prevent address spoofing. 
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