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Abstract— Anomaly-based intrusion detection systems 
have the ability of detecting novel attacks, but in real-time 
detection, they face the challenges of producing many false 
alarms and failing to contend with the high speed of 
modern networks due to their computationally demanding 
algorithms. In this paper, we present Fates, an anomaly-
based NIDS designed to alleviate the two challenges. Fates 
views the monitored network as a collection of individual 
hosts instead of as a single autonomous entity and uses 
dynamic, individual threshold for each monitored host, 
such that it can differentiate between characteristics of 
individual hosts and independently assess their threat to the 
network. Each packet to and from a monitored host is 
analyzed with an adaptive and efficient charging scheme 
that considers the packet’s type, number of occurrences, 
source, and destination. The resulting charge is applied to 
the individual hosts’ threat assessment, providing 
pinpointed analysis of anomalous activities. We use various 
datasets to validate Fates’s ability to distinguish scanning 
behavior from benign traffic in real time. 

Index Terms—Network-based Intrusion Detection 
System, Anomaly-based Detection  

I. INTRODUCTION  
An anomaly-based Network-based Intrusion Detection 

System (NIDS) works on the assumption that malicious 
network traffic is distinguishable from normal network traffic, 
as discussed in [3]. These systems attempt to quantify the 
protected network’s “normal” network traffic and report 
deviations from this norm. Anomaly-based detection has 
attracted major research interest, since it has the ability to 
detect novel attack strategies often missed by signature-based 
methods such as Bro [16] or Snort [21]. By understanding and 
defining what is “normal” in a network, deviations from this 
norm indicate activities that require further investigation. This 
method of detection maintains the same level of sensitivity in 
the presence of novel and classic attack strategies.   

Although the capabilities of anomaly-based detection are 
consistent, this method presents two unique challenges. First, 
since network traffic can vary wildly and certain traffic patterns 
are unpredictable, anomaly-based NIDSs run the risk of 
producing many false positive and false negative alarms. A 
false positive is when an NIDS flags benign (though possibly 
odd) traffic as malicious.  Conversely, a false negative is when 
an NIDS flags malicious traffic as being benign.  Second, since 
modeling the behavior of a network is complex many proposed 

systems use computationally demanding algorithms for 
analysis.  Although such algorithms provide the most promise 
for detection of malicious activity, they run the risk of being 
too slow to be effective in modern networks, which already 
achieve speeds of 1000Mbps (for a complete discussion of this, 
please refer to [23]).    

The system presented here is an anomaly-based NIDS, 
Fates, which attempts to alleviate the challenges discussed 
above while maintaining the advantage of detecting novel 
attacks. Fates views the network as a collection of individual 
hosts as opposed to an autonomous entity. By making such a 
fundamental view change, Fates has the ability to differentiate 
between characteristics of individual hosts and independently 
assess their threat to the network. Packets to and from a 
monitored host are analyzed with an adaptive and efficient 
charging scheme that considers the packet’s type, number of 
occurrences, source, and destination. The resulting charge is 
applied to the individual hosts’ threat assessment, providing 
pinpointed analysis of anomalous activities.   

II. RELATED WORKS 
Most current real-time, anomaly-based NIDSs utilize 

entropy analysis and signal detection techniques. In [25], [5], 
[1] and [22] two entropy approaches and one signal detection 
approach are discussed respectively.  Zachary et al. [25] use an 
entropy analysis that is tunable to large-scale networks. In the 
presence of robust scanning this approach proves to be 
effective.  For instance, in a deployment demonstration this 
approach detected the beginning of a Code Red attack [2]. The 
early warning of this attack allowed the administrators to 
minimize the impact of the attack, but the exact nature of the 
attack was unknown until administrators conducted further 
investigation of network activities. Similar to this approach, 
Feinstein et al. [5] uses a chi-squared approach to distinguish 
DDoS attacks from other attack strategies and properly notifies 
the administrator of the existence of the attack. Alternately, 
Barford et al. [1] and Thareja [22] propose a distributed signal 
detection approach to characterize network anomalies. In this 
approach, normal network traffic is viewed as noise.  Using 
wavelet analysis, the method removes this “noise” in an effort 
to expose the underlying anomalous activity that would 
otherwise be indistinguishable. Both of the above approaches 
are scalable to large-scale networks because they generalize the 
monitored network to a single entity with a quantifiable 
“health”. It is the aim of these approaches to gain a global 
perspective by viewing the network in a broad sense. However, 
the effectiveness of the approaches specified above may be 



 

limited by the following two reasons. First, quantifying a 
network’s “health” in a single numerical value does not provide 
granularity. For example, in the presence of scanning activity, 
the scan is detectable, but to find the source of the scanning, 
further analysis is required. Second, excluding parallel-
computing, real-time processing is not possible in “fast” 
networks due to the amount of processing load required. 
Combined, these two reasons suggest that a granular approach 
with lightweight computation loads is an appropriate next step 
in advancing anomaly-based intrusion detection to a feasible, 
economic solution to modern network security.  

In an effort to provide both the granularity and the 
economy of operations that are required in modern networks, 
Jung et al. [9] propose a Threshold Random Walk (TRW) 
scheme, which assesses the health of the network based on a 
probabilistic analysis of a packet’s likelihood of successful 
delivery. In this approach, a single packet does not result in the 
labeling of a host as benign or malicious, but analyses of 
subsequent packets originating from the host add to the 
assessment to provide an adequate view of the host’s current 
state. The system maintains a likelihood ratio for each host 
until the value falls below a lower threshold (indicating a 
benign host) or increases above an upper threshold (indicating 
scanning behavior). This approach has the advantage of being 
lightweight while providing the ability to distinguish between 
scanning and benign behavior.   

Weaver et al. [23] propose an approximation cache 
approach, which incorporates a simplified TRW scheme. In 
this approach, the system subdivides a network into 
autonomous regions. The system examines all hosts within a 
region in accordance to the host’s connection history with other 
hosts. The health of a host is represented by a single integer 
value, which indicates the number of unacknowledged 
connection attempts that a host makes. If this value exceeds a 
predefined threshold, the system disallows any new connection 
attempts.   

Although both [9] and [23] utilize a granular view of the 
network, they both fail to capitalize on its ability to distinguish 
between varying traffic needs.  For instance, it is obvious that a 
web server and a standard workstation computer would have 
different network traffic loads and, therefore, a network 
administrator should not generalize them to have similar traffic 
patterns, as discussed in [19]. However, since the thresholds in 
both [9] and [23] are static and global, these systems are unable 
to adequately represent a network of diverse traffic needs.   

This research extends the approaches discussed in [9] and 
[23] by incorporating dynamic, individual thresholds for each 
monitored host. As a result, the simple calculations used to 
assess the charge for a host provides a method by which to 
assess individual host’s health with little regard to other hosts 
in the network. Moreover, in doing so, we are able to keep the 
processing load economical and thus meet the high speed 
requirements of modern networks.    

III. OVERVIEW OF FATES SYSTEM 
The Fates of Greek Mythology are three goddesses: 

Clotho the Weaver, Lachesis the Apportioner, and Atropos the 
Cutter of Thread. They determine the life of mortals by 
examining the world as a woven tapestry. With each person 
representing a thread used in the tapestry, the three goddesses 
see the tapestry as a collection of individual threads. Likewise, 

Fates examines the network as a collection of individual 
entities and does so using three subsystems: a sniffer (Clotho), 
a measuring unit (Lachesis), and an alarm unit (Atropos). The 
sniffer, Clotho, is a passive listener that records packets as 
they enter and leave the network. Similar mechanisms are used 
in [6], [7], [9], [11], [12], [13], and [23].  

In order to appropriately model traffic and support this 
differentiation between hosts, the Fates system utilizes prior 
knowledge of the network topology and event management to 
initialize the system. This is similar to an approach discussed 
by Jung et al. [8] to aid in distinguishing between flash crowds 
and DDoS attacks. The Fates system utilizes rudimentary 
knowledge of the network topology, i.e. the IP addresses 
present in the network. Fates regards each IP address or range 
of addresses as a separate unit with its own threshold and 
scoring. By doing so, Fates provides the ability to differentiate 
between various traffic needs for a variety of hosts that may be 
present on a subnet. The Fates system can support any number 
of protected hosts and any degree of granularity.  

The measuring unit, Lachesis, utilizes the granular view 
in internal-to-external monitoring. This is achieved with an 
internal hosts monitor component (IHM), which uses 
connection classification in order to assess the overall “health” 
of a specific monitored host.  

A. Internal Hosts Monitoring (IHM) Component 
The IHM component is the monitor of all user-specified 

internal host of the network. This component utilizes both the 
a priori IP address information provided at initialization and 
current connection state information to produce an analysis of 
individual hosts in the network. Prior to active monitoring of 
the network, the measuring unit acquires a list of active IP 
addresses (or range of addresses) in the monitored subnet and 
the minimum thresholds of the host (or range of hosts). The 
minimum threshold is the lowest sustainable threshold that 
Fates allows the host to have and uses the minimum threshold 
to adjust the current threshold of the host.   

The IHM component utilizes two structures to represent 
the monitored hosts and monitor the traffic of the network: the 
IP_List and IP_Packet_Table. IP_List is a binary search tree in 
which each element represents a monitored host. An element 
of the IP_List contains an IP address (or IP range), the current 
threat score (initialized to 0), the average threat score (also 
initialized to 0), and a hash table of nodes that are currently in 
communication with this monitored host (I/OCache). 
I/OCache is an approximation cache of integers with each 
integer representing the state of communication between the 
monitored host and any host whose IP address hashes to that 
location.  The IP_Packet_Table is an approximation cache 
indexed by a hash of the packet’s payload and contains both a 
time-to-live and occurrence counter for each entry. 

When IHM processes an IP packet, it first determines if 
the upper-layer protocol is connection-oriented, such as 
TCP/IP, or connectionless, such as UDP. In the case of a 
connection-oriented protocol, the state of the connection is of 
primary concern. Since scanning behavior tends to exploit 
weaknesses in existing protocol structures, there is very little 
that can be taken for granted. For example, in the TCP/IP 
protocol a packet with an ACK bit set should only exist in an 



 

established connection.  However, as is demonstrated by [10], 
a malicious user can use these packets for scanning purposes.  
In the case of a connectionless protocol, the number of packets 
with duplicate payloads is of importance. The main assertion 
of such a practice is that scanning behavior will present itself 
in only a finite amount of possible packet payloads. Since 
connectionless protocols use only a “best effort” approach for 
packet delivery, there should be no duplicate packets of this 
type in a short amount of time (i.e. the source does not 
retransmit if a packet is lost). 

In the case of a TCP packet, the IHM component 
determines whether the packet is destined to or originated 
from a monitored host and the packet type. This information is 
used to modify a given host’s I/OCache entries. If the 
destination of the packet is a monitored host, the IHM 
component first finds from the IP_List the element 
corresponding to the destination address, uses the source IP 
address to index into the element’s I/OCache, and then 
subtracts one from the I/OCache entry’s current value 
(conversely, if the source of the packet is a monitored host, 
add one to the corresponding I/OCache entry). The IHM 
component then assesses a charge for the packet using the 
entry’s resulting value. The formula for calculating this charge 
is shown in Table I. If the value of the entry is less than or 
equal to zero, the state is set equal to zero and the host is not 
assessed a charge, because the host is receiving more 
communications than it is transmitting, i.e. not scanning 
behavior. If the value of entry is greater than zero, the state is 
set equal to the entry’s value. The reason for the multiplication 
of the state information by two is to provide a quick jump in 
charges in the presence of persistent unacknowledged 
outgoing messaging. As will be seen in our experimental 
results, this multiplier serves its purpose quite well. Note that 
in a standard three-way handshake and packet transmission 
(the destination transmits an ACK for each message received) 
the monitored host receives a net charge of zero. 

TABLE I.  FORMULAS FOR PACKET CHARGE 

Packet Type Formula 
TCP Charge ( )1*2 −= state  
UDP Charge  ( )1*2 −= count

 
In the case of a UDP packet, the packet’s payload is of 

importance because there is no connection information 
associated with protocol. When the IHM component processes 
a UDP packet, it uses the payload of the packet to index the 
IP_Packet_Table, increments the entry’s count value by one, 
and sets the TTL of the entry to 255. If the source of packet is 
a monitored host, the IHM component then assesses the host a 
charge. As Table I shows, the charge is simply two times the 
count value minus one. Note that an arbitrary non-duplicate 
packet would result in no charge. 

In the case of any other protocol, Fates skips the packet.  
It is arguable that ICMP [18] should be processed. However, 
since this packet type is connectionless and used for control 
messages, there is a risk of skew in processing. For instance, 
ping, a widely used mechanism for determining connectivity 

of a host, sends echo request messages to a user-specified 
destination. These packets are identical with regard to payload, 
and therefore, result in the IHM component immediately 
flagging any host issuing a ping request as malicious. 
Therefore, the ambiguity of circumstance necessitates the 
absence of this protocol from analysis. 

At the expiration of the time step, the IHM component 
assesses the health of all monitored hosts and prepares for the 
next time step. First, the IHM component calculates the 
cumulative charge for all packets for each host seen during the 
current time step, resulting in a threat score for the host.  The 
IHM component compares the threat score to the current 
threshold of the host. If the threat exceeds the current 
threshold, the IHM sets the threshold equal to the threat score 
and makes a note of the change in a log file. If the threat is less 
than the threshold, the IHM component compares the 
threshold with the minimum threshold.  If the values are equal, 
the IHM component takes no action.  In all other cases, the 
IHM component uses a threshold adjustment scheme.  Note 
that a threshold is easily increased but further analysis is 
required to determine if the threshold should be lowered.  The 
principle idea is that the component attempts to ascertain an 
appropriate upper bound of a host’s activity.  A well-behaved 
host’s threshold will plateau, but a scanning host’s activity 
constantly causes the host’s threshold to increase.  After the 
IHM component adjusts the thresholds of each host it then 
prepares for the next time step by resetting the threat score to 
zero, decreasing the TTL of each entry in the I/OCache by 
one, and decreasing the TTL of all elements in the 
IP_Packet_Table by one. If the TTL of an entry in the 
IP_Packet_Table is equal to zero, the IHM component sets the 
count of the entry to zero.   

B. Aggregation of Readings 
In order to address the issue of decreasing threshold, the 

IHM component uses the weighted average of previous 
readings to understand the current state of the host. The 
averaging method used is as follows: 

S = Scurrent (1 – α) + Snew (α)  
where S is the weighted average score, α is a preset value for 
the decay of old readings, Scurrent is the previous weighted 
average score, and Snew is the threat of the host in this time 
step. This is similar to TCP roundtrip time (RTT) estimation 
as discussed in [17], which provides an efficient way to 
calculate a weighted average of readings. The formula 
encompasses both an implied time-to-live for charges against a 
host and a contextual analysis of a network host’s status at 
present. In practice, the value of α should range between 0.5 
and 0.75.  

With this averaging, the IHM component can compare a 
host’s current threat level to its previous activity, assess the 
duration of anomalous activity, and scale changes to 
thresholds. With simple comparisons, the weighted average 
provides an analytical tool for assessing the speed at which a 
host’s activity is changing.  This is useful in assessing cases of 
flash crowd and DoS attack, where network activity from one 
or many hosts increases rapidly, as discussed in [7]. However, 
the IHM component currently limits this analytical tool to 



 

providing a method to interpret network information for tuning 
a threshold, as discussed next.  

C. Threshold Adjustment 
As previously stated the IHM component is quick to raise 

a host’s threshold but lowering the threshold requires further 
analysis of both current state of the host’s activities and its 
previous activity. IHM attempts to find equilibrium for each 
host’s activity. Quickly redeeming charges possess two 
important risks. First, it provides no stable ground on which to 
base assessments about the health of a host. If the threshold is 
not allowed to plateau, the system provides no solid ground 
upon which an administrator can make decisions. Second, 
allowing the threshold to drop quickly could cause the 
masking of malicious activity. As will be seen in the next 
section, certain normal network activities cause dramatic 
changes in the threshold, but the system quickly returns to 
normal, while scanning activities cause lasting and continual 
changes to the thresholds, resulting in obvious distinctions 
from normal host behavior.       

In the IHM component’s threshold adjustment, the 
threshold will remain the same until being exceeded by a 
host’s score. Once a host’s score exceeds the host’s threshold, 
the value of the host’s threshold will increase to the score that 
exceeded it. For every time step afterward, if the weighted 
average score of the host is lower than the minimum threshold, 
then the threshold value decreases by half of the difference 
between the minimum threshold and the weighted average 
score until it reaches the minimum threshold value. The 
formula for this threshold adjustment is as follows: 

T = Tcurrent – (Tmin – S) / 2 
where Tcurrent is the current threshold value, Tmin is the initial 
threshold value of the host, and S is the current score of the 
host. After experimentation with the values of S it was found 
that this formula has a redemptive quality for a previously ill-
behaved host but requires an adequate number of time steps 
before the threshold returns to its minimum value.   

IV. EXPERIMENTATION 
We test the Fates system on several different datasets in 

order to understand how the system functions under 
environments with different characteristics. The datasets 
presented here are the Slammer simulation package, the 
University of South Carolina (USC) Department of Computer 
Science and Engineering subnet traffic, and a World of 
Warcraft (WOW) [24] traffic set.  The Slammer simulation 
tests the UDP charging scheme. The USC subnet traffic tests 
the TCP/IP charging scheme. The WOW traffic set tests the 
false positive rate of the system when presented with traffic 
that exhibits packet loss due to congestion at an endpoint.  Due 
to page limit we will only show the results of Slammer 
simulation and USC traffic. 

A. Slammer 
The Slammer worm [13] was one of the most infectious 

worms to plague computer networks. Within three hours of its 
introduction, the worm had infected almost all susceptible 
computers running an unpatched version of Microsoft SQL 

Server (see [13]). In an effort to test Fates, we developed a 
simulation package that attempts to simulate the slammer 
worm’s infectious nature and provides a good alternative to 
real-world data by both being completely modifiable and 
lacking the legal entanglements normally associated with the 
capture of real-world data.  

The simulation package functions as a packet generator 
and TCPdump merger. It takes for input a TCPdump of 
background, or presumed benign, traffic for input, and merges 
the data contained within with simulated results from a 
slammer infection. Therefore, the resulting file contains 
malicious traffic hidden within the benign and is otherwise 
indistinguishable from an actual capture log. We ran this 
simulation against the Fates system in an effort to test the 
UDP charging scheme. The simulated data consisted of two IP 
addresses 192.168.1.101 and 192.168.1.103 that were 
monitored for 10 minutes (this time is a bit excessive since the 
worm was actually detected in only 30 seconds).  
192.168.1.103 is an infected host that is attempting to 
propagate the slammer infection and 192.168.1.101 is a host 
that is running 20 minutes worth of web traffic, a video 
stream, and an ssh connection. For the purposes of this 
simulation, the rate at which the worm propagates is one 
second. This rate is far slower than the actual Slammer worm, 
which only aids in hiding the signature of the worm. However, 
as can easily be seen in the graph provided below, Slammer is 
not only easily detected, but the well-behaved node’s 
threshold remains static throughout the monitoring time. 

In Figure 1, the first graph plots charges assessed for each 
host by the Fates system, and the second graph is the plot of 
the threshold at every time step. As can be seen, the additive 
nature of the algorithm does not result in any form of 
reduction in charges or the threshold for the infected host. 
However, this additive charging also results in no increase in 
the charges and threshold of the well behaved host that is 
running web traffic. Because of the infected host’s charges, 
the threshold constantly increases in a linear fashion 
throughout the duration of the experiment. 

The trend of the worm to increase a host’s threshold at a 
steady rate is a factor of its propagation method as opposed to 
the time associated with the propagation. As Figure 2 
demonstrates, if the delay between propagation attempts is 
limited to three seconds (a value far lower than even TCP/IP 
worm propagations), the same trend in behavior is exhibited.  
Although the increase is not linear as in the previous example, 
we observe a steady increase in the threshold. Another feature 
that is apparent in this experiment is a series of peaks in the 
cumulative charges of the infected host. This is a direct result 
of the duration between successive attempts at propagation.  
The lulls result in a steady decrease in current charge for a 
malicious packet, but this decrease is mitigated by continued 
effort of the host to propagate duplicate malicious packets. 

B. USC Traffic 
Next, we test the Fates system’s capabilities with regard 

to TCP/IP scanning methods in a real network environment. 
The University of South Carolina’s Department of Computer 
Science and Engineering is gracious enough to allow for 
managed data collection from their subnet. This network 
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Figure 1.  Slammer Simulation (with a propagation delay of 1 second) 
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Figure 2.  Slammer Simulation (with a propagation delay of 3 seconds) 

consists of eight /24 subnets divided over administrative 
offices (containing an SMTP server), research labs, and open 
public labs. There are approximately one thousand hosts on 
the network which is divided into 37 monitored ranges. The 
subnets are at most half populated, and the variety of the 
traffic present on the systems gives a diverse sensing 
environment.   

In order to test the ability of the system to detect scanning 
behavior in the presence of real-world network traffic, we 
employed standard scanning techniques supplied in Nmap [14] 
network mapping software that probes for available ports on a 
host (or range of hosts). In standard operation, Nmap first 
attempts to ping all hosts in the subnet. If a host in the subnet 
responds, Nmap runs a user-specified scanning technique on 
all active ports for a host. If there is no response from the ping, 
Nmap attempts to locate hosts by scanning port 80 for all 
possible hosts in the target range. If the scan of port 80 locates 
hosts, Nmap runs the user-specified scanning technique on all 
ports of the active hosts. This method of host discovery 
provides the advantage of time because it limits the number of 
hosts that it scans to only those that truly exist.       

In order to examine the detection capabilities of the 
system the Fates system, we validate results against Snort 
[21], a widely utilized and respected NIDS system. The Snort 
system utilizes a rule-based analysis of network traffic and is 
completely configurable. Our aim is to detect everything that 
Snort detects for comparison purpose. 

Prior to testing scanning behavior, we establish a baseline 
of normal network activity as shown in Figure 3. This base 
line reflects the normal activity of the network in absence of 
scanning. There are 37 entries in Figure 3, representing the 37 
monitored ranges. As is seen in this figure, all entries reach 
equilibrium and plateau very quickly. Also, note that the 
modifications in the threshold of benign activity result in sharp 
jumps as opposed to the steady increases in the Slammer 
simulation. The presence of these sharp jumps and plateaus 
indicates that the system is adjusting to a current and steady 
bandwidth demand, and not to consistent missing behavior. 
Therefore, these sharp jumps indicate normal operation and 
thus are distinguishable from native scanning behaviors. After 
a satisfactory establishment of normal network traffic 
modeling, we introduced several scans into the network. 
Figures 4, 5, 6, and 7 describe the resulting thresholds present 
in the network. The first of these scans is the half-open scan. 
As is seen in Figure 4, a steady increase in the threshold is 
present. At time step 16, the threshold plateaus. This is a result 
of steady connections to active ports, as opposed to connection 
attempts to closed ports. However, the scanning activity 
presents itself very clearly as compared to the benign traffic 
that surrounds it. Next, we ran an ACK scan. As is seen in 
Figure 5, this behavior presented itself very clearly also with a 
steady increase in the threshold. Even though the increase is 
not as much as is seen in the half-open scan, the increase is 
observable and distinct from the benign traffic. Then, we ran a 
FIN scan, which is demonstrated in Figure 6. Once again, the 
scanning entity presented itself in a steady increase. However, 
the most interesting part of this graph is not the sharply 
increasing threshold of the host conducting a FIN scan but the 
second lowest host that is presumably benign. After further 
analysis, we determined the behavior to be a RST scan of port 
22, SSH, which was an actual attack underway in the network!  
Figure 7 is a representation of the behavior. 
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Figure 3.  USC Traffic Threshold Analysis (clean) 

In all of the above examples, the magnitude of benign 
traffic does not obscure the scanning behavior. Instead, it 
provides comparative information that makes the steady 
increase in the threshold obvious to the user. From these 
examples we can derive the conclusion that for Fates, standard 
scanning behavior is distinguishable from benign activity. 

V. CONCLUDING REMARKS 
The Fates system exploits the advantages of a granular 

view by allowing for precision detection of network activity 
while also maintaining an economy similar to [23]. The 
system allows for dynamic, self-healing thresholds that allow 
for both forgiveness of misconfiguration and scaling to current 
network conditions. Furthermore, the Fates system uses simple 
calculations, unlike the entropy-based systems, such as [5], 
[22], and [25]. As a result, the functionality of the Fates 
system is appropriate for real-time detection. 

There are still open issues under investigation. First, the 
issue of scalability is unresolved. Fates is not intended for 
deployment across a diverse /8 network. As such, it is intended 
to be a lightweight approach that better serves a small to 
medium sized business environment. Second, the output of the 
Fates system is comma delineated text files, which both 
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Figure 4.  USC Traffic Threshold Analysis (half-open scan) 
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Figure 5.  USC Traffic Threshold Analysis (ACK scan) 
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Figure 6.  USC Traffic Threshold Analysis (FIN scan) 

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Time Step

Th
re

sh
ol

d

Scanning host

 
Figure 7.  USC Traffic Threshold Analysis (RST scan)
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