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Abstract- The anti-replay window protocol is used to secure
IP against an adversary that can insert (possibly replayed)
messages in the message stream from a source computer to a
destination computer in the Internet. In this paper, we discuss
this important protocol and point out a potential problem faced
by the protocol, in which severe reorder of messages can cause
the protocol to discard a lot of good messages. We then
introduce a controlled shift mechanism that can reduce the
number of discarded good messages by sacrificing a relatively
small number of messages. We use simulation to show that the
modified protocol is more effective than the original protocol
when a severe reorder of messages occurs. In particular, we
show that the modified protocol reduces the number of
discarded good messages by up to 70%.  

I. INTRODUCTION

A replay attack is an attack in which an adversary inserts into the
channel, from the source to the destination in a communication, a
copy of a message that was sent before by the source ([2] and [14]).
If the destination cannot distinguish replayed messages from normal
messages when it is under replay attack, the destination may result
in incorrectly authenticating the adversary as the source, or
incorrectly granting to the adversary access to some resource or
service that the adversary does not have access to.

In order to counter replay attacks, IPsec, the standard protocol
suite for adding security features to the IP layer in the Internet ([6],
[7], and [8]), incorporates a small protocol that is called anti-replay
window protocol. This protocol can provide anti-replay service by
including a sequence number in each IPsec message and using a
sliding window. According to IPsec, a unidirectional security
association can be established between any two computers in their
networks: one computer is the source of the association and the
other is the destination. On the source end, the source keeps a
counter for the sequence numbers used for sending messages and
the sequence numbers are always monotonic. When a security
association is established, the counter is initialized to zero. Every
time the source sends a message to the destination, the source
includes in the message the current value of the sequence number
counter, and increments the counter by one so that the used
sequence number will not be reused again. On the destination end,
the destination uses a sliding window to determine whether a
received message is a normal message or a replayed message. If the
sequence number of the received message is less than the number
represented by the left edge of the window, then the message is
regarded as a replayed message and is discarded by the destination.
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If the sequence number of the received message falls inside the
window, the destination can determine whether the message is a
replayed message or not by checking the information kept in the
window. If the sequence number of the received message is larger
than the number represented by the right edge of the window, the
message is regarded as a fresh message and the window is shifted to
the right, making this received sequence number the new right edge
of the window. (Note that for a message and its sequence number to
be accepted, the message also needs to pass integrity check in the
destination.)

The anti-replay window protocol has been shown to be effective
in preventing replay attacks [4]. Every replayed message inserted by
an adversary is guaranteed to be detected and discarded by the anti-
replay window protocol. However, this simple protocol has a
potential problem in which severe reorder of messages can cause the
protocol to discard a lot of good messages. This problem needs to be
solved because message reorder occurs very often in the Internet as
reported in [1], [10], [12], and [13].

In the rest of this paper, we first formally specify the anti-replay
protocol used in IPsec, and show that the protocol can counter
replay attacks. Then, we point out a scenario in which severe reorder
of messages can cause the protocol to discard a lot of good
messages. Next, we propose to heuristically control the shift of the
sliding window used by the anti-replay protocol, thus to effectively
reduce the number of discarded messages due to message reorders.
We use some simulation to show that our protocol performs better
than the original protocol when a severe message reorder occurs.

The protocols in this paper are specified using a version of
the Abstract Protocol Notation presented in [3]. We use this
notation because it provides a well-defined set of semantics
that is suitable for distributed environment and is not
provided by programming languages like C/C++. In this
notation, each process in a protocol is defined by a set of
constants, a set of variables, and a set of actions. For
example, in a protocol consisting of two processes x and y,
process x can be defined as follows.

process x
const <name of constant> : <type of constant>

…
<name of constant> : <type of constant>

var <name of variable> : <type of variable>
…
<name of variable> : <type of variable>

begin
<action>

[] <action>



…
[] <action>
end

The constants of process x have fixed values. The variables
of process x can be read and updated by the actions of
process x. Comments can be added anywhere in a process
definition; each comment is placed between the two brackets
{ and }.

Each <action> of process x is of the form:
<guard>  →  <statement>

The guard of an action of x is either a boolean expression
over the constants and variables of x or a receive guard of the
form rcv <message> from y.

Executing an action consists of executing the statement of
this action. Executing the actions (of different processes) in a
protocol proceeds according to the following three rules.
First, an action is executed only when its guard is true.
Second, the actions in a protocol are executed one at a time.
Third, an action whose guard is continuously true is
eventually executed.

The <statement> of an action of x is a sequence of <skip>,
<assignment>, <send>, <selection>, or <iteration> statements
of the following forms:

<skip> : skip
<send> : send <message> to y
<assignment> : <list of variables of x> :=

<list of expressions>
<selection> : if <boolean expression> →

<statement>
…
[] <boolean expression> →

<statement>
fi

<iteration> : do <boolean expression> →
<statement>

od

Note that the <assignment> statement simultaneously can assign
new values to multiple variables. Consider for example the
following <assignment> statement

wdw[j], j := false, j+1

In this statement, the j-th element of the boolean array wdw is
assigned the value false, and the value of variable j is incremented
by one.

II. THE ANTI-REPLAY WINDOW PROTOCOL

In the anti-replay window protocol, a process p sends a
continuous stream of messages to another process q. The sent
messages may be lost or reordered before they are received
by q. A message m is said to suffer a reorder of degree w iff
the w-th message sent (by p) after m is received (by q) before
m.

At any instant, an adversary can insert in the message
stream from p to q a copy of any message that was sent

earlier by p. Because of the inserted messages, there is a
possibility that process q receives and delivers multiple
copies of the same message. To prevent this possibility, the
two processes p and q are designed such that the following
two conditions are satisfied for a given value w.

w-Delivery:
Process q delivers at least one copy of every message
that is neither lost nor suffered a reorder of degree w
or more after it is sent by p.
Discrimination:
Process q delivers at most one copy of every message
sent by p.

To satisfy these two conditions, p attaches a unique
sequence number to each message before sending the
message to q, and process q maintains a window of w
consecutive sequence numbers. For each sequence number s
in the window, q maintains a boolean variable indicating
whether or not q has already received the message whose
sequence number is s.

As suggested by Fig. 1, there are three cases to consider
when process q receives a message whose sequence number
is s.

Case i. s is smaller than all sequence numbers in the
window:
In this case, q cannot determine whether it has
received this message before. To be on the safe side, q
assumes that this message has been received before
and discards the message.

Case ii. s is one of the sequence numbers in the
window:
In this case, q can determine whether it has received
this message before (and so it discards this message)
or it has not received this message before (and so it
delivers this message).

Case iii. s is larger than all sequence numbers in the
window:
In this case, q determines that it has not received this
message before and delivers the message. Also q
slides the window such that s becomes the new right
edge of the window. (This means that some sequence
numbers near the old left edge are dropped off the
window.)

Next, we present the anti-replay window protocol using the
Abstract Protocol Notation described in the Introduction.
Process p can be defined as follows.
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 Fig. 1. The anti-replay window.



process p
var sp :  integer {sequence number of last msg}
begin

true → sp := sp + 1; send msg(sp) to q
end

Process q has the following three variables

var wdw :  array [1..w] of boolean,
{window}

r :  integer, {right edge of window}

Array wdw is the window, and variable r is the maximum
sequence number in the window. For each i, 1 ≤ i ≤ w,
wdw[i] = true iff process q has already received msg(s),
where s = r-w+i. Process q can be defined as follows.

process q
const w :  integer {window size, w > 0}
var wdw :  array [1..w] of boolean,

{window}
r :  integer, {right edge of window}
s :  integer, {sequence number}
i, j :  integer

begin
rcv msg(s) from p →

if s ≤ r – w → {s is to the left of window: }
{discard msg}

skip
[] r – w < s ≤ r → {s is in window}

i := s – r + w;
if wdw[i] → {discard msg} skip
[]   ¬ wdw[i] → {deliver msg}

wdw[i] := true
fi

[] s > r → {s is to the right of window: }
{deliver msg}

r, i, j := s, s-r+1, 1;
do i ≤ w → wdw[j], i, j := wdw[i], i+1, j+1
od;
do j < w → wdw[j], j := false, j+1 od

fi
end

The proof of the correctness of the anti-replay window
protocol is presented in [4].

III. SHORTCOMING OF THE PROTOCOL

The anti-replay window protocol in Section II does not
perform well when severe message reorder occurs. Consider
the case where process q receives a reordered message msg(s)
where s is larger than r+w. In this case, process q slides the
window so that s becomes the new right edge of the window.
Thus the new window does not overlap the old window
(whose right edge is r), and all the information concerning the
old window is lost. Later, if process q receives msg(r+1), then
q concludes that this message is to the left of the (new)

window and discards the message. We call this kind of
message reorder as long-jump reorder because the distance
between the newly received sequence number and the right
edge of the old window is very long.

This scenario of long-jump reorder is not uncommon ([1]
and [10]). It can arise when p sends several message over
some route to process q, then sends subsequent messages
over a shorter route, that just became available, to q. Some of
the subsequent messages reach q before the earlier messages.
When q receives the first subsequent message, q slides its
window to the right a long distance. Later, when q receives
the earlier messages, it detects that they are to the left of its
window and discards them.

In the next section, we introduce the mechanism of
controlled shift that can be incorporated in the anti-replay
window protocol to reduce the number of discarded good
messages caused by long-jump reorders.

IV. AUTOMATIC VERSUS CONTROLLED SHIFT

In the anti-replay window protocol, if the new sequence
number s received by q is larger than r, namely the right edge
of the window, then the window in process q is required to
shift to the right (after the message passes the integrity check)
and s becomes the new right edge of the window. The
protocol is designed this way with the thought that if the
sequence number of a message does not appear before, then
the message is not a replayed message. We refer to this shift
as automatic shift because the window automatically shifts to
the right to cover the newly received sequence number
without any consideration of how far the newly received
sequence number is ahead of the current right edge of the
window.

Unfortunately, using automatic shift makes the anti-replay
window protocol vulnerable to the long-jump reorder
described in Section III. When a long-jump reorder occurs,
the window automatically shifts to far right in order to cover
the newly received sequence number, and when those
messages whose sequence numbers fall between the right
edge of the old window and the newly received sequence
number arrive later, they will be discarded because their
sequence numbers are less than the left edge of the new
window.

The above scenario suggests that once the window shifts to
the right, it cannot shift back to the left to cover those late-
coming fresh sequence numbers. This fact drives us to the
thought that when the newly received sequence number is
more than the window size ahead of the right edge of the
window, it is possible that sacrificing the message (by
sacrificing we mean discarding the message) that owns this
sequence number (and perhaps a small number of following
messages) and keeping the window staying in the current
position can help us save a lot of late-coming fresh messages.
However, it is also possible that all of the messages whose
sequence numbers fall between the right edge of the window
and the newly received sequence number have been lost. In
this case, we do not save any message by sacrificing one (or
more) messages. Therefore, it takes a wise and appropriate
decision on whether to sacrifice a message for the sake of



saving a lot of messages. We refer to this decision-making
mechanism as controlled shift.

Note that the controlled shift becomes effective only when
the sequence number of the newly received message is more
than the window size ahead of the right edge of the window.
With controlled shift added, the anti-replay protocol is still
required to satisfy the two conditions given in Section II to
keep the protocol correct. When the controlled shift takes
place, we require that the anti-replay protocol with controlled
shift should have the following three properties.

Adaptability:
Process q adjusts its criteria of determining whether to
sacrifice or accept the newly received message
according to the current characteristics of the
environment, for example the current message loss
rate in IP.

Rationality:
Process q sacrifices a newly received message only
when the number of messages that could be saved
(because of this sacrifice) is larger than the number of
consecutively sacrificed messages (including the
newly received one).

Sensitivity:
If process q senses that those skipped messages that it
means to save by sacrificing some messages with far-
ahead sequence numbers are not likely to come, q
stops sacrificing messages and shifts the window to
the right to cover the newest received sequence
number.

The first property makes the protocol adaptive to the
constantly changing environment in the Internet. The second
property addresses that the protocol sacrifices only when it
figures that it can save more than what is sacrificed. The third
property ensures that when those messages that the protocol
means to save with controlled shift have been lost, the
protocol will not keep sacrificing good messages in vain. In
the next section, we present a modified anti-replay protocol to
demonstrate how to put controlled shift into reality.

V.  A PROTOCOL WITH CONTROLLED SHIFT

In this section, we present a modified anti-replay protocol
with controlled shift incorporated and discuss the design in
some detail. As stated in Section II, there are two processes p
and q in the protocol: p sends a continuous stream of
messages to q. The sent messages may be lost or reordered
before they are received by q.

To achieve controlled shift, process q needs to be
augmented with the following constant and variable in
addition to those constant and variables used in the original
protocol.

const dmax :  integer {maximum number of}
{consecutively sacrificed}
{messages}

var d :  integer {number of consecutively}
{sacrificed messages}

Constant dmax is the maximum number of consecutively
sacrificed messages allowed by the protocol, and variable d
keeps track of the number of consecutively sacrificed
messages. The value of d is reset to 0 every time the window
is shifted.

As suggested by Fig. 2, there are four cases to consider
when process q receives a message whose sequence number
is s.

Case i. s is smaller than all sequence numbers in the
window:
q cannot determine whether it has received this
message before, and so it discards the message.

Case ii. s is one of the sequence numbers in the
window:
q can determine whether it has received this message
before (and so it discards this message) or it has not
received this message before (and so it delivers this
message).

Case iii. s is within w positions to the right of the
window:
q determines that it has not received this message
before and delivers the message. Also, q slides the
window such that s becomes the new right edge of the
window, and resets d to 0.

Case iv. s is more than w positions to the right of the
window:
q determines that it has not received this message
before. In this case, q estimates the number of good
messages it is going to lose (assuming that these good
messages will arrive later), excluding those that are
assumed to be lost due to message loss in IP, if q shifts
the window to the right and make s the new right edge
of the window. q compares this estimate with d+1. If
the estimate is larger than d+1, and d+1 is less than
dmax, then q discards this message and increments d
by 1. Otherwise, q delivers the message, slides the
window such that s becomes the new right edge of the
window, and resets d to 0.

The first three cases are the same as in the original anti-
replay window protocol except that q has to reset d to 0 in the
third case. We implement the controlled shift in the fourth
case, where s is more than w positions to the right of the
window.
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Fig. 2. The anti-replay window for controlled shift.



It is instructive to elaborate how to implement the three
properties of controlled shift in the anti-replay protocol. To
achieve adaptability, q adaptively estimates how many good
messages it is going to lose by making the shift as follows.
First, q makes an estimate of the current message loss rate in
IP by counting how many sequence numbers in the window
have not been received yet and dividing this number by w.
Next, q multiplies (1 - estimated message loss rate) by the
number of all the sequence numbers sandwiched between the
right edge of the current window and the left edge of the new
window (if the shift is made). The result is an estimate of the
number of good messages q is going to lose by making the
shift with message loss in IP excluded. This estimate is
adaptive because the number of sequence numbers that have
not been received in the current window approximately
reflects the current message loss rate in the route from
process p to process q.

To achieve rationality, q compares its estimate of the
number of good messages it is going to lose by making the
shift, with d plus one (the newly received message). q
sacrifices the newly received message only when the estimate
is larger than d+1, which implies that what can be saved is
more than what is sacrificed.

To achieve sensitivity, q compares d+1 with dmax before
making a decision of whether to sacrifice. If d+1 reaches
dmax, which implies that we have seen dmax consecutive
subsequent messages without an earlier message, then q
senses that the chance of the arrival of earlier messages is
extremely small and shifts the window to the right.

Next, we define the modified anti-replay protocol with
controlled shift. Process p is the same as specified in Section
II. Process q can be defined as follows.

process q
const w :  integer {window size, w > 0}

dmax :  integer {maximum number of}
{consecutively sacrificed}
{messages}

var wdw :  array [1..w] of boolean, {window}
r :  integer, {right edge of window}
s :  integer, {sequence number}
i, j :  integer,
d :  integer {number of consecutively}

{sacrificed messages}
begin

rcv msg(s) from p →
if s ≤ r – w → {discard msg}

skip
[] r – w < s ≤ r →

i := s – r + w;
if wdw[i] → {discard msg} skip
[]   ¬ wdw[i] → {deliver msg} wdw[i] := true
fi

[] r < s  ≤ r + w → {deliver msg and shift wdw}
{to make s the new right}
{edge of window}

d := 0;
r, i, j := s, s-r+1, 1;

do i ≤ w → wdw[j], i, j := wdw[i], i+1, j+1
od;
do j < w → wdw[j], j := false, j+1 od

[] s > r + w → {make the decision of}
{whether to sacrifice}
{or deliver message}

i, j := 1, 0;
do i ≤ w →

if    wdw[i] → skip
[]   ¬ wdw[i] → j := j+1
fi; i := i+1

od;
if   (((1-(j/w))*(s-r-w)>d+1) ^ (d+1<dmax)) →

d := d+1
[] ¬(((1-(j/w))*(s-r-w)>d+1) ^ (d+1<dmax)) →

d := 0;
r, i, j := s, s-r+1, 1;
do i ≤ w → wdw[j], i, j := wdw[i], i+1, j+1
od;
do j < w → wdw[j], j := false, j+1 od

fi
fi

end

It is straightforward to verify that the modified protocol
with controlled shift satisfies the two conditions given in
Section II, namely w-delivery and discrimination, by using
the same verification methods that are based on auxiliary
variables [11], annotation [5], and invariants [9] as used in
[4]. However, the verification does not show how effective
this protocol is in reducing message losses caused by long-
jump reorders. In the next section, we use some simulation
results to display the effectiveness of the modified protocol.

VI.  SIMULATION RESULTS

The scenario we simulated can be described as follows.
There are two processes p and q, where p sends a continuous
stream of messages to q. Each message carries a sequence
number with it. The sequence number starts from 1 and is
incremented by 1 with every subsequent message sent by
process p. Process q uses a window of size 64 to keep track of
the sequence numbers it received. However, the sent
messages may be lost or reordered before they are received
by q. If a message is received when its sequence number falls
behind the left edge of the window, this message will be
discarded by q. Note that there is no need to simulate
message replay because it has been shown that both the
original protocol and the modified protocol will discard every
replayed message.

To simulate message loss in IP, we set that the message
loss rate in our simulation to be 10%. To simulate message
reorder in IP, we arranged that 20 small message reorders,
where a message suffers a reorder of degree less than 10,
occur in the message stream. We also arranged that one long-
jump reorder, where a message suffers a reorder of degree
larger than 64, occurs in the message stream.



We generated many such message streams to be sent from
process p to process q. From each generated stream, process q
keeps receiving messages until it receives 1000 messages,
then the simulation run terminates. We used each of the
generated message streams with process q in the original
protocol once, and with process q in the modified protocol
ten times, each time with a different value for dmax. Our
choices of dmax range from 3 to 12. We recorded the number
of messages discarded by q in each simulation run and
summed up the numbers. Then, we derived the saving
percentage of discarded messages by dividing the number of
saved messages (the difference between the number of
messages discarded by the modified protocol and the number
of messages discarded by the original protocol) by the
number of messages discarded by the original protocol. The
simulation results for different message loss rates are shown
in Fig. 3.
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Fig. 3. Simulation results when loss rate=10%.

As shown in the figure, the saving percentage of the
modified protocol can be as high as almost 70%. The
modified protocol reaches the highest saving percentage
when dmax equals 8. The saving percentage remains almost
the same when we carried out the simulation with different
message loss rates of 5%, 15%, and 20%. This fact shows the
adaptability of the modified protocol.

VII.  CONCLUDING REMARKS

In this paper, we discussed the anti-replay window protocol
used in IPsec, and pointed out a potential problem faced by
the protocol: when a long-jump reorder occurs, the protocol
will end up discarding a lot of good messages. To remedy this
flaw, we propose to add a controlled shift mechanism to the
protocol. Controlled shift can reduce the harm caused by
long-jump reorder with its three properties: adaptability,
rationality, and sensitivity. We then present a modified
version of the anti-replay protocol that incorporates the
controlled shift mechanism, and use simulation to show that
the modified protocol loses much less good messages when a
long-jump reorder occurs.

In some rare cases where more than w consecutive
messages get lost, the modified protocol with controlled shift
will be led to discard dmax good messages before it shifts the
window to the right. This is the only case when the modified
protocol loses more messages than the original protocol does.

However, with a good choice of dmax, the loss of the
modified protocol can be limited to a small value.

Our simulation results show that the modified protocol has
optimal performance when dmax is set to be 8. However, this
value has not yet been justified by some analysis as there is
currently no commonly accepted model of message reorders
in the Internet. Toward this end, more extensive experiments
need to be conducted to estimate how message reorders,
especially long-jump reorders, occur in the Internet.
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