
Anti-Replay Window Protocols for Secure IP ∗

Mohamed G. Gouda Chin-Tser Huang Eric Li †

Department of Computer Sciences
The University of Texas at Austin

Austin, TX 78712-1188
{gouda, chuang}@cs.utexas.edu

† Microsoft Corporation
One Microsoft Way

Redmond, WA 98052
eli@microsoft.com

Abstract- The anti-replay window protocol is used to secure
IP against an adversary that can insert (possibly replayed)
messages in the message stream from a source computer to a
destination computer in the Internet. In this paper, we verify the
correctness of this important protocol using standard methods
(i.e. auxiliary variables, annotation, and invariants). We show
that despite the adversary, the protocol delivers each message at
most once, and discards a message only if another copy of this
message has already been delivered, or the message has suffered
a reorder of degree w or more, where w is the window size. We
then develop another variation of this protocol that uses two
windows of size w/2 each. This protocol delivers every message
at most once, and discards a message only if another copy of this
message has already been delivered, or the message has suffered
a reorder of degree w+d or more, where d is the sum of current
distances between successive windows in the protocol. We argue
that the double-window protocol is more effective than the
original single-window protocol.

I. INTRODUCTION

IPsec is the standard design for adding security features to the IP
layer in the Internet ([7], [8], and [9]). According to IPsec, network
administrators can establish a unidirectional security association
between any two computers in their networks: one computer is the
source of the association and the other is its destination. As part of
establishing a security association between two computers, the IP
layers in the two computers are provided with shared secrets and
keys. Once a security association is established from a source
computer p to a destination computer q, the IP layer in p can send IP
messages over the established association to the IP layer in q. All
messages sent over this established association are augmented with
special headers. These special headers are generated by the IP layer
in p and checked by the IP layer in q, using the shared secrets and
keys between p and q. If the checks performed by q for some
received message m are satisfactory, then q concludes that m was
indeed sent by p, that m was not modified after it was sent by p, and
that m is not a second copy of a message that was received earlier by
q; i.e. m is not a replayed message. To check whether a received
message is a replayed message, IPsec uses an anti-replay window
protocol, which is the subject of this paper.

 ∗

 This work is supported in part by the grant ARP-003658-320 from the
Advanced Research Program in the Texas Higher Education Coordinating
Board.

Our goal in this paper is three-fold. First, we want to formally
specify the anti-replay protocol, state its correctness criteria, and
show that the protocol does satisfy these correctness criteria.
Second, we verify the correctness of anti-replay protocols using
traditional verification methods that are based on auxiliary variables
[12], annotation [6], and invariants [10]. Third, we discuss one
variation of the anti-replay window protocol and prove it correct
using the same verification methods, and show that this protocol
variation is more effective than the original protocol in many
practical situations.

In verifying the anti-replay window protocols in this paper, we
have opted to use traditional verification methods, rather than the
two well-known logics for verifying security protocols, namely
BAN logic [1] and GNY logic [2]. This decision is made for three
reasons.

i. Both the BAN and GNY logics are better suited for
security protocols where the number of exchanged
messages is bounded by a fixed (and hopefully small)
integer. By contrast, the number of exchanged messages
in the anti-replay window protocols is unbounded.
Moreover, adapting either the BAN logic or the GNY
logic to be used in the case where the number of
exchanged messages is unbounded does not seem
straightforward.

ii. The inference rules in both the BAN logic and the GNY
logic are designed assuming a very strong adversary - one
that can arbitrarily modify the contents of sent messages
or insert replayed messages in the current message stream.
Thus, one cannot use either of these logics to verify the
correctness of a protocol assuming a weak adversary - one
that can insert only replayed messages in the current
message stream. Because the bulk of our verification
proof(s) of the anti-replay window protocols are carried
out assuming a weak adversary, we could not use the
BAN or GNY logics to carry out these proofs.

iii. It is appealing from a scientific point of view to
demonstrate that traditional verification methods can
still be used to verify the correctness of some
security protocols.

(For interested readers, a classification of the different types of
message replay attacks and the anti-replay protocols that overcome
them are presented in [3] and [16].)

The protocols in this paper are specified using a version of
the Abstract Protocol Notation presented in [4]. In this
notation, each process in a protocol is defined by a set of
constants, a set of variables, and a set of actions. For
example, in a protocol consisting of two processes x and y,
process x can be defined as follows.

process x
const <name of constant> : <type of constant>

…
<name of constant> : <type of constant>

var <name of variable> : <type of variable>
…
<name of variable> : <type of variable>

begin
<action>

[] <action>
…

[] <action>
end

The constants of process x have fixed values. The variables
of process x can be read and updated by the actions of
process x. Comments can be added anywhere in a process
definition; each comment is placed between the two brackets
{ and }.

Each <action> of process x is of the form:

<guard> → <statement>

The guard of an action of x is either a boolean expression
over the constants and variables of x or a receive guard of the
form rcv <message> from y.

Executing an action consists of executing the statement of
this action. Executing the actions (of different processes) in a
protocol proceeds according to the following three rules.
First, an action is executed only when its guard is true.
Second, the actions in a protocol are executed one at a time.
Third, an action whose guard is continuously true is
eventually executed.

The <statement> of an action of x is a sequence of <skip>,
<assignment>, <send>, <selection>, or <iteration> statements
of the following forms:

<skip> : skip
<send> : send <message> to y
<assignment> : <list of variables of x> :=

<list of expressions>
<selection> : if <boolean expression> →

<statement>
…
[] <boolean expression> →

<statement>
fi

<iteration> : do <boolean expression> →
<statement>

od

Note that the <assignment> statement simultaneously can assign
new values to multiple variables. Consider for example the
following <assignment> statement

wdw[j], j := false, j+1

In this statement, the j-th element of the boolean array wdw is
assigned the value false, and the value of variable j is incremented
by one.

II. THE ANTI-REPLAY WINDOW PROTOCOL

In the anti-replay window protocol, a process p sends a
continuous stream of messages to another process q. The sent
messages may be lost or reordered before they are received
by q. A message m is said to suffer a reorder of degree w iff
the w-th message sent (by p) after m is received (by q) before
m.

At any instant, an adversary can insert in the message
stream from p to q a copy of any message that was sent
earlier by p. Because of the inserted messages, there is a
possibility that process q receives and delivers multiple
copies of the same message. To prevent this possibility, the
two processes p and q are designed such that the following
two conditions are satisfied for a given value w.

w-Delivery:
Process q delivers at least one copy of every message
that is neither lost nor suffered a reorder of degree w
or more after it is sent by p.
Discrimination:
Process q delivers at most one copy of every message
sent by p.

To satisfy these two conditions, p attaches a unique
sequence number to each message before sending the
message to q, and process q maintains a window of w
consecutive sequence numbers. For each sequence number s
in the window, q maintains a boolean variable indicating
whether or not q has already received the message whose
sequence number is s.

As suggested by Fig. 1, there are three cases to consider
when process q receives a message whose sequence number
is s.

Case i. s is smaller than all sequence numbers in the
window:

In this case, q cannot determine whether it has
received this message before. To be on the safe side, q
assumes that this message has been received before
and discards the message.

Case ii. s is one of the sequence numbers in the
window:

In this case, q can determine whether it has received
this message before (and so it discards this message)
or it has not received this message before (and so it
delivers this message).

reception
indicators
of all
messages

assumed
received
before

has not
yet been
receivedwindow

 F T

w321

F/T F/T F/T T F• • •

right edge r

T

T: true, the message has been received before
F: false, the message has not yet been received

Fig. 1. The anti-replay window.

Case iii. s is larger than all sequence numbers in the
window:

In this case, q determines that it has not received this
message before and delivers the message. Also q
slides the window such that s becomes the new right
edge of the window. (This means that some sequence
numbers near the old left edge are dropped off the
window.)

Next, we present the anti-replay window protocol using the
Abstract Protocol Notation described in the Introduction.
Process p can be defined as follows.

process p
var sp : integer {sequence number of last msg}
begin

true → sp := sp + 1; send msg(sp) to q
end

Process q has the following three variables

var wdw : array [1..w] of boolean,
{window}

r : integer, {right edge of window}
rcvd : array [1..] of boolean,

{auxiliary variable}

Array wdw is the window, and variable r is the maximum
sequence number in the window. For each i, 1 ≤ i ≤ w,
wdw[i] = true iff process q has already received msg(s),
where s = r-w+i. The infinite-size array rcvd is an auxiliary
variable that is used in verifying the protocol (as discussed in
Section III). Thus, array rcvd can be written but not read by
process q. Process q can be defined as follows.

process q
const w : integer {window size, w > 0}
var wdw : array [1..w] of boolean,

{window}
r : integer, {right edge of window}
rcvd : array [1..] of boolean,

{auxiliary variable}
s : integer, {sequence number}
i, j : integer

begin
rcv msg(s) from p →

if s ≤ r – w → {s is to the left of window: }
{discard msg}

skip
[] r – w < s ≤ r → {s is in window}

i := s – r + w;
if wdw[i] → {discard msg} skip
[] ¬ wdw[i] → {deliver msg}

wdw[i], rcvd[s] := true, true
fi

[] s > r → {s is to the right of window: }
{deliver msg}

r, i, j := s, s-r+1, 1;
do i ≤ w → wdw[j], i, j := wdw[i], i+1, j+1
od;
do j < w → wdw[j], j := false, j+1 od;
rcvd[r] := true

fi
end

For convenience, the initial state of the protocol is chosen
as if process p has already sent, and process q has already
received, the first w messages. Therefore, at the initial state
of the protocol, the following predicate holds.

sp = w
 ∧ (for every x, 1 ≤ x ≤ w, wdw[x] = true)
 ∧ r = w
 ∧ (for every x, 1 ≤ x, rcvd[x] ⇔ 1 ≤ x ≤ w)

III. VERIFYING THE ANTI-REPLAY WINDOW PROTOCOL

We verify the correctness of the anti-replay window
protocol in three steps. First, we present a protocol invariant
that refers to the auxiliary variable rcvd. Second, we use
annotation to establish correctness of this invariant. Third, we
use this invariant to show that the protocol satisfies the two
conditions of w-delivery and discrimination.

Consider the following state predicate P of the anti-replay
window protocol.

P = wdw[w] = true
 ∧ (for every x, 1 ≤ x, rcvd[x] ⇒ 1 ≤ x ≤ r)
 ∧ (for every x, 1 ≤ x ≤ w, wdw[x] = rcvd[r-w+x])

To show that P is an invariant of the protocol, note that P
holds at the initial state of the protocol. Moreover, the action
in process p does not update the variables wdw, r, and rcvd
referenced in P, and so it cannot falsify P. Thus, it remains to
show that the action (or more specifically the if..fi statement)
in process q starts executing at a state satisfying P, then the
execution terminates at a state satisfying P. This is shown by
the following annotation of the if..fi statement in process q.

{P}
if s ≤ r – w → skip {P}
[] r – w < s ≤ r →

i := s – r + w; {P ∧ r-w<s≤r ∧ i=s-r+w}
if wdw[i] → skip {P}
[] ¬ wdw[i] → wdw[i], rcvd[s] := true, true {P}
fi {P}

[] s > r →
{P ∧ s>r}
r, i, j := s, s-r+1, 1;
{ wdw[w] = true
∧ (for every x, 1 ≤ x, rcvd[x] ⇒ 1 ≤ x ≤ r-i+j)
∧ (for every x, i ≤ x ≤ w, wdw[x] = rcvd[r-i+j-w+x])
∧ (for every x, 1 ≤ x ≤ j-1, wdw[x] = rcvd[r-w+x]) }

do i ≤ w → wdw[j], i, j := wdw[i], i+1, j+1 od;
{ wdw[w] = true
∧ (for every x, 1 ≤ x, rcvd[x] ⇒ 1 ≤ x ≤ r-i+j)
∧ (for every x, i ≤ x ≤ w, wdw[x] = rcvd[r-i+j-w+x])
∧ (for every x, 1 ≤ x ≤ j-1, wdw[x] = rcvd[r-w+x])
∧ i > w }
{ wdw[w] = true
∧ (for every x, 1 ≤ x, rcvd[x] ⇒ 1 ≤ x ≤ r-w+j-1)
∧ (for every x, 1 ≤ x ≤ j-1, wdw[x] = rcvd[r-w+x]) }

do j < w → wdw[j], j := false, j+1 od;
{ wdw[w] = true
∧ (for every x, 1 ≤ x, rcvd[x] ⇒ 1 ≤ x ≤ r-w+j-1)
∧ (for every x, 1 ≤ x ≤ j-1, wdw[x] = rcvd[r-w+x])
∧ j = w }
rcvd[r] := true {P}

fi {P}

From this annotation, process q discards a msg(s) only if
the predicate ((P ∧ r-w<s≤r ∧ wdw[s-r+w]) ∨ (P ∧ s≤r-
w)) holds. Thus, q discards msg(s) only if (rcvd[s] ∨ s≤r-w)
holds. In other words, q discards msg(s) only if q has
received msg(s) before or msg(s) has suffered a reorder of
degree w or more. Therefore, the protocol satisfies the w-
delivery condition.

Also from the annotation, process q delivers a msg(s)
only if the predicate ((P ∧ r-w<s≤r ∧ ¬wdw[s-r+w]) ∨
(P ∧ s>r)) holds. Thus, q delivers msg(s) only when
¬rcvd[s] holds (and q has not yet delivered msg(s)).
Therefore, the protocol satisfies the discrimination condition.

IV. ENHANCING THE ANTI-REPLAY WINDOW PROTOCOL

The anti-replay window protocol in Section II is designed
to overcome an adversary that can insert only replayed
messages in the message stream. In this section, we discuss
how to enhance this protocol to overcome an adversary that
can insert any message.

The protocol is enhanced as follows. First, a shared secret
sc is provided to the two processes p and q. Second, each
message sent by p has three fields msg(s, t, d), where s is the
message sequence number, t is the message text, and d is the
message digest computed as d := MD(s | t | sc), MD is a
message digest function (for example MD5 [14]), and “s | t |
sc” is the concatenation of s, t, and the shared secret sc.
Third, when process q receives a msg(s, t, d), q delivers the
message only when d = MD(s | t | sc).

If the adversary inserts a msg(s, t, d) in the message stream
between p and q, then either this message has been sent
earlier by p or d ≠ MD(s | t | sc) because the adversary does
not know the shared secret sc between p and q. In either case,
process q ends up discarding the message.

The action in process p can be enhanced as follows.

true →
sp, t := sp + 1, TEXT;
d := MD(sp | t | sc);
send msg(sp, t, d) to q

The action in process q can be enhanced as follows.

rcv msg(s, t, d) from p →
if s ≤ r-w → {discard msg} skip
[] r-w < s ≤ r →

i := s-r+w;
if wdw[i] ∨ d ≠ MD(s | t | sc) →

{discard msg}skip
[] ¬ wdw[i] ∧ d = MD(s | t | sc) →

{deliver msg}wdw[i], rcvd[s] := true, true
fi

[] s > r →
if d ≠ MD(s | t | d) →{discard msg} skip
[] d = MD(s | t | d) →{deliver msg}

r, i, j := s, s-r+1, 1;
do i ≤ w → wdw[j], i, j := wdw[i], i+1, j+1
od;
do j < w → wdw[j], j := false, j+1 od;
rcvd[s] := true

fi
fi

V. THE DOUBLE-WINDOW PROTOCOL

The anti-replay window protocol in Section II does not
perform well in some cases. Consider the case where process
q receives msg(s) where s is larger than r+w. In this case,
process q slides the window so that s becomes the new right
window. Thus the new window does not overlap the old
window (whose right edge is r), and all the information
concerning the old window is lost. Later, if process q receives
msg(r+1), then q concludes that this message is to the left of
the (new) window and discards the message. (This scenario is
not uncommon. It can arise when p sends several message
over some route to process q, then sends subsequent
messages over a shorter route, that just became available, to
q. Some of the subsequent messages reach q before the earlier
messages. When q receives the first subsequent message, q
slides its window to the right a long distance. Later, when q
receives the earlier messages, it detects that they are to the
left of its window and discards them.)

To prevent such cases, we partition the window into two
windows of equal size. Each window has u successive
sequence numbers, where w = 2∗u. The two windows do not
overlap; i.e. they share no common sequence numbers. The
window that has the larger sequence numbers is called the
head window, and the other is called the tail window. The set

of sequence numbers that fall between the two windows is
called the bridge. Process q maintains for each sequence
number s in the head or tail window a boolean variable that
indicates whether or not q has received msg(s). Process q
ensures that the following condition, called the bridge
predicate, always holds. For each sequence number s in the
bridge, process q has not yet received msg(s).

As suggested by Fig. 2, there are six cases to consider
when process q receives a msg(s).

Case i. s is to the left of the tail window:

q cannot determine whether it has received this
message before, and so it discards the message.

Case ii. s is in the tail window:

q can determine whether it has received this message
before (and discards this message), or it has not
received this message before (and delivers this
message).

Case iii. s is in the bridge:

q determines that it has not received this message
before and delivers the message. Also q slides the tail
window such that s becomes the new right edge of that
window.

Case iv. s is in the head window:

q can determine whether it has received this message
before (and discards this message), or it has not
received this message before (and delivers this
message).

Case v. s is within u positions to the right of head
window:

q determines that it has not received this message
before and delivers the message. Also, q slides the
head window such that s becomes the new right edge
of that window. Moreover, q may slide the tail
window to maintain the bridge predicate.

Case vi. s is more than u positions to the right of head
window:

q determines that it has not received this message
before and delivers the message. Also, q slides the tail
window such that s becomes the new right edge of that
window. Thus, the tail window becomes the head
window and vice versa.

tail window

 T F F/ T T F/ T • • • F F F F/ T T F/ T • • •T F

r[h]r[1-h] bridge:
has not
yet been
received

assumed
received
before head window

T: true, the message has been received before
F: false, the message has not yet been received

has not
yet been
received

Fig. 2. The two windows.

Process q uses the following variables to maintain the two
windows.

var wdw : array [1..2∗u] of boolean,{double window}
r : array [0..1] of integer, {right edges of}

{windows}
h : 0..1 {head window}

Both windows are stored in the array wdw[1..2∗u]. One
window is stored in the subarray wdw[1..u] and its right edge
is stored in the element r[0]. The other window is stored in
the subarray wdw[u+1..2∗u] and its right edge is stored in the
element r[1]. Variable h is used to indicate which of the two
windows is the head window. Thus, r[h] is the right edge of
the head window and r[1-h] is the right edge of the tail
window. For every i, 1 ≤ i ≤ u, the ith element of the head
window is wdw[i+u∗h] and the ith element of the tail window
is wdw[i+u∗(1-h)].

A formal specification and verification of the double-
window protocol is presented in the full paper [5].

VI. COMPARING THE PERFORMANCE OF THE TWO
PROTOCOLS

In previous sections, we have presented two anti-replay
window protocols. Each of the protocols is guaranteed to
discard all replayed messages (by the discrimination
condition). Unfortunately, each of the protocols may also
discard fresh messages. However, because fresh messages are
discarded only when message reorder occurs, we need to
compare the tendency of each protocol to discard fresh
messages in this case when message reorder occurs.

There are three known causes for message reorder in the IP
layer of the Internet. First, changes in message routes, due to
the failures and repairs of intermediate routers, can cause
message reorder [11]. Second, some routers are designed to
flutter [13], i.e. oscillate rapidly between different routes in
order to split the load between these routes. Third, some
routers stop forwarding messages for a short period when
they are busy processing routing updates [14]. While
processing such updates, a busy router queues all received
messages. The queued messages are later forwarded
(whenever the router has a chance) interspersed with newly
arriving messages. We shall focus on the first case because
the latter two cases are largely site-dependent and the first
case is the most common in practical situations.

Consider the case where one computer p sends a
continuous stream of IP messages to another computer q. Let
the largest message sequence number received by q be n.
Assume that an intermediate router between p and q just gets
repaired and offers a shorter route for the message stream
from p to q. Also assume that this route change causes
message n+w+k to arrive at q next, where w is the window
size used in the original anti-replay window protocol and k is
a positive integer. If the original anti-replay window protocol
is used by q, q will slide the window so that n+w+k becomes
the new right edge of the window, and all messages with
sequence numbers between n+1 and n+k will be discarded
when they arrive at q later. However, if the double-window
protocol is used, with each of the two windows being of just

size one, then q will deliver all messages with sequence
numbers between n+1 and n+k when they arrive at q later,
because their sequence numbers fall in the bridge formed by
sliding the old tail window.

From the above scenario, it is clear that when message
reorder occurs, the double-window protocol can deliver more
reordered fresh messages than the original anti-replay
window protocol can. Therefore, the double-window protocol
is more effective than the original anti-replay window
protocol.

VII. CONCLUDING REMARKS

In this paper, we presented two anti-replay window protocols.
To make the presentation uniform, we used w to denote the
cumulative window size in each of the protocols. However, the
values of w in the two protocols are quite different. In the original
anti-replay window protocol, w should be relatively large, for
example 32 or 64 [7], to strengthen the w-delivery condition
satisfied by this protocol (because the reorder degree can be large
in many practical situations). By contrast, w can be as small as 8 in
the double-window protocol (because the delivery condition for
the double-window protocol is already stronger than the delivery
condition for the original protocol).

A nice feature of our two protocols is that they have the
same sender (and different receivers). Thus, different
computers in a network can employ different receivers, and
any sender in this network does not need to know the type of
receiver to which it is sending its messages.

Each of the anti-replay window protocols in this paper can
be extended to multicast as follows. First, the sender is
provided with a private key R, and each of the receivers is
provided with the corresponding public key B. Second, the
sender computes the digest d in each msg(s, t, d) as d :=
encrypt MD(s | t) using R. Third, each receiver concludes
that a received msg(s, t, d) is proper iff the predicate (decrypt
d using B = MD(s | t)) holds.

The message sequence numbers in the two anti-replay
protocols in this paper are unbounded. This seems
unavoidable. As long as each message is to be delivered at
most once, as dictated by the discrimination condition, the
sequence numbers of messages cannot be recycled (to deny
the adversary the opportunity of replacing a new message
with an old message that happens to have the same sequence
number causing the old message to be delivered twice). In the
IPsec specification [7], sequence numbers are written in 32
bits, starting from all bits equal to 0 to all bits equal to 1.
After each of these 232 sequence numbers has been used once,
the current security association has to be terminated and a
new security association needs to be established.

One contribution of this paper is identifying the two
conditions of w-delivery and discrimination as the
correctness criteria for anti-replay protocols. We used
traditional methods to verify that each of our two anti-replay
window protocols satisfies these two conditions. This
experience demonstrates that traditional methods are
adequate for verifying the correctness of most anti-replay
window protocols.

REFERENCES

[1] M. Burrows, M. Abadi, and R. M. Needham, "A Logic
of Authentication", ACM Transactions on Computer
Systems, Vol. 8, No. 1, pp. 18-36, February 1990.

[2] L. Gong, R. Needham, and R. Yahalom, "Reasoning
about Belief in Cryptographic Protocols", Proceedings of
the IEEE Symposium on Research in Security and
Privacy, pp. 234-248, May 1990.

[3] L. Gong, "Variations on the Themes of Message
Freshness and Replay", Proceedings of the Computer
Security Foundations Workshop VI, pp. 131-136, Jun.
1993.

[4] M. G. Gouda, Elements of Network Protocol Design,
John Wiley & Sons, New York, NY, 1998.

[5] M. G. Gouda, C.-T. Huang, E. Li, "Anti-Replay Window
Protocols for Secure IP", Technical Report, Department
of Computer Sciences, The University of Texas at
Austin, July 2000.

[6] C. A. R. Hoare, "An axiomatic approach to computer
programming", Comm. ACM 12, pp. 576-581, 1969.

[7] S. Kent, and R. Atkinson, "Security Architecture for the
Internet Protocol", RFC 2401, November 1998.

[8] S. Kent, and R. Atkinson, "IP Authentication Header",
RFC 2402, November 1998.

[9] S. Kent, and R. Atkinson, "IP Encapsulating Security
Payload (ESP)", RFC 2406, November 1998.

[10]Z. Manna, and A. Puneli, "The Temporal Logic of
Reactive and Concurrent Systems", Springer-Verlag,
New York, 1991.

[11] J. Mogul, "Observing TCP Dynamics in Real Networks",
Proc. SIGCOMM '92, pp. 305-317, Aug. 1992.

[12]S. Owicki, and D. Gries, "An Axiomatic Proof
Technique for Parallel Programs I", Acta Informatica,
Vol. 6, No. 1, pp. 319-340, 1976.

[13]V. Paxson, "End-to-End Routing Behavior in the
Internet", IEEE/ACM Transactions on Networking, Vol.
5, No. 5, pp. 601-615, Oct. 1997.

[14]V. Paxson, "End-to-End Internet Packet Dynamics",
IEEE/ACM Transactions on Networking, Vol. 7, No. 3,
pp. 277-292, Jun. 1999.

[15]R. L. Rivest, "The MD5 Message-Digest Algorithm",
RFC 1321, Apr. 1992.

[16]P. Syverson, "A Taxonomy of Replay Attacks",
Proceedings of the Computer Security Foundations
Workshop VII, pp. 187-191, Jun. 1994.

