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ABSTRACT 
In this paper, we present two new centralized group key 
management protocols based on the Chinese Remainder Theorem 
(CRT). By shifting more computing load onto the key server we 
optimize the number of re-key broadcast messages, user-side key 
computation, and number of key storages. The first protocol is the 
base Chinese Remaindering Group Key (CRGK) protocol, which 
with a group of n users requires the key server to do O(n) XORs, 
additions, multiplications, and Extended Euclidean Algorithm 
computations and broadcast 1 re-key message; each individual 
user is required to do only 1 modulo arithmetic and 1 XOR 
operation for each group key update. The second protocol is the 
Fast Chinese Remaindering Group Key (FCRGK) protocol, which 
only requires the key server to do O(n) XORs, additions, and 
multiplications most of the times with no change to the number of 
re-key messages and user computation per group key update. For 
both protocols each user only needs to store 2 keys all the time. 
One special attraction for our FCRGK protocol is that it allows 
most of the re-keying computation to be done preemptively, 
which means when a user-join or user-leave event happens the 
response time for the key server to send out the new group key 
can be very short. 

Categories and Subject Descriptors 
C.2.2 [Computer-Communication Networks]: Network 
Protocols; K.6.5 [Management of Computing and Information 
Systems]: Security and Protection. 

General Terms 
Design, Management, Security, Performance. 

Keywords 
Chinese Remainder Theorem (CRT), Congruence System, Group 
Key Management, Chinese Remaindering Group Key (CRGK) 
Protocol, Fast Chinese Remaindering Group Key (FCRGK) 
Protocol. 

1. INTRODUCTION 
As group-oriented applications become increasingly popular, the 
need for confidentiality of group communications also grows. 
While there are many mature secure protocols for peer-to-peer 
communication, the scenario for group communication with 
dynamically changing members is very different. Efficient 
agreement on a new group key after user join or leave is crucial to 
group communication confidentiality. During the past decade a 
variety of group key management protocols have been proposed. 
Among them are a set of efficient and scalable centralized group 
key management protocols [6], [16], [19], [22], [23] based on 
certain hierarchical structure require about O(log n) of keys to be 
received, decrypted or computed, and stored by each individual 
group user for a group of n users. While this is already an 
improvement compared to previous schemes, it may still represent 
a large overhead for group users with limited capacity.  

In this paper, we introduce two new centralized group key 
protocols based on the CRT. By shifting more computing load 
onto the key server, we optimize the number of re-key broadcast 
message, user-side key computation and number of key storages. 
Our protocols require the key server to broadcast 1 re-key 
message and each group user to compute only 1 modulo 
arithmetic and 1 XOR operation for each key update and store 
only 2 keys all the time. While our protocols require more 
computation power from the key server, it does not need to 
maintain any complex hierarchical structure. With the tremendous 
advantage on re-key broadcasting message number, user key 
computation, user key storage, and the relatively simple nature 
compared to other protocols, we consider our protocols are well 
worth exploring. 

While this paper deals with group key management for dynamic 
group, our protocols are based on the assumption that certain 
authentication protocol involving two parties is needed before the 
key server grants group access to each user. Since two-party 
authentication protocols are well studied [20], it is not included in 
the scope of this paper. 

The rest of this paper is organized as follows. Section 2 provides a 
brief review of related work. Section 3 describes our protocols in 
detail. Security analysis and performance evaluation are given in 
Section 4 and 5 respectively. Section 6 summarizes our 
conclusions. 
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2. RELATED WORK 
Group key management protocols can be largely classified into 
three groups [17]: centralized, with one center managing the 



whole group; decentralized, with group and subgroup controllers 
managing the group; distributed, with no group center and each 
group member can contribute to the group management. 

Ballardie [2] proposed a multicast key distribution protocol, 
which can be classified as decentralized protocol. This protocol 
requires certain support mechanism to be integrated into version 3 
of IGMP and it provides no forward secrecy. Mittra [15] proposed 
another typical decentralized protocol: Iolus. This protocol 
decentralizes the group control to each subgroup controller 
(Group Security Agent). Since it lacks a general group key, the 
real multicast data need to be relayed (decrypted and re-
encrypted) by each subgroup controller which impedes the 
performance of real data multicasting.  

Steiner et al. [21], Kim et al. [14] proposed distributed group key 
protocols based on Group Diffie Hellman methods for small 
dynamic peer groups. Rodeh et al. [18] proposed a distributed 
logical key hierarchy protocol using AVL trees. Those protocols 
require many rounds of messages to update a new group key. 
Their contributory nature may only attract applications involving 
small group of peer users. 

The class of centralized group key protocols is the most widely 
explored group key protocols among the three. Harney and 
Muckenhirn [12], [13] proposed a group key management 
protocol by extending two-party shared key establishing scheme 
into group case. It requires O(n) encryptions to update a group 
key when user joins or leaves if backward and forward secrecy 
are required. A set of scalable hierarchical structure based group 
key protocols [6], [16], [19], [22], [23] have been proposed. In 
general those protocols requires the key server to store about 2n 
keys and update O(log n) keys each time re-keying is needed, and 
each user stores O(log n) keys (or secret information) and 
performs O(log n) decryptions or some type of computation per 
group key update. Eltoweissy et al. [10] proposed a protocol 
based on Exclusion Basis Systems, a combinatorial formulation of 
the group key management problem, which allows protocol users 
to trade-off between number of keys needed to be stored and the 
number of messages needed to be transmitted for each key update 
with no collusion solution provided. Fiat and Naor [11] take the 
information theoretic approach and propose k-resistant protocol, 
i.e. coalitions of up to k users are secured, with each user storing 
O(k log k log n) keys and the server broadcasting O(k2 log2k log 
n) messages per re-keying. Chiou et al. [9] proposed a secure 
broadcasting protocol also based on CRT, however its application 
of CRT is different from our approach. Their protocol requires 
O(n) encryptions for each real data broadcast while ours only 
needs 1 encryption. 

3. CHINESE REMAINDERING GROUP 
KEY PROTOCOL 
In this section, we introduce our new group key management 
protocol based on the Chinese Remainder Theorem (CRT). First, 
we will give a brief review on CRT; then we will present our base 
Chinese Remaindering Group Key (CRGK) protocol in detail by 
describing the protocol behavior in subsections: group 
initialization, member join, member leave, mass join, mass leave, 
and key refresh; finally, we will introduce our Fast CRGK 
(FCRGK) protocol following the similar structure except that a 
new subsection about group expansion operation is added. 

3.1 Chinese Remainder Theorem 
Let u1, …, um be m pairwise relatively prime positive integers, 
and let k1, …, km be m arbitrary integers. Then CRT states that 
the congruence system 
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Since Mi is relatively prime to ui there must exist a unique 
multiplicative inverse mod ui. Then the above computation of the 
unique solution X is well defined. Efficient computation of the 
multiplicative inverse can be carried out using Extended 
Euclidean Algorithm which is out of the scope of this paper. 

3.2 The Base CRGK Protocol 
As we stated in the introduction, this paper is dealing with group 
key management with a key server. Authentication of group users 
is assumed and is not part of our protocol. After the authentication 
of a user, if the user is granted access to the group communication 
then the key server will choose a private key and send it to the 
user using some secured channel, for instance using public key 
system. For the purpose of our protocol we impose another 
constraint on the private key, that is, the key server will pick this 
private key from a pool of pairwise relatively prime positive 
integers and the size of this private key should be much larger 
than the size of group keys we need to generate. Let n be the 
number of group users joining the group communication. We will 
construct the first group key in group initialization. 

3.2.1 Group Initialization 
After the key server communicates a private key, picked 
randomly from a pairwise relatively prime integer pool, to each 
initial group user securely, the key server will pick an initial 
group key K randomly and build the following congruence system 
for this group with n initial users. 



  

integers. positive prime relatively        
 pairwise are they and ly,respective        
 group initial in theuser  groupeach         

for server key  by the picked        
 keys private  theare u , ,u        

 key, group initial  theisK         
n}, , {1,2,  i allfor  ,u K  of bits        

 ingcorrespond  theof  value theis k        
 group,current   theof size  theisn         

 where, )u (mod k    X
     

)u (mod k    X

n1

1

i

nn

11

L

L

M

∈⊕

≡

≡

Obviously, the above congruence system meets the requirement 
of a CRT congruence system. Therefore the key server can 
compute the unique solution X for the above congruence system. 
After the X value is computed the key server can simply 
broadcast this X value to all users in plaintext. Any of the initial n 
group user can compute the group key K by simply do 1 modulo 
and 1 XOR operations (K is equal to the corresponding bits of  (X 
mod ui) XOR ui.). After these simple computations the n group 
users now share the same group key K and any outside user can 
not compute the shared group key K without any of the secret 
information u1, …, un.  

3.2.2 Member Join 
After the initial group has been set up, if a new user wants to join 
the group then it will first go through the same authentication 
process as other group users do. If the joining new user is granted 
the access to the group communication, it will be assigned a new 
private key unew. This key is picked by the key server from the 
pool of pairwise relatively prime positive integers just like u1, …, 
un. Now the key server will merge the new user’s private key into 
the initial congruence system. Then a new group key K′ is chosen 
following the same requirements as described in group 
initialization. Then again the key server will compute the new X 
value based on the updated congruence system.  
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After receiving the new broadcast X value each user can compute 
the new group key K’ easily by doing 1 modulo and 1 XOR 
operations as in group initialization.  

3.2.3 Member Leave 
Group key updating when a member leaves usually requires more 
efforts in most other group key management protocol since we 
can not use the old group key to encrypt the new group key. 
However in our protocol group key updating for member leave 
are also very simple. What we need to do is just take a leaving 
user’s private key out of the congruence system, pick a new group 
key, compute the new X value, and broadcast to each user. Note 
that to prevent future misuse this key should be taken out of the 
pool of pairwise relatively prime positive integers. 
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Again, after receiving the X value each user only needs to do 1 
modulo arithmetic and 1 XOR operation to get the new group 
key. 

3.2.4 Mass Join 
Mass join scenario is very similar to the single member join case. 
The only difference in this case is that it will have a set of new 
private keys, one for each new joining member respectively, 
being added into the congruence system. New group key is 
computed and distributed the same way as in the single member 
join case. 

3.2.5 Mass Leave 
The behavior of a mass leave is very similar to the single member 
leave case. The difference is that the key server needs to take 
more than one user private keys out of the congruence system. 
New group key is computed and distributed the same way as in 
the single member leave case. 

3.2.6 Key Refresh 
Key refresh is also very simple in our protocol. The only thing the 
key server needs to do is to pick a new group key and compute 
the new X value and broadcast it to each group user. If the 
intermediate results of the previous key updating computation are 
saved, such as the values of  for all i in [1, …, n], then the 
key refreshing computation will be much faster. For group users 
the process of getting the new group key is the same as before, 
namely 1 modulo arithmetic and 1 XOR operation. 

'
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3.3 The Fast CRGK (FCRGK) Protocol 
For our base CRGK protocol to set up or update a group key it is 
very efficient from the perspective of number of communication 
message, user computation effort, and user storage requirement, 
since it needs 1 plaintext broadcast message, 1 modulo arithmetic 
and 1 XOR operation, and 2 key storage spaces for each user. 
However for the key server side, except for the key refresh 
scenario, it still requires O(n) of XOR, multiplication, addition, 
multiplicative inverse computations. In this section, we present 



the Fast CRGK (FCRGK) protocol which performs much faster 
than our base CRGK protocol. Even more, with the FCRGK 
protocol the key server can do most of the computation long 
before members join or leave the group, so that when the joining 
or leaving occurs the key updating message can be sent out by the 
key server immediately with very little computation and latency. 
To gain this performance improvement on most of the member 
join or leave events the key server needs to perform an additional 
group expansion operation when the number of group member 
change total reaches certain multiple of the starting group size. 
The group expansion operation is expensive in the sense that it is 
about the same scale of a group initialization, but it is designed to 
be carried out very infrequently. Also, the key server needs more 
storage space to execute the FCRGK protocol when compared to 
the base CRGK protocol.  

Similar to our base CRGK protocol, the FCRGK protocol also 
assumes each group user will be authenticated through some 
method and the key server will assign each of them a private key 
from a pool of pairwise relatively prime positive integers. The 
following is the detailed description of the FCRGK protocol with 
a variable n number of group users. 

3.3.1 Group Initialization 
Group initialization for FCRGK is largely similar to the CRGK 
case. The difference will be the size of the congruence system. In 
the CRGK protocol the size of the congruence system is the same 
as the initial group size n, while in the FCRGK protocol we will 
construct a congruence system larger than the initial group size n. 
Assume m is the size of the initial congruence system we built. 
We will pick that for some constant d value, which is 
dependent on how fast group members change (joining and 
leaving). For instance for a slowly changing group we can choose 

, and for a fast changing one we can choose 

ndm =

2=d 5=d . The 
actual value of d can be adjusted by the key server based on the 
group dynamics. 
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For the FCRGK protocol we require that during the group 
initialization and the group expansion operations in the future, the 
intermediate calculation results  for all i in [1, …, m] and 

 for all i in [n+1, …, m] need to be saved by the key 
server to reduce the future computation cost. Also, if the key 
server has additional computation power and storage space, it can 
pick a new future group key, pre-compute the new X value, and 
save the intermediate results including the X value for preparing a 
quicker response to a future group member change. 
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3.3.2 Member Join 
When new member joins the group, in our FCRGK protocol the 
key server just picks un+1 from the current congruence system and 
gives it to the new group user as its private key. If the key server 
has a pre-computed X value based on the pre-picked new group 
key, then the X′ value, which is the real new group key updating 
message, can be easily calculated in one step as follows: 
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If there is no such pre-computed X value saved by the key server, 
then the key server will simply pick a new group key and use the 
intermediate results saved from the last group initialization or 
group expansion operation. Those intermediate calculation results 
can be used here but not in the CRGK protocol because for the 
FCRGK protocol the foundation of the congruence system, i.e. u1, 
…, um, is not changed after a new member join. 

3.3.3 Member Leave 
After a user i left the group, to update the group key the key 
server will move ui from the range 1 ~ n to the range n+1 ~ m and 
a new random value ki (as long as ki is not equal to the new group 
key value) is picked to be associated with ui for new X value 
computation, by which the foundation of the congruence system 
is kept stable so that the intermediate calculation results saved 
before can be used again. Obviously the ui value will be marked 
as used and cannot be assigned as a private key for any future 
new joining user.  



3.3.4 Group Expansion 
After group initialization since the foundation of the congruence 
system is kept the same the original secret reserve un+1, …, um 
will gradually be used up after many group member changes. 
Group expansion operation will expand the size of the current 
congruence system associated with the group by a factor d, i.e. 
make .Group expansion is a new operation specific to the 
FCRGK protocol and group expansion should be carried out very 
infrequently. If the key server has to carry out group expansion 
operation frequently, then it is an indication that the value of d 
should be increased.  

mdm =

Let , where tl is the total number of leaves since the 
last group expansion (or group initialization if no group expansion 
has been executed yet), then group expansion operation is carried 
out each time the value r reaches some predefined threshold. The 
value of the threshold should be determined by group dynamics 
and the key server computing power. In other words, based on the 
current group dynamics the time duration needed for the key 
server to do a group expansion computation is the key factor of 
determining the threshold value. The longer the time needed, the 
bigger the threshold value should be. 

tlnmr −−=

The duty of group expansion includes kicking out all the private 
key values used by group members that have left the group, 
adding new secret u values to make up the new size m of the 
congruence system, picking the new group key, calculating the 
new X value, and saving all the intermediate results like in the 
group initialization operation. The new X value is then broadcast 
to each user to compute the new group key. 

3.3.5 Mass Join 
Mass join is similar to the single member join case and the only 
difference will be a set of u’s chosen from un+1, …, um to be used 
as the private keys for each new user respectively.  

3.3.6 Mass Leave 
The behavior of the mass leave case is similar to the single 
member leave case except that a set of u’s are moved from the 
range 1 ~ n to the range n+1 ~ m.  

3.3.7 Key Refresh 
Key refresh could be exactly the same as in the base CRGK 
protocol as long as the intermediate results are used to compute 
the new group key, since in both cases the foundation of the 
congruence system is not changed. If pre-computed X value exists 
then when the time for key refreshing comes, the X value can 
simply be broadcast. 

4. SECURITY ANALYSIS 
The security of our protocols is based on the assumption that each 
current group user will keep its private key (u1, …, un 
respectively) secret, and the key server will keep a set of secret 
information (called Server Secret Set), the private key reserve for 
the FCRGK protocol, a subset of the set un+1, …, um. Moreover, 
the set of u values are randomly picked from an unlimited large 
pool of pairwise relatively prime positive integers, hence knowing 
one number gains little knowledge about the others. 

4.1 Forward Secrecy 
Forward Secrecy is about preventing leaving users to continue 
accessing future group communications. For the base CRGK 
protocol each leaving user’s private key is kicked out of the new 
congruence system, therefore its private key no longer contributes 
to new X value calculation which means it can no longer compute 
the new group key like other current group users do. For the 
FCRGK protocol, even though each leaving user’s private key is 
still kept inside the congruence system for speeding up server 
computation, it can only compute the ki value (see section 3.3.3) 
which is randomly picked and not related to the new group key in 
any way at all. 

4.2 Backward Secrecy 
Backward Secrecy is about preventing joining users from 
accessing previous group communications. In our protocols each 
new group key is an arbitrary picked value with no relation to any 
old group key. Each new joining user’s ability of computing the 
new group key will not gain knowledge about the previous group 
key. 

4.3 Collusion Attack 
Collusion attack on group key protocol is about a set of previous 
group users working together to try to gain access to the secret 
group key. For the base CRGK protocol, since the foundation of 
the congruence system is changed after each group member 
change, any number of previous users’ collusion will not gain any 
significant more information about the congruence system as long 
as the pairwise relatively prime integers are large enough. For the 
FCRGK protocol, since the congruence system remains stable 
with certain number of member changes, collusion of previous 
users may gain some information about the congruence system, 
for instance leaving users know that the u values they held as 
private keys are still used in the congruence system before the 
next group expansion operation, but again without server secret 
set they still can not compute the secret group key. 

5. PERFORMANCE EVALUATION 
Our protocols focus on the optimization of user computation, 
number of stored keys, and number of the re-key message with 
loading certain amount of computation on the key server. On the 
other hand comparing to other hierarchical structure based group 
key management protocol, our protocol’s simple nature, only 
requiring one two-dimensional table structure, keeps a minimal 
structure management load on the key server. 

5.1 The Base CRGK Protocol 
For each key update request our base CRGK protocol requires the 
key server to do O(n) XOR, addition, multiplication, and 
Extended Euclidean Algorithm computation and broadcast 1 re-
key message, while each user only need to do 1 modulo 
arithmetic, 1 XOR operation,  and store 2 keys all the time, one of 
which is the private key and the other is the group key. 

5.2 The FCRGK Protocol 
With the very infrequent group expansion operations the FCRGK 
protocol requires the key server to do O(n) XOR operation, 
addition and multiplication arithmetic, and still keeps re-key 
message number, user computation and key storage space 
minimal.  



One very attractive quality of the FCRGK protocol is that by 
maintaining a stable congruence system most of the re-key 
computation can be done beforehand. That is, the key server can 
use its free time to get future group keys almost ready. When a 
key update is needed, no matter it is because of user join, user 
leave or simple key refreshing, the key server only needs to do 
O(1) operation to respond to that request. To the best of our 
knowledge, we see no other protocols allow such key pre-
computation. 

6. CONCLUSIONS 
In this paper, we present two centralized simple and efficient CRT 
based group key management protocols for small to medium size 
dynamically changing groups. The simple nature of our protocols 
together with minimal re-key messages, minimal requirements on 
user computation and key storage space make them suitable for a 
variety of secure group communication. Even though we evaluate 
our protocol performance using some O-notations, the unit 
operation of our protocols (mainly XOR, addition, multiplication, 
and modulo arithmetic) is different from most of other protocols 
(mainly encryption, decryption, and hashing) which can cause 
real performance results to be deviated. Our future work will 
involve providing optimized implementation of our protocols to 
evaluate their real time performance and the comparison with 
other protocols. 
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