
Chinese Remainder Theorem Based Group Key
Management

Xinliang Zheng Chin-Tser Huang Manton Matthews
Dept. of Computer Science and Engineering

University of South Carolina
Columbia, SC 29208

{zheng2, huangct, matthews}@cse.sc.edu

ABSTRACT
In this paper, we present two new centralized group key
management protocols based on the Chinese Remainder Theorem
(CRT). By shifting more computing load onto the key server we
optimize the number of re-key broadcast messages, user-side key
computation, and number of key storages. The first protocol is the
base Chinese Remaindering Group Key (CRGK) protocol, which
with a group of n users requires the key server to do O(n) XORs,
additions, multiplications, and Extended Euclidean Algorithm
computations and broadcast 1 re-key message; each individual
user is required to do only 1 modulo arithmetic and 1 XOR
operation for each group key update. The second protocol is the
Fast Chinese Remaindering Group Key (FCRGK) protocol, which
only requires the key server to do O(n) XORs, additions, and
multiplications most of the times with no change to the number of
re-key messages and user computation per group key update. For
both protocols each user only needs to store 2 keys all the time.
One special attraction for our FCRGK protocol is that it allows
most of the re-keying computation to be done preemptively,
which means when a user-join or user-leave event happens the
response time for the key server to send out the new group key
can be very short.

Categories and Subject Descriptors
C.2.2 [Computer-Communication Networks]: Network
Protocols; K.6.5 [Management of Computing and Information
Systems]: Security and Protection.

General Terms
Design, Management, Security, Performance.

Keywords
Chinese Remainder Theorem (CRT), Congruence System, Group
Key Management, Chinese Remaindering Group Key (CRGK)
Protocol, Fast Chinese Remaindering Group Key (FCRGK)
Protocol.

1. INTRODUCTION
As group-oriented applications become increasingly popular, the
need for confidentiality of group communications also grows.
While there are many mature secure protocols for peer-to-peer
communication, the scenario for group communication with
dynamically changing members is very different. Efficient
agreement on a new group key after user join or leave is crucial to
group communication confidentiality. During the past decade a
variety of group key management protocols have been proposed.
Among them are a set of efficient and scalable centralized group
key management protocols [6], [16], [19], [22], [23] based on
certain hierarchical structure require about O(log n) of keys to be
received, decrypted or computed, and stored by each individual
group user for a group of n users. While this is already an
improvement compared to previous schemes, it may still represent
a large overhead for group users with limited capacity.

In this paper, we introduce two new centralized group key
protocols based on the CRT. By shifting more computing load
onto the key server, we optimize the number of re-key broadcast
message, user-side key computation and number of key storages.
Our protocols require the key server to broadcast 1 re-key
message and each group user to compute only 1 modulo
arithmetic and 1 XOR operation for each key update and store
only 2 keys all the time. While our protocols require more
computation power from the key server, it does not need to
maintain any complex hierarchical structure. With the tremendous
advantage on re-key broadcasting message number, user key
computation, user key storage, and the relatively simple nature
compared to other protocols, we consider our protocols are well
worth exploring.

While this paper deals with group key management for dynamic
group, our protocols are based on the assumption that certain
authentication protocol involving two parties is needed before the
key server grants group access to each user. Since two-party
authentication protocols are well studied [20], it is not included in
the scope of this paper.

The rest of this paper is organized as follows. Section 2 provides a
brief review of related work. Section 3 describes our protocols in
detail. Security analysis and performance evaluation are given in
Section 4 and 5 respectively. Section 6 summarizes our
conclusions.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

ACMSE 2007, March 23-24, 2007, Winston-Salem, North Carolina, USA
©Copyright 2007 ACM 978-1-59593-629-5/07/0003...$5.00

2. RELATED WORK
Group key management protocols can be largely classified into
three groups [17]: centralized, with one center managing the

whole group; decentralized, with group and subgroup controllers
managing the group; distributed, with no group center and each
group member can contribute to the group management.

Ballardie [2] proposed a multicast key distribution protocol,
which can be classified as decentralized protocol. This protocol
requires certain support mechanism to be integrated into version 3
of IGMP and it provides no forward secrecy. Mittra [15] proposed
another typical decentralized protocol: Iolus. This protocol
decentralizes the group control to each subgroup controller
(Group Security Agent). Since it lacks a general group key, the
real multicast data need to be relayed (decrypted and re-
encrypted) by each subgroup controller which impedes the
performance of real data multicasting.

Steiner et al. [21], Kim et al. [14] proposed distributed group key
protocols based on Group Diffie Hellman methods for small
dynamic peer groups. Rodeh et al. [18] proposed a distributed
logical key hierarchy protocol using AVL trees. Those protocols
require many rounds of messages to update a new group key.
Their contributory nature may only attract applications involving
small group of peer users.

The class of centralized group key protocols is the most widely
explored group key protocols among the three. Harney and
Muckenhirn [12], [13] proposed a group key management
protocol by extending two-party shared key establishing scheme
into group case. It requires O(n) encryptions to update a group
key when user joins or leaves if backward and forward secrecy
are required. A set of scalable hierarchical structure based group
key protocols [6], [16], [19], [22], [23] have been proposed. In
general those protocols requires the key server to store about 2n
keys and update O(log n) keys each time re-keying is needed, and
each user stores O(log n) keys (or secret information) and
performs O(log n) decryptions or some type of computation per
group key update. Eltoweissy et al. [10] proposed a protocol
based on Exclusion Basis Systems, a combinatorial formulation of
the group key management problem, which allows protocol users
to trade-off between number of keys needed to be stored and the
number of messages needed to be transmitted for each key update
with no collusion solution provided. Fiat and Naor [11] take the
information theoretic approach and propose k-resistant protocol,
i.e. coalitions of up to k users are secured, with each user storing
O(k log k log n) keys and the server broadcasting O(k2 log2k log
n) messages per re-keying. Chiou et al. [9] proposed a secure
broadcasting protocol also based on CRT, however its application
of CRT is different from our approach. Their protocol requires
O(n) encryptions for each real data broadcast while ours only
needs 1 encryption.

3. CHINESE REMAINDERING GROUP
KEY PROTOCOL
In this section, we introduce our new group key management
protocol based on the Chinese Remainder Theorem (CRT). First,
we will give a brief review on CRT; then we will present our base
Chinese Remaindering Group Key (CRGK) protocol in detail by
describing the protocol behavior in subsections: group
initialization, member join, member leave, mass join, mass leave,
and key refresh; finally, we will introduce our Fast CRGK
(FCRGK) protocol following the similar structure except that a
new subsection about group expansion operation is added.

3.1 Chinese Remainder Theorem
Let u1, …, um be m pairwise relatively prime positive integers,
and let k1, …, km be m arbitrary integers. Then CRT states that
the congruence system

)u (mod k X

)u (mod k X

mm

11

≡

≡
M

has a unique solution modulo u1 … um.

To compute the unique solution X we can do

.)u (mod 1 MM e. i. ,u mod M

 of inverse tivemultiplica theis M

, u / M M
, u u M

where,M)(modMMk X

i
'
iiii

'
i

ii

m1

m

1i
'
iii

≡

=
=

= ∑ =

L

Since Mi is relatively prime to ui there must exist a unique
multiplicative inverse mod ui. Then the above computation of the
unique solution X is well defined. Efficient computation of the
multiplicative inverse can be carried out using Extended
Euclidean Algorithm which is out of the scope of this paper.

3.2 The Base CRGK Protocol
As we stated in the introduction, this paper is dealing with group
key management with a key server. Authentication of group users
is assumed and is not part of our protocol. After the authentication
of a user, if the user is granted access to the group communication
then the key server will choose a private key and send it to the
user using some secured channel, for instance using public key
system. For the purpose of our protocol we impose another
constraint on the private key, that is, the key server will pick this
private key from a pool of pairwise relatively prime positive
integers and the size of this private key should be much larger
than the size of group keys we need to generate. Let n be the
number of group users joining the group communication. We will
construct the first group key in group initialization.

3.2.1 Group Initialization
After the key server communicates a private key, picked
randomly from a pairwise relatively prime integer pool, to each
initial group user securely, the key server will pick an initial
group key K randomly and build the following congruence system
for this group with n initial users.

integers. positive prime relatively
 pairwise are they and ly,respective
 group initial in theuser groupeach

for server key by the picked
 keys private theare u , ,u

 key, group initial theisK
n}, , {1,2, i allfor ,u K of bits

 ingcorrespond theof value theis k
 group,current theof size theisn

 where,)u (mod k X

)u (mod k X

n1

1

i

nn

11

L

L

M

∈⊕

≡

≡

Obviously, the above congruence system meets the requirement
of a CRT congruence system. Therefore the key server can
compute the unique solution X for the above congruence system.
After the X value is computed the key server can simply
broadcast this X value to all users in plaintext. Any of the initial n
group user can compute the group key K by simply do 1 modulo
and 1 XOR operations (K is equal to the corresponding bits of (X
mod ui) XOR ui.). After these simple computations the n group
users now share the same group key K and any outside user can
not compute the shared group key K without any of the secret
information u1, …, un.

3.2.2 Member Join
After the initial group has been set up, if a new user wants to join
the group then it will first go through the same authentication
process as other group users do. If the joining new user is granted
the access to the group communication, it will be assigned a new
private key unew. This key is picked by the key server from the
pool of pairwise relatively prime positive integers just like u1, …,
un. Now the key server will merge the new user’s private key into
the initial congruence system. Then a new group key K′ is chosen
following the same requirements as described in group
initialization. Then again the key server will compute the new X
value based on the updated congruence system.

new}, n, , {1,2, i allfor ,u K of bits
 ingcorrespond theof value theis k

 where,)u (mod k X
)u (mod k X

)u (mod k X

1

i

newnew

nn

11

L

M

∈⊕′

≡
≡

≡

.u , ,u toprime relatively pairwise isit
 anduser group joining new e th

for server key by the picked
 keys private theis u

 key, group initial theisK

n1

new

L

After receiving the new broadcast X value each user can compute
the new group key K’ easily by doing 1 modulo and 1 XOR
operations as in group initialization.

3.2.3 Member Leave
Group key updating when a member leaves usually requires more
efforts in most other group key management protocol since we
can not use the old group key to encrypt the new group key.
However in our protocol group key updating for member leave
are also very simple. What we need to do is just take a leaving
user’s private key out of the congruence system, pick a new group
key, compute the new X value, and broadcast to each user. Note
that to prevent future misuse this key should be taken out of the
pool of pairwise relatively prime positive integers.

M

)u (mod k X 11≡

)u (mod k X ii≡

group. theleaves u
 where),u (mod k X

i

nn≡
M

Again, after receiving the X value each user only needs to do 1
modulo arithmetic and 1 XOR operation to get the new group
key.

3.2.4 Mass Join
Mass join scenario is very similar to the single member join case.
The only difference in this case is that it will have a set of new
private keys, one for each new joining member respectively,
being added into the congruence system. New group key is
computed and distributed the same way as in the single member
join case.

3.2.5 Mass Leave
The behavior of a mass leave is very similar to the single member
leave case. The difference is that the key server needs to take
more than one user private keys out of the congruence system.
New group key is computed and distributed the same way as in
the single member leave case.

3.2.6 Key Refresh
Key refresh is also very simple in our protocol. The only thing the
key server needs to do is to pick a new group key and compute
the new X value and broadcast it to each group user. If the
intermediate results of the previous key updating computation are
saved, such as the values of for all i in [1, …, n], then the
key refreshing computation will be much faster. For group users
the process of getting the new group key is the same as before,
namely 1 modulo arithmetic and 1 XOR operation.

'
ii MM

3.3 The Fast CRGK (FCRGK) Protocol
For our base CRGK protocol to set up or update a group key it is
very efficient from the perspective of number of communication
message, user computation effort, and user storage requirement,
since it needs 1 plaintext broadcast message, 1 modulo arithmetic
and 1 XOR operation, and 2 key storage spaces for each user.
However for the key server side, except for the key refresh
scenario, it still requires O(n) of XOR, multiplication, addition,
multiplicative inverse computations. In this section, we present

the Fast CRGK (FCRGK) protocol which performs much faster
than our base CRGK protocol. Even more, with the FCRGK
protocol the key server can do most of the computation long
before members join or leave the group, so that when the joining
or leaving occurs the key updating message can be sent out by the
key server immediately with very little computation and latency.
To gain this performance improvement on most of the member
join or leave events the key server needs to perform an additional
group expansion operation when the number of group member
change total reaches certain multiple of the starting group size.
The group expansion operation is expensive in the sense that it is
about the same scale of a group initialization, but it is designed to
be carried out very infrequently. Also, the key server needs more
storage space to execute the FCRGK protocol when compared to
the base CRGK protocol.

Similar to our base CRGK protocol, the FCRGK protocol also
assumes each group user will be authenticated through some
method and the key server will assign each of them a private key
from a pool of pairwise relatively prime positive integers. The
following is the detailed description of the FCRGK protocol with
a variable n number of group users.

3.3.1 Group Initialization
Group initialization for FCRGK is largely similar to the CRGK
case. The difference will be the size of the congruence system. In
the CRGK protocol the size of the congruence system is the same
as the initial group size n, while in the FCRGK protocol we will
construct a congruence system larger than the initial group size n.
Assume m is the size of the initial congruence system we built.
We will pick that for some constant d value, which is
dependent on how fast group members change (joining and
leaving). For instance for a slowly changing group we can choose

, and for a fast changing one we can choose

ndm =

2=d 5=d . The
actual value of d can be adjusted by the key server based on the
group dynamics.

)u (mod k X

)u (mod k X

nn

11

≡

≡
M

 value,pickedrandomly some is K, k
 key, group initial theisK

n}, , {1,2, i allfor ,u K of bits
 ingcorrespond theof value theis k
 dynamics, group by the determined
 is which d, valuesomefor nd, m

group, initial theof size theisn
 where,)u (mod k X

)u (mod k X

j

1

i

mm

1n1n

L

M

++

≠

∈⊕

=

≡

≡

 users. joining future of
keys private for the reserve theas serve and

integers positive prime relatively pairwise
of pool thefrom picked are u , ,u

 ly,respective group initial theinuser
 group eachfor server key by the picked

 keys private theare u , ,u
 1},-m , 2,n 1,{n j allfor

m1n

n1

L

L

L

+

++∈

For the FCRGK protocol we require that during the group
initialization and the group expansion operations in the future, the
intermediate calculation results for all i in [1, …, m] and

 for all i in [n+1, …, m] need to be saved by the key
server to reduce the future computation cost. Also, if the key
server has additional computation power and storage space, it can
pick a new future group key, pre-compute the new X value, and
save the intermediate results including the X value for preparing a
quicker response to a future group member change.

'
ii MM

'
iii MMk

3.3.2 Member Join
When new member joins the group, in our FCRGK protocol the
key server just picks un+1 from the current congruence system and
gives it to the new group user as its private key. If the key server
has a pre-computed X value based on the pre-picked new group
key, then the X′ value, which is the real new group key updating
message, can be easily calculated in one step as follows:

.u K of bits ingcorrespond theof value theis
 value,pickedrandomly old theis

 ,Kkey group new
on based valuecomputed-pre theis X

message, updatingkey new thebe willX

),(mod

1n1

1

'

'
111

'
111

'

++

+

++++++

⊕′′

′

′+−=

n

n

nnnnnn

k
k
a

where
MMMkMMkXX

If there is no such pre-computed X value saved by the key server,
then the key server will simply pick a new group key and use the
intermediate results saved from the last group initialization or
group expansion operation. Those intermediate calculation results
can be used here but not in the CRGK protocol because for the
FCRGK protocol the foundation of the congruence system, i.e. u1,
…, um, is not changed after a new member join.

3.3.3 Member Leave
After a user i left the group, to update the group key the key
server will move ui from the range 1 ~ n to the range n+1 ~ m and
a new random value ki (as long as ki is not equal to the new group
key value) is picked to be associated with ui for new X value
computation, by which the foundation of the congruence system
is kept stable so that the intermediate calculation results saved
before can be used again. Obviously the ui value will be marked
as used and cannot be assigned as a private key for any future
new joining user.

3.3.4 Group Expansion
After group initialization since the foundation of the congruence
system is kept the same the original secret reserve un+1, …, um
will gradually be used up after many group member changes.
Group expansion operation will expand the size of the current
congruence system associated with the group by a factor d, i.e.
make .Group expansion is a new operation specific to the
FCRGK protocol and group expansion should be carried out very
infrequently. If the key server has to carry out group expansion
operation frequently, then it is an indication that the value of d
should be increased.

mdm =

Let , where tl is the total number of leaves since the
last group expansion (or group initialization if no group expansion
has been executed yet), then group expansion operation is carried
out each time the value r reaches some predefined threshold. The
value of the threshold should be determined by group dynamics
and the key server computing power. In other words, based on the
current group dynamics the time duration needed for the key
server to do a group expansion computation is the key factor of
determining the threshold value. The longer the time needed, the
bigger the threshold value should be.

tlnmr −−=

The duty of group expansion includes kicking out all the private
key values used by group members that have left the group,
adding new secret u values to make up the new size m of the
congruence system, picking the new group key, calculating the
new X value, and saving all the intermediate results like in the
group initialization operation. The new X value is then broadcast
to each user to compute the new group key.

3.3.5 Mass Join
Mass join is similar to the single member join case and the only
difference will be a set of u’s chosen from un+1, …, um to be used
as the private keys for each new user respectively.

3.3.6 Mass Leave
The behavior of the mass leave case is similar to the single
member leave case except that a set of u’s are moved from the
range 1 ~ n to the range n+1 ~ m.

3.3.7 Key Refresh
Key refresh could be exactly the same as in the base CRGK
protocol as long as the intermediate results are used to compute
the new group key, since in both cases the foundation of the
congruence system is not changed. If pre-computed X value exists
then when the time for key refreshing comes, the X value can
simply be broadcast.

4. SECURITY ANALYSIS
The security of our protocols is based on the assumption that each
current group user will keep its private key (u1, …, un
respectively) secret, and the key server will keep a set of secret
information (called Server Secret Set), the private key reserve for
the FCRGK protocol, a subset of the set un+1, …, um. Moreover,
the set of u values are randomly picked from an unlimited large
pool of pairwise relatively prime positive integers, hence knowing
one number gains little knowledge about the others.

4.1 Forward Secrecy
Forward Secrecy is about preventing leaving users to continue
accessing future group communications. For the base CRGK
protocol each leaving user’s private key is kicked out of the new
congruence system, therefore its private key no longer contributes
to new X value calculation which means it can no longer compute
the new group key like other current group users do. For the
FCRGK protocol, even though each leaving user’s private key is
still kept inside the congruence system for speeding up server
computation, it can only compute the ki value (see section 3.3.3)
which is randomly picked and not related to the new group key in
any way at all.

4.2 Backward Secrecy
Backward Secrecy is about preventing joining users from
accessing previous group communications. In our protocols each
new group key is an arbitrary picked value with no relation to any
old group key. Each new joining user’s ability of computing the
new group key will not gain knowledge about the previous group
key.

4.3 Collusion Attack
Collusion attack on group key protocol is about a set of previous
group users working together to try to gain access to the secret
group key. For the base CRGK protocol, since the foundation of
the congruence system is changed after each group member
change, any number of previous users’ collusion will not gain any
significant more information about the congruence system as long
as the pairwise relatively prime integers are large enough. For the
FCRGK protocol, since the congruence system remains stable
with certain number of member changes, collusion of previous
users may gain some information about the congruence system,
for instance leaving users know that the u values they held as
private keys are still used in the congruence system before the
next group expansion operation, but again without server secret
set they still can not compute the secret group key.

5. PERFORMANCE EVALUATION
Our protocols focus on the optimization of user computation,
number of stored keys, and number of the re-key message with
loading certain amount of computation on the key server. On the
other hand comparing to other hierarchical structure based group
key management protocol, our protocol’s simple nature, only
requiring one two-dimensional table structure, keeps a minimal
structure management load on the key server.

5.1 The Base CRGK Protocol
For each key update request our base CRGK protocol requires the
key server to do O(n) XOR, addition, multiplication, and
Extended Euclidean Algorithm computation and broadcast 1 re-
key message, while each user only need to do 1 modulo
arithmetic, 1 XOR operation, and store 2 keys all the time, one of
which is the private key and the other is the group key.

5.2 The FCRGK Protocol
With the very infrequent group expansion operations the FCRGK
protocol requires the key server to do O(n) XOR operation,
addition and multiplication arithmetic, and still keeps re-key
message number, user computation and key storage space
minimal.

One very attractive quality of the FCRGK protocol is that by
maintaining a stable congruence system most of the re-key
computation can be done beforehand. That is, the key server can
use its free time to get future group keys almost ready. When a
key update is needed, no matter it is because of user join, user
leave or simple key refreshing, the key server only needs to do
O(1) operation to respond to that request. To the best of our
knowledge, we see no other protocols allow such key pre-
computation.

6. CONCLUSIONS
In this paper, we present two centralized simple and efficient CRT
based group key management protocols for small to medium size
dynamically changing groups. The simple nature of our protocols
together with minimal re-key messages, minimal requirements on
user computation and key storage space make them suitable for a
variety of secure group communication. Even though we evaluate
our protocol performance using some O-notations, the unit
operation of our protocols (mainly XOR, addition, multiplication,
and modulo arithmetic) is different from most of other protocols
(mainly encryption, decryption, and hashing) which can cause
real performance results to be deviated. Our future work will
involve providing optimized implementation of our protocols to
evaluate their real time performance and the comparison with
other protocols.

7. REFERENCES
[1] Y. Amir, Y. Kim, C. Nita-Rotaru, and G. Tsudik, "On the

Performance of Group Key Agreement Protocols", ACM
Transactions on Information and System Security, vol. 7, no.
3, Aug. 2004.

[2] A. Ballardie, "Scalable Multicast Key Distribution", RFC
1949, May 1996.

[3] C. Blundo and A. Cresti, "Space Requirements for Broadcast
Encryption", Proceedings of Advances in Cryptology -
Eurocrypt '94, May 1994.

[4] C. Blundo, A. D. Santis, A. Herzberg, S. Kutten, U. Vaccaro,
and M. Yung, "Perfectly-Secure Key Distribution for
Dynamic Conferences", Proceedings of Advances in
Cryptology - Crypto '92, Aug. 1992.

[5] M. Burmester and Y. Desmedt, "A Secure and Efficient
Conference Key Distribution System", Proceedings of
Advances in Cryptology — EUROCRYPT'94, May 1994.

[6] R. Canetti, J. Garay, G. Itkis, D. Micciancio, M. Naor, and
B. Pinkas, "Multicast Security: A Taxonomy and Some
Efficient Constructions", Proceedings of the 18th Annual
Joint Conference of the IEEE Computer and
Communications Societies - INFOCOM 1999, Mar. 1999.

[7] R. Canetti, T. Malkin, and K. Nissim, "Efficient
Communication-Storage Tradeoffs for Multicast
Encryption", Proceedings of Advances in Cryptology -
Eurocrypt '99, May 1999.

[8] I. Chang, R. Engel, D. Kandlur, D. Pendarakis, and D. Saha,
"Key Management for Secure Internet Multicast using
Boolean Function Minimization Techniques", Proceedings of
IEEE Infocom'99, Mar. 1999.

[9] G.-H. Chiou and W.-T. Chen, "Secure broadcasting using the
secure lock", IEEE Transactions on Software Engineering,
vol. 15, no. 8, pp. 929-934, Aug. 1989.

[10] M. Eltoweissy, M. H. Heydari, L. Morales, and I. H.
Sudborough, "Combinatorial Optimization of Group Key
Management", Journal of Network and Systems
Management, vol. 12, no. 1, Mar. 2004.

[11] A. Fiat and M. Naor, "Broadcast Encryption", Proceedings of
Advances in Cryptology - Crypto '93, Aug. 1993.

[12] H. Harney and C. Muckenhirn, "Group Key Management
Protocol (GKMP) Specification", RFC 2093, Jul. 1997.

[13] H. Harney and C. Muckenhirn, "Group Key Management
Protocol (GKMP) Architecture", RFC 2094, Jul. 1997.

[14] Y. Kim, A. Perrig, and G. Tsudik, "Tree-Based Group Key
Agreement", ACM Transactions on Information and System
Security, vol. 7, no. 1, pp. 60-96, Feb. 2004.

[15] S. Mittra, "Iolus: A Framework for Scalable Secure
Multicasting", Proceedings of the ACM SIGCOMM '97,
Sept. 1997.

[16] A. Perrig, D. Song, and J. D. Tygar, "ELK, a New Protocol
for Efficient Large-Group Key Distribution", Proceedings of
IEEE Symposium on Security and Privacy (S&P), May
2001.

[17] S. Rafaeri and D. Hutchison, "A Survey of Key Management
for Secure Group Communication", ACM Computing
Surveys, vol. 35, no. 3, pp. 309-329, Sept. 2003.

[18] O. Rodeh, K. P. Birman, and D. Dolev, "Using AVL Trees
for Fault Tolerant Group Key Management", International
Journal of Information Security, vol. 1, no. 2, Feb. 2002.

[19] A. T. Sherman and D. A. McGrew, "Key Establishment in
Large Dynamic Groups Using One-Way Function Trees",
IEEE Transactions on Software Engineering, vol. 29, no. 5,
May 2003.

[20] R. E. Smith, “Authentication, From Passwords to Public
Keys”, Addison-Wesley, 2001.

[21] M. Steiner, G. Tsudik, and M. Waidner, "Key Agreement in
Dynamic Peer Groups", IEEE Transactions on Parallel and
Distributed Systems, vol. 11, no. 8, Aug. 2000.

[22] D. Wallner, E. Harder, and R. Agee, "Key Management for
Multicast: Issues and Architectures", RFC 2627, Jun. 1999.

[23] C. K. Wong, M. Gouda, and S. S. Lam, "Secure group
communications using key graphs", IEEE/ACM Transactions
on Networking, vol. 8, no. 1, pp. 16-30, Feb. 2000.

	1. INTRODUCTION
	2. RELATED WORK
	3. CHINESE REMAINDERING GROUP KEY PROTOCOL
	3.1 Chinese Remainder Theorem
	3.2 The Base CRGK Protocol
	3.2.1 Group Initialization
	3.2.2 Member Join
	3.2.3 Member Leave
	3.2.4 Mass Join
	3.2.5 Mass Leave
	3.2.6 Key Refresh

	3.3 The Fast CRGK (FCRGK) Protocol
	3.3.1 Group Initialization
	3.3.2 Member Join
	3.3.3 Member Leave
	3.3.4 Group Expansion
	3.3.5 Mass Join
	3.3.6 Mass Leave
	3.3.7 Key Refresh

	4. SECURITY ANALYSIS
	4.1 Forward Secrecy
	4.2 Backward Secrecy
	4.3 Collusion Attack

	5. PERFORMANCE EVALUATION
	5.1 The Base CRGK Protocol
	5.2 The FCRGK Protocol

	6. CONCLUSIONS
	7. REFERENCES

