
IEEE TRANSACTIONS ON DEPENDEBLE AND SECURE COMPUTING, MANUSCRIPT ID 1

Evaluation of Web Security Mechanisms
using Vulnerability & Attack Injection

José Fonseca, Marco Vieira, Henrique Madeira

Abstract— In this paper we propose a methodology and a prototype tool to evaluate web application security mechanisms. The
methodology is based on the idea that injecting realistic vulnerabilities in a web application and attacking them automatically can
be used to support the assessment of existing security mechanisms and tools in custom setup scenarios. To provide true to life
results, the proposed vulnerability and attack injection methodology relies on the study of a large number of vulnerabilities in
real web applications. In addition to the generic methodology, the paper describes the implementation of the Vulnerability &
Attack Injector Tool (VAIT) that allows the automation of the entire process. We used this tool to run a set of experiments that
demonstrate the feasibility and the effectiveness of the proposed methodology. The experiments include the evaluation of
coverage and false positives of an Intrusion Detection System for SQL Injection attacks and the assessment of the effectiveness
of two top commercial web application vulnerability scanners. Results show that the injection of vulnerabilities and attacks is
indeed an effective way to evaluate security mechanisms and to point out not only their weaknesses but also ways for their
improvement.

Index Terms— Security, Fault Injection, Internet Applications, Review and Evaluation.

—————————— � ——————————

1 INTRODUCTION

OWADAYS there is an increasing dependency on
web applications, ranging from individuals to large
organizations. Almost everything is stored, availa-

ble or traded on the web. Web applications can be per-
sonal web sites, blogs, news, social networks, web mails,
bank agencies, forums, e-commerce applications, etc. The
omnipresence of web applications in our way of life and
in our economy is so important that it makes them a natu-
ral target for malicious minds that want to exploit this
new streak.

The security motivation of web application developers
and administrators should reflect the magnitude and rel-
evance of the assets they are supposed to protect. Alt-
hough there is an increasing concern about security (often
being subject to regulations from governments [1] and
corporations [2]), there are significant factors that make
securing web applications a difficult task to achieve:

1. The web application market is growing fast, result-
ing in a huge proliferation of web applications,
based on different languages, frameworks, and
protocols, largely fueled by the (apparent) simplic-
ity one can develop and maintain such applica-
tions.

2. Web applications are highly exposed to attacks
from anywhere in the world, which can be con-

ducted by using widely available and simple tools
like a web browser.

3. It is common to find web application developers,
administrators and power users without the re-
quired knowledge or experience in the area of se-
curity.

4. Web applications provide the means to access val-
uable enterprise assets. Many times they are the
main interface to the information stored in back-
end databases, other times they are the path to the
inside of the enterprise network and computers.

Not surprisingly, the overall situation of web applica-
tion security is quite favorable to attacks [3, 4, 5]. In fact,
estimations point to a very large number of web applica-
tions with security vulnerabilities [6, 7] and, consequent-
ly, there are numerous reports of successful security
breaches and exploitations [8, 9]. Organized crime is nat-
urally flourishing in this promising market, if we consider
the millions of dollars earned by such organizations in the
underground economy of the web [10, 11].

To fight this scenario we need means to evaluate the
security of web applications and of attack counter meas-
ure tools. To handle web application security, new tools
need to be developed, and procedures and regulations
must be improved, redesigned or invented. Moreover,
everyone involved in the development process should be
trained properly. All web applications should be thor-
oughly evaluated, verified and validated before going
into production.

However, these best practices are unfeasible to apply
to the hundreds of millions of existing legacy web appli-
cations, so they should be constantly audited and protect-
ed by security tools during their lifetime. This is particu-
larly relevant due to the extreme dynamicity of the securi-
ty scenario, with new vulnerabilities and ways of exploi-

xxxx-xxxx/0x/$xx.00 © 200x IEEE

————————————————

• J. Fonseca is with the UDI of the Institute Polytechnic of Guarda and the
CISUC. E-mail: josefonseca@ipg.pt.

• M. Vieira is with the University of Coimbra and he is a researcher at the
Centre of Informatics and Systems of the University of Coimbra. Email:
mvieira@dei.uc.pt.

• H. Madeira is with the University of Coimbra and he is a researcher at the
Centre of Informatics and Systems of the University of Coimbra. Email:
henrique@dei.uc.pt.

Manuscript received (insert date of submission if desired). Please note that all
acknowledgments should be placed at the end of the paper, before the bibliography.

N

Digital Object Indentifier 10.1109/TDSC.2013.45 1545-5971/13/$31.00 © 2013 IEEE

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

2 IEEE TRANSACTIONS ON DEPENDEBLE AND SECURE COMPUTING, MANUSCRIPT ID

tation being discovered every day. Clearly, security tech-
nology is not good enough to stop web application at-
tacks and practitioners should be concerned with the
evaluation and the assurance of their success [12]. In prac-
tice, there is a need for new ways to effectively test exist-
ing web application security mechanisms in order to
evaluate and improve them.

This paper proposes a methodology and a tool to inject
vulnerabilities and attacks in web applications. The pro-
posed methodology is based on the idea that we can as-
sess different attributes of existing web application securi-
ty mechanisms by injecting realistic vulnerabilities in a
web application and attacking them automatically. This
follows a procedure inspired on the fault injection tech-
nique that has been used for decades in the dependability
area [13]. In our case, the set of “vulnerability” + “attack”
represents the space of the “faults” injected in a web ap-
plication, and the “intrusion” is the result of the success-
ful “attack” of a “vulnerability” causing the application to
enter in an “error” state [14]. In practice, a security “vul-
nerability” is a weakness (an internal “fault”) that may be
exploited to cause harm, but its presence does not cause
harm by itself [15].

Conceptually, the attack injection consists of the intro-
duction of realistic vulnerabilities that are afterwards au-
tomatically exploited (attacked). Vulnerabilities are con-
sidered realistic because they are derived from the exten-
sive field study on real web application vulnerabilities
presented in [16], and are injected according to a set of
representative restrictions and rules defined in [17].

The attack injection methodology is based on the dy-
namic analysis of information obtained from the runtime
monitoring of the web application behavior and of the
interaction with external resources, such as the back-end
database. This information, complemented with the static
analysis of the source code of the application, allows the
effective injection of vulnerabilities that are similar to
those found in the real world. In practice, the use of both
static and dynamic analysis is a key feature of the meth-
odology that allows increasing the overall performance
and effectiveness, as it provides the means to inject more
vulnerabilities that can be successfully attacked and dis-
carded those that cannot.

Although this methodology can be applied to various
types of vulnerabilities, we focus on two of the most
widely exploited and serious web application vulnerabili-
ties that are SQL Injection (SQLi) and Cross Site Scripting
(XSS) [3, 6]. Attacks to these vulnerabilities basically take
advantage of improper coded applications due to un-
checked input fields at user interface. This allows the at-
tacker to change the SQL commands that are sent to the
database (SQLi) or through the input of HTML and
scripting languages (XSS).

The proposed methodology provides a practical envi-
ronment that can be used to test countermeasure mecha-
nisms (such as Intrusion Detection Systems, Web Appli-
cation Vulnerability Scanners, Web Application Firewalls,
Static Code Analyzers, etc.), train and evaluate security
teams, help estimate security measures (like the number
of vulnerabilities present in the code), among others. This

assessment of security tools can be done online by execut-
ing the attack injector while the security tool is also run-
ning; or offline by injecting a representative set of vulner-
abilities that can be used as a test bed for evaluating a
security tool.

The methodology proposed was implemented in a
concrete Vulnerability & Attack Injector Tool (VAIT) for
web applications. The tool was tested on top of widely
used applications in two scenarios. The first to evaluate
the effectiveness of the VAIT in generating a large num-
ber of realistic vulnerabilities for the offline assessment of
security tools, in particular web application vulnerability
scanners. The second to show how it can exploit injected
vulnerabilities to launch attacks, allowing the online
evaluation of the effectiveness of the counter measure
mechanisms installed in the target system, in particular
an Intrusion Detection System (IDS). These experiments
illustrate how the proposed methodology can be used in
practice, not only to uncover existing weaknesses of the
tools analyzed, but also to help improve them.

The structure of the paper is as follows. The next sec-
tion presents related research. Section 3 describes the
proposed attack injection methodology, detailing its four
stages. Section 4 presents the architecture of the VAIT
prototype. Section 5 discusses several scenarios where the
proposed methodology can be used and Section 6 de-
scribes the experiments and discusses the results. Finally,
Section 7 concludes the paper.

2 RELATED WORK
Fault injection techniques have been largely used to eval-
uate fault tolerant systems [18, 19]. The artificial injection
of faults in a system (or in a component of the system)
speeds up the occurrence of errors and failures, allowing
researchers and engineers to evaluate the impact of faults
on the system and/or the effects of potential error propa-
gation to other systems. Fault injection also helps in esti-
mating fault tolerant system measures, such as the fault
coverage and error latency [18].

Fault injection techniques have traditionally been used
to inject physical (i.e., hardware) faults [18, 19]. In fact,
initial fault injection techniques used hardware-based
approaches such as pin-level injection or heavy-ion radia-
tion. The increasing complexity of systems has lead to the
replacement of hardware-based techniques by software
implemented fault injection (SWIFI), in which hardware
faults are emulated by software. Xception [20] and
NFTAPE [21] are examples of SWIFI tools.

The injection of realistic software faults (i.e., software
bugs) has been absent from fault injection effort for a long
time. First proposals were based on ad-hoc code muta-
tions [22, 23], but more recent works focus on the injection
of representative software faults based on comprehensive
field studies on the most common types of software bugs
[24].

The use of fault injection techniques to assess security
is actually a particular case of software fault injection,
focused on software faults that represent security vulner-
abilities or may cause the system to fail in avoiding a se-

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

AUTHOR ET AL.: TITLE 3

curity attack. Neves et al. proposed an Attack Injector
Tool (AJECT) to support the discovery of vulnerabilities
in network servers, specifically IMAP servers [25]. To
attack the target system they used predefined test classes
of attacks and some sort of fuzzing. Our approach auto-
matically discovers places in the web application code
that can be used to inject vulnerabilities using fault injec-
tion techniques and smart fuzzing to seamlessly attack
them.

The industry uses fuzzing and mutation testing to au-
tomate penetration testing of web applications. They rely
on web application vulnerability scanner tools that also
generate reports compliant with security regulations
(Sarbanes-Oxley, PCI-DSS, etc.). Some of the best known
of such tools are HP WebInspect, IBM Watchfire
AppScan, Acunetix web application security scanner and
WebSphinx. In spite of their continuous development,
these tools still have many problems related to the high
number of undetected vulnerabilities and high percentage
of false positives, as shown by several studies [26, 27]. To
address these problems, it was proposed a method to
benchmark these scanners [26]. The method starts by
identifying all the points where each type of bug can be
injected, then injecting the bug. Many of these bugs in-
jected are vulnerabilities that can be used to test and
compare the performance of the scanners.

The use of model checkers for security analysis was al-
so proposed [28]. In this case, the vulnerability is injected
by mutating the formal model of the web application. The
model is also used to generate test cases that are used to
attack the web application in a semi-automatic way.

The list of possible types of vulnerabilities affecting
web applications is enormous, but XSS and SQLi are at
the top of that list, accounting for 32% of the vulnerabili-
ties observed [3, 6]. This is why we focus on those two
important vulnerabilities, SQLi and XSS.

An SQLi attack consists of tweaking the input fields of
the web page (which can be visible or hidden) in order to
alter the query sent to the back-end database. This allows
the attacker to retrieve sensible data or even alter data-
base records. An SQLi attack can be dormant for a while
and only be triggered by a specific event, such as the pe-
riodic execution of some procedures in the database (e.g.,
the scheduled database record cleaning function).

A XSS attack consists of injecting HTML and/or other
scripting code (usually Javascript) in a vulnerable web
page. It exploits the common utilization of the user input
(without sanitizing it first) as a building part of a web
page. When this occurs, by tweaking the input, the at-
tacker is able to change some of its functions, allowing
him to take advantage of users visiting that web page.
This attack exploits the confidence a user (victim) has on
the web site, allowing the attacker to impersonate these
users and even execute other types of attacks such as
Cross Site Request Forgery (CSRF) [29]. The injection of
XSS can also be persistent if the malicious string is stored
in the back-end database of the web application, therefore
potentiating its malicious effects in a much broader way.

A contribution to better understand the most common
vulnerabilities in web applications was presented in a

field study that classified 655 XSS and SQLi security
patches of six widely used LAMP (Linux, Apache,
MySQL and PHP) web applications [16]. LAMP is consid-
ered to be the most common stack of technologies used to
build web applications and these types of applications are
also prone to many vulnerabilities, namely XSS and SQLi.
Both XSS and SQLi vulnerabilities result from poorly
coded applications that do not properly check their in-
puts. One major conclusion of that study is that the most
common type of vulnerabilities in web application code is
by far, the “Missing Function Call – extended” (MFCE),
with about ¾ of all vulnerabilities found. Due to its rele-
vance it was expanded into three sub-types, explained in
Table 1 (see [16] for more details, other types and sub-
types). This MFCE fault type represents vulnerabilities
caused by an input variable that should have been
properly sanitized by a specific function, which the pro-
grammer “forgot” to include in the code. Table 1 shows
that sub-type A, originated by unchecked numeric fields,
is the most relevant. This result is also corroborated by
another work, this time referring only to SQLi vulnerabil-
ities found in BugTraq SecurityFocus and presented by
the Open Web Application Security Project (OWASP)
[30]. This study concludes that about half of SQLi vulner-
abilities come from the exploitation of numeric fields.

The methodology proposed in the present paper relies
on the results of the field study presented in [16] to define
the types of vulnerabilities to be injected (fault models),
which match the most common types of vulnerabilities
found in web applications in the field. These vulnerabili-
ties are injected according to a set of representative re-
strictions and rules previously proposed in [17] and then
attacked.

3 VULNERABILITY & ATTACK INJECTION
METHODOLOGY

In this section we present the methodology for testing
security mechanisms in the context of web applications.
The methodology is based on the injection of realistic
vulnerabilities and the subsequent controlled exploit of
those vulnerabilities in order to attack the system. This
provides a practical environment that can be used to test
counter measure mechanisms (such as IDS, Web Applica-
tion Vulnerability Scanners, Firewalls, etc.), train and
evaluate security teams, estimate security measures (like
the number of vulnerabilities present in the code, in a
similar way to defect seeding [31]), among others.

To provide a realistic environment we must consider

TABLE 1
MISSING FUNCTION CALL - EXTENDED (MFCE) SUB-TYPES
Sub-type SQL (%)* Description

A 64.25 Missing casting to numeric of one
variable

B 4.15 Missing assignment of one variable to
a custom made function

C 4.15
Missing assignment of one variable to
a PHP predefined function

* The values are refer to all the SQLi vulnerabilities analyzed in the field study detailed
in [16]

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

4 IEEE TRANSACTIONS ON DEPENDEBLE AND SECURE COMPUTING, MANUSCRIPT ID

true to life vulnerabilities. As mentioned before, we rely
on the results from a field study presented in [16] that
classified 655 XSS and SQLi security patches of six widely
used LAMP web applications. This data allows us to de-
fine where a real vulnerability is usually located in the
source code and what is the piece of code that is respon-
sible for the presence of such vulnerability.

3.1 Overview of the Methodology
 Our Vulnerability & Attack Injection methodology for

SQLi and XSS can be applied to a variety of setups and
technologies, but the following description uses as refer-
ence a typical web application, with a web front-end and
an access to a back-end database to store the dynamic
content and business data (Figure 1).

The vulnerabilities are injected in the web application
following a realistic pattern derived from [16]. The infor-
mation about what was injected is fed to the injection
mechanism in order to improve the attack success rate.

As shown in Figure 1, the attack injection uses two ex-
ternal probes: one for the HTTP communication and other
for the database communication. These probes monitor
the HTTP and SQL data exchanged, and send a copy to be
analyzed by the attack injection mechanism. This is a key
aspect of the methodology to obtain the user interaction
and the results produced by such interaction for analysis,
so they can be used to prepare the attack. Therefore, the
attack injection mechanism is aware of important inner
workings of the application while it is running. For ex-
ample, this provides insights on what piece of infor-
mation supplied to a HTML FORM is really used to build
the correlated SQL query and in which part of the query it
is going to be inserted.

The entire process is performed automatically, without
human intervention. For example, let’s consider the eval-
uation of an IDS: during the attack stage, when the IDS
inspects the SQL query sent to the database, the VAIT
also monitors the output of the IDS to identify if the at-
tack has been detected by the IDS or not. We just have to
collect the final results of the attack injection, which also
contains, in this case, the IDS detection output.

The automated attack of a web application is a multi-
stage procedure that includes: Preparation Stage, Vul-
nerability Injection Stage, Attackload Generation Stage,
and Attack Stage. These stages are described in the next
subsections.

3.2 Preparation Stage
In the Preparation Stage, the web application is inter-

acted (crawled) executing all the functionalities that need
to be tested (Figure 2). Meanwhile, both HTTP and SQL
communications are captured by the two probes and pro-
cessed for later use. The interaction with the web applica-
tion is always done from the client’s point of view (the
web browser).

The outcome of this stage is the correlation of the input
values, the HTTP variables that carry them and their re-
spective source code files, and its use in the structure of
the database queries sent to the back-end database (for
SQLi) or displayed back to the web browser (for XSS).
Later on, in the Attack Stage, the malicious activity ap-
plied is based on tweaking the values of the variables,
which correspond to the text fields, combo boxes, etc.,
discovered in this Preparation Stage.

3.3 Vulnerability Injection Stage
It is in this Vulnerability Injection Stage that vulnera-

bilities are injected into the web application. For this pur-
pose, it needs information about which input variables
carry relevant information that can be used to execute
attacks to the web application. This stage starts by analyz-
ing the source code of the web application files searching
for locations where vulnerabilities can be injected (Figure
2). The injection of vulnerabilities is done by removing
the protection of the target variables, like the call to a san-
itizing function. This process follows the realistic patterns
resulting from the field study presented in [16]. Once it
finds a possible location, it performs a specific code muta-
tion in order to inject one vulnerability in that particular
location. The change in the code follows the rules derived
from [16], which are described and implemented as a set
of Vulnerability Operators presented in [17].

The Vulnerability Operators are built upon a pair of at-
tributes: the Location Pattern and the Vulnerability Code
Change. The Location Pattern defines the conditions that
a specific vulnerability type must comply with and the
Vulnerability Code Change specifies the actions that must
be performed to inject this vulnerability, depending on

Vulnerability &
Attack Injector Tool

Client Server

Web server
HTTP interaction

DB

Web
Application

HTTP
probe

SQL probe

Web
browser

HTTP interaction

Figure 1: VAIT in a typical setup

Web
App

DB

Intrusion (error)

A
tta

ck

SQL
probe

Attack
Injector

DB compromised
(failure)

HTTP
probe

Vuln.
Vulnerability

Injector

Figure 2: Internal components of the VAIT

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

AUTHOR ET AL.: TITLE 5

the environment where the vulnerability is going to be
injected.

In order to clarify the concept of the Vulnerability Op-
erators, let us analyze the following example. One of the
Location Pattern restrictions for the Missing Function Call
Extended subtype A (MFCE - A), is the search for the
“intval”1 PHP function when the argument is related to
an input value (a value coming from the outside) and the
result is going to be used in a SQL query string. Consider,
for example, this sample piece of code:
“$id=intval($_GET['id']);”. If the variable “$id”
is going to be used in a query, then the Vulnerability
Code Change consists of removing the “intval” func-
tion from the source code in order to inject a vulnerabil-
ity. As can be seen, by removing the function the result-
ing code becomes “$id=$_GET['id'];”, which can be
vulnerable to a SQLi attack. For example, by assigning the
value “15 or 1=1” to the “$id” variable, the SQL query
is executed without considering other constraints in the
“where” condition. Recall that “[anything] or 1=1”
is always true, therefore affecting every row of the query,
which was not the intended behavior as coded by the de-
veloper of the application.

The vulnerability and attack injection uses both dy-
namic analysis and static analysis to gather the data
needed to apply the Vulnerability Operators. This analy-
sis obtains not only the Input Variables (IV) that will be
part of an Output Variable (OV), but also the chain of var-
iables in between. If the web application is secured, one of
the variables in the chain is sanitized or filtered (Figure 3).
We call this variable our Target Variable (TV), because it
is the one that the Vulnerability Injection Stage will try to
make vulnerable by removing or changing
the protection scheme, according to the
Vulnerability Operators. To inject a vulner-
ability using the Vulnerability Operators we
need the information about the Target Vari-
able (TV) and the Code Location (CL) where
it is sanitized or filtered {TV, CL}.

In the Preparation Stage (based on the
dynamic interaction executed by the crawl-
er) we obtain the pairs {IV(dynamic analysis),
OV(dynamic analysis)}, which are the set of
input variables (IV(dynamic analysis)) whose
values come from the HTTP interaction or
the SQL communication and their mapping
with output variables (OV(dynamic analysis)).
On the other side, the Vulnerability Injector
Tool performs a static analysis on the source
code and finds the input variables (IV(static
analysis)) that are expected to be seen in the

1 The “intval” PHP function returns the integer value of the argument.

It returns -1 when the argument cannot be converted to an integer.

output (OV(static analysis)) as part of the HTML response,
SQL queries, etc. It also provides the target variable
(TV(static analysis)) and the code location (CL(static analy-
sis)) of the place in the file where the target variable is
sanitized or filtered. Overall, the static analysis provides
the following set of attributes: {IV(static analysis),
OV(static analysis), TV(static analysis), CL(static analy-

sis)}.
This process of using dynamic and static results pro-

vides the best of both worlds to obtain the variables and
the location where they are sanitized or filtered and the
set of constraints given by the code location required by
the Vulnerability Operators.

The correlation of variables resulting from both static
and dynamic analysis originates a more precise set of lo-
cations where the Vulnerability Operators may be used.
The outcome of this correlation is an improved collection
of vulnerabilities that has a higher rate of exploitability by
the attack injection mechanism. The data must be provid-
ed by the set of attributes that come from the static analy-
sis {IV(static analysis), OV(static analysis), TV(static
analysis), CL(static analysis)}, but improved by the pair of
attributes that come from the Preparation Stage
{IV(dynamic analysis), OV(dynamic analysis)} (Figure 4). It
considers the data from the set of attributes {IV(static
analysis), OV(static analysis), TV(static analysis),
CL(static analysis)} but only whose pairs {IV(static analy-
sis), OV(static analysis)} are equivalent to any of the
{IV(dynamic analysis), OV(dynamic analysis)}. The procedure
to process the data from dynamic and static analysis to
obtain the match outcome consisting of the pair of target
variable and code location {TV, CL} needed to apply

Target
Variable

Input
Variable

Output
Variable

IV ... TV=fn(IV) � OV=fm(TV)

fn is the set of actions taken to protect the Input Variable (IV)
Figure 3: Chain of variables from input to output of the

web application.

Figure 5: Example of the use of data from dynamic and
static analysis to obtain the match of target variable and

code location for the Vulnerability Operators.

Figure 4: Using data from dynamic and static analysis to apply the
Vulnerability Operators and inject a vulnerability.

IV OV
IV

OV
TV
CL

– Input Variable
– Output Variable
– Target Variable
– Code Location

Dynamic
Analysis

IV1 OV1
IV3 OV3
IV4 OV4

IV OV

Static
Analysis

IV1 OV1
IV2 OV2
IV3 OV3

TV CL
TV1 CL1
TV2 CL2
TV3 CL3

TV CL

Match
Outcome

TV1 CL1
TV3 CL3

IV4 OV4 TV4 CL4
TV4 CL4

Vulnerability
Operators

(IV,OV)
Match

{IV(static analysis), OV(static analysis), TV(static analysis), CL(static analysis)}{IV(dynamic analysis), OV(dynamic analysis)}

{TV, CL}

Vulnerability
Injected

Dynamic
Analysis

Static
Analysis

IV
OV
TV
CL

– Input Variable
– Output Variable
– Target Variable
– Code Location

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

6 IEEE TRANSACTIONS ON DEPENDEBLE AND SECURE COMPUTING, MANUSCRIPT ID

the Vulnerability Operators is exemplified in Figure 5.
As a result of this vulnerability injection process, we

obtain a copy of the original web application file with a
single vulnerability injected. This procedure can be auto-
matically repeated until all the locations where realistic
vulnerabilities can be injected are identified and all the
corresponding vulnerabilities are injected, resulting in a
set of files, each one with one possible vulnerability add-
ed (Figure 6).

3.4 AttackLoad Generation Stage
After having the set of copies of the web application

source code files with vulnerabilities injected we need to
generate the collection of malicious interactions (attack-
loads) that will be used to attack each vulnerability. This
is done in the Attackload Generation Stage. The attack-
load is the malicious activity data needed to attack a giv-
en vulnerability. This data is built around the interaction
patterns derived from the Preparation Stage, by tweaking
the input values of the vulnerable variables.

The value that is assigned to the vulnerable variable, in
order to attack it, results from a fuzzing process. In this
process, the malicious value is obtained through the ma-
nipulation of the data provided by the good values of the
vulnerable variable, the prefix (>,),’,”,…) and the suffix
(<,--,#,’,”,…), the use of attackload strings and pre-
defined functions (Figure 7).

The fuzzing process consists of combining the availa-
ble collection of prefixes, attackload strings and suffixes.
For example, let us suppose that the variable may convey
the value John and that its protection scheme has been
removed by the Vulnerability Injection stage. In this case,
one of the attackloads for SQLi assigns to the variable
something like: “John'+and+'A'='A”. In this attack
string, the John is the known good value of the vulnera-
ble variable, the ' is the prefix, the +and+'A'='A is the
attackload string and there is no suffix (for this specific
example). The + signs (they could as well be %20) are the
URL encoded values of the space character, so the string
can be used to build the malicious HTTP packet that will
be sent to the web application by the attack injection
mechanism.

This stage also generates the payload footprints that
have a one to one relationship with the attack payloads.
The payload footprints are the expected result of the at-
tack. They can be the malicious SQL queries text sent to
the database, for the case of an SQLi attack; or the HTML
of the web application response, for the case of a XSS at-

tack. These payload footprints are fundamental, since
they are used to assess the success of the attack.

3.5 Attack Stage
In the Attack Stage, the web application is, once again,

interacted. However, this time it is a “malicious” interac-
tion since it consists of a collection of attack payloads in
order to exploit the vulnerabilities injected. The attack
intends to alter the SQL query sent to the database server
of the web application (for the case of SQLi attacks) or the
HTML data sent back to the user (for the case of XSS at-
tacks).

The vulnerable source code files (from the Vulnerabil-
ity Injection Stage) are applied to the web application, one
at a time. Once again the two probes for capturing the
HTTP and SQL communications are deployed and the
collection of attackloads is submitted to exploit the vul-
nerabilities injected (Figure 2). The interaction with the
web application is always done from the web client’s
point of view (the web browser) and the attackload is
applied to the input variables (the text fields, combo box-
es, etc., present in the web page interface). At the end of
the attack, we assess if the attack was successful. The de-
tection of the success of the attack is done by searching
for the presence of the payload footprint in the interaction
data (HTTP or SQL communications) captured by the two
probes. The process is repeated until all the injected vul-
nerabilities have been attacked.

4 VULNERABILITY & ATTACK INJECTOR TOOL
To demonstrate the feasibility of the proposed attack

injection methodology we developed a prototype tool: the
Vulnerability & Attack Injector Tool (VAIT). For our re-
search purposes the prototype currently focuses on SQLi,
as it is one of the most important vulnerabilities of web
applications today [3, 6]. Furthermore, SQLi is also re-
sponsible for some of the more severe attacks in web ap-
plications [8, 32, 33] as, nowadays, the most valuable asset
of such applications is their back-end database. For this
reason, we have chosen to implement first the SQLi type
in our tool, although the XSS is quite similar in the key
aspects.

The VAIT prototype targets LAMP (Linux, Apache,
MySQL and PHP) web applications, which is currently
one of the most commonly used solution stack to develop
web applications. Future improvements of the prototype
may include other attacks types (e.g. XSS) and application
technologies (e.g. Java).

The VAIT is an all-in-one application: it injects vulner-
abilities into the web application code and attacks them in
a seamlessly manner. As explained in the methodology
description, the process of attacking the web application
consists of (Figure 8): the Preparation Stage, the Vulner-
ability Injection Stage, the Attackload Generation Stage
and the Attack Stage. All this vulnerability and attack

URL
Encode PrefixKnown good

value
Attackload

String Suffix()+ + +Vulnerable
variable =

Figure 7: Fuzzer generated malicious variable value

Figure 6: The Vulnerability Injection Stage

--- - - ----- ------ -- --- - -- - - - --- ---- -- ---- - --- ------- - --

--- - - ----- ------ -- --- - -- - - - --- ---- -- ---- - --- ------- - --
--- - - ----- ------ -- --- - -- - - - --- ---- -- ---- - --- ------- - --

Vulnerability
Operators

--- - - ----- ------ -- --- - -- - - - --- ---- -- ---- - --- ------- - --

--- - - ----- ------ -- --- - -- - - - --- ---- -- ---- - --- ------- - --

--- - - ----- ------ -- --- - -- - - - --- ---- -- ---- - --- ------- - --

--- - - ----- ------ -- --- - -- - - - --- ---- -- ---- - --- ------- - --

--- - - ----- ------ -- --- - -- - - - --- ---- -- ---- - --- ------- - --

Web Application
source code

files Source code
copies with

vulnerabilities
injected

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

AUTHOR ET AL.: TITLE 7

injection process is done with minimum human interven-
tion. The VAIT is configured with the web application
folder location. Then the Preparation Stage is executed
while the web application is being interacted. At the end,
the Vulnerability injection Stage automatically generates
the vulnerabilities, followed by the Attackload Genera-
tion Stage that generates the attack payloads. At this
point, the Attack Stage can be executed to attack the vul-
nerabilities, collect the results and calculate the attack
success.

During the Preparation Stage, the web application is
executed. This interaction can be made either manually,
by someone executing every web application procedure
that should be tested, or automatically using an external
tool, such as a web application crawler. During this in-
teraction, the VAIT monitors the HTTP communication
between the web browser and the web server and all the
SQL communications going to and from the database
server.

Monitoring is implemented using built-in proxies spe-
cifically developed for the HTTP and for the SQL com-
munications. These proxies send a copy of the entire
packet data traversing them through the configured sock-
et ports to the HTTP Communication Analyzer and
MySQL Communication Analyzer components. Proxies
run as independent processes and threads, so they are
relatively autonomous. To guarantee synchronization
with other components of the VAIT, a Sync mechanism
was also built-in (Figure 8). The synchronism is obtained
by executing each web application interaction in sequence

without overlapping (i.e., without the common use of
simultaneous threads to speedup the process) and gather-
ing the precise time stamps of both the HTTP communi-
cation and respective SQL query. As shown in Figure 9,
the interaction starts with the client actor (the browser of
the user of the web application) sending one HTTP re-
quest that may lead SQL query requests to be sent to the
database server. Next, the database server responds to the
SQL query requests and sends the response back to the
web application server. Finally, the application server
sends the HTTP response back to the client actor. When
the HTTP and SQL proxies capture these serialized opera-
tions they also register their time stamps, which allows
the Sync mechanism to group this distributed set of ac-
tions into meaningful cause-effect sequences (used to
build the knowledge needed by the operation of the
VAIT).

The information gathered by both proxies contains the
structure of each web page, the associated input variables,
typical values and the associated SQL queries where these
variables are used. During this interaction, the list of the
web application files that are being run is also sent to the
integrated Vulnerability Injector as input files. The Vul-
nerability Injector component is executed for each one,
delivering the respective group of files with injected vul-
nerabilities.

Figure 8 also shows the main components of the im-
plementation of the Vulnerability Injection Stage. It com-
prises components to search for included files, analyze
variables and finally inject vulnerabilities. The first com-
ponent is the Dependency Builder. It searches recursive-
ly for the files that are included in the Input File, which is
the target PHP file where we want to inject the vulnera-
bilities. As in many other languages, in PHP program-
ming, it is common to include a generic file inside another
file, for reutilization purposes (this is done using one of
the following statements: include, include_once, re-
quire, require_once [34]). During execution, the PHP
interpreter processes the original file and its included files
as a single block of code. When searching for locations
where vulnerabilities may be injected, one should analyze
the code in the same way the PHP interpreter does, thus
including this Dependency Builder component.

The next component is the Variable Analyzer. Because
SQLi vulnerabilities rely on vulnerable variables that can
be exploited, we have to analyze all the variables that are
used to build SQL queries. This component gathers all the
PHP variables from the source code and builds a mesh of
dependencies related to each other. Then, it searches for
PHP variables present in SQL query strings. Using the
mesh created, the component is able to determine all the
variables that are indirectly responsible for the SQL que-
ry. Both variables that are directly and indirectly respon-
sible for SQLi are considered as a valid target to inject a
vulnerability. This is important as one variable may be
used only as input (POST or GET HTTP parameters) and
the result is passed to another variable that is the one that
is in the SQL query string. All the other variables are dis-
carded.

 The last component is the Vulnerability Injector. Dur-

Figure 8: Architecture of the VAIT

SQL Query
Request

HTTP
Request

SQL Query
Response

HTTP
Response

T1 < T2 < T3 < T4

Figure 9: Serialized sequence of actions processed by the
Sync mechanism

Dependency
Builder

Variable Analyzer

Vulnerability
Injector

Vulnerability
Operators

Web Application
Crawler

HTTP
Communication

Analyzer

MySQL
Communication

Analyzer

Attackload
Generator

Attacker

HTTP
Communication

Analyzer

MySQL
Communication

Analyzer

Attack Results Attack Success
Detector

File with
Vulnerabilities

Input File

HTML Variables
Affecting Queries

Preparation
Stage

Attack
Stage

sync

sync

Attackload
Generation

Stage

Vulnerability
Injection

Stage

Attackload
Footprint

Generator

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

8 IEEE TRANSACTIONS ON DEPENDEBLE AND SECURE COMPUTING, MANUSCRIPT ID

ing execution, every location where the selected variables
are found is tested with the conditions and restrictions of
the Vulnerability Operators defined in [17], filtering those
that are not applicable. The Vulnerability Operators, con-
sisting of a set of Location Pattern and Vulnerability Code
Change attributes, as explained in Section 3.3, are derived
from the detailed analysis of data presented in [16], which
is partially summarized in Table 1.

The Vulnerability Injector component uses the Vulner-
ability Operator data and the result is the information
about the mutation that has to be made in the source code
in order to inject a particular vulnerability. Both the origi-
nal source code and the mutated code (vulnerability injec-
tion code) are stored in the internal database of the VAIT
for future consumption (e.g. during the execution of the
Attack Stage).

Each of the vulnerable variables must be attacked and
for that purpose, the Attackload Generator creates a col-
lection of malicious interactions, according to the charac-
teristics of the target variables. This attackload intends to
inject unwanted features in the queries sent to the data-
base, therefore performing SQLi. The collection of pre-
defined attackload strings are based on the basic attacks
presented in Table 2, but they can be extended covering
other cases, like those presented by [35] or derived from
field study data about real attacks [36]. Also, different
database management systems have their own peculiari-
ties on how they can be interacted and even different im-
plementations of the SQL language have specific charac-
teristics that can be exploited during a SQLi attack [37].

Every attack string is assigned to the vulnerable varia-
ble trying to create some sort of text that can penetrate the
breach produced by the vulnerability injected (as shown
previously in Figure 7). Some tweaks are done to the at-
tackload strings, such as encode some parts using the
URL encoding function. The Attackload Footprint Gen-
erator component builds the collection of attackload foot-
prints so that they have the data that is expected to be
seen in the query, if the attack is successful.

The Attack Stage receives the files with vulnerabilities
and the attackloads from the previous stage. All vulnera-
bilities are then executed from the web user perspective,
one by one. To prevent bias from previous attacks, the

web application files are copied from a safe location be-
fore injecting a vulnerability and the web application da-
tabase is restored from a clean backup made before the
start of the whole process. Using the generated attack-
load, the web application is automatically attacked. While
the attack is being performed, the HTTP and SQL com-
munications are monitored by the respective proxies and
results are analyzed and stored in the Attack Injector Tool
internal database by the HTTP Communication Analyzer
and MySQL Communication Analyzer, as explained
before.

At the end it is necessary to verify if the attack was
successful or not. This is done by the Attack Success De-
tector component. The attack is successful if, as a result of
the execution of the attackload, the structure of the SQL
query is altered [38]. This occurs when the attackload
footprint is present in the query in specific conditions.
Cases where the attackload footprint is placed inside a
string variable of the SQL query are not considered, be-
cause usually a string can convey any combination of
characters, numbers and signs. In the other cases, if it is
possible to alter the structure of the query due to the at-
tackload, then there is a successful SQLi attack.

One final remark about the VAIT is that it does not try
to exploit the vulnerability in the sense of obtaining, alter-
ing, deleting, etc., sensible information from the web ap-
plication database. It only tries to evaluate whether some
particular instance of the web application (depending on
the vulnerability injected) is vulnerable to such attacks or
not. The VAIT also stores the SQL query string executed
during the attack and the specific vulnerability exploited
for later analysis. The output information given by the
VAIT is the most important outcome and is a fundamen-
tal piece of data for enterprises and security practitioners.
This data allows developers of the tool under assessment
to correct the weaknesses discovered during the attack
process. An example of an improvement of an IDS for
databases that resulted from the output of the VAIT is
presented in Section 6.2.

5 ATTACK INJECTION UTILIZATION SCENARIOS
We envisage the following two scenarios as the most rel-
evant utilizations of the proposed attack injection meth-
odology and its VAIT tool:

1. Inline. The VAIT is executed while the security as-
surance mechanisms under evaluation are also be-
ing executed.

2. Offline. The VAIT is executed in advance to pro-
vide a set of realistic vulnerabilities for later use.

5.1 Inline scenario
In the inline scenario, the VAIT can be used to evalu-

ate tools and security assurance mechanisms, like IDS for
databases, Web Application IDS, Web Application Fire-
walls and Reverse Proxies. For example, when assessing
an IDS for databases (see Section 6.2 for a case study), the
SQL probe should be placed before the IDS, so that the
IDS is located between the SQL probe and the database
(see Figure 2 to locate the SQL probe and the database).

Table 2. Basic attack payload string examples
Pre-defined attackload

strings Expected result of the attack

' Change in the structure of the query.
The query result is an error

or 1=1
Change in the structure of the query.
The query result is the override of the
query restrictions

' or 'a'='a
Change in the structure of the query.
The query result is the override of the
query restrictions

+connection_id()-
connection_id()

Change in the query. The query result
is 0

+1-1 Change in the query. The query result
is 0

+67-ASCII('A') Change in the query. The query result
is 0

+51-ASCII(1) Change in the query. The query result
is 0

… �

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

AUTHOR ET AL.: TITLE 9

During the attack stage, when the IDS inspects the SQL
query sent to the database, the Attack Injector Tool also
monitors the output of the IDS to identify if the attack has
been detected by the IDS or not. The entire process is per-
formed automatically, without human intervention. The
output of the VAIT also contains, in this case, the logs of
the IDS detection. By analyzing the attacks that were not
detected by the IDS, the security practitioner can gather
some insights on the IDS weaknesses and, possibly, how
the IDS could be improved. In addition to the case study
presented in Section 6.2, this procedure has already been
used to test five SQLi detection mechanisms [39].

5.2 Offline scenario
In the offline scenario, the VAIT injects vulnerabilities

into the web application and attacks them to check if they
can be exploited or not. The outcome is the set of vulner-
abilities that can, effectively, be attacked. They can then
be used in a variety of situations, such as: to provide a test
bed to train and evaluate security teams that are going to
perform code review or penetration testing, to test static
code analyzers, to estimate the number of vulnerabilities
still present in the code, to evaluate web application vul-
nerability scanners, etc. It may also provide a ready to use
test bed for web application security tools that can be in-
tegrated into assessment tools like the Moth [40] and pro-
jects like the Stanford SecuriyBench [41], or in web appli-
cations installed in honeypots prepared to collect data
about how hackers execute their attacks. This gathers in-
sights on how hackers operates, what assets they want to
attack and how they are using the vulnerabilities to attack
other parts of the system.

The offline scenario can also be applied to assess the
quality of test cases developed for a given web applica-
tion. For example, assuming that the test cases cover all
the application functionalities in every situation, if the
application code is changed (via vulnerability injection),
the test cases should be able to discover that something is
wrong. In situations where the test cases are not able to
detect the modification, they should be improved and,
maybe, the improvement can even uncover other un-
known faulty situations.

As an example, let us consider the assessment of web
application vulnerability scanners, used to test for securi-
ty problems in deployed web applications (see Section 6.3
for a case study). These scanners perform black-box test-
ing by interacting with the web application from the point
of view of the attacker. In this scenario, the VAIT injects
vulnerabilities and attacks them to see those that can be
successfully attacked. These vulnerabilities are used, one
by one, to assess the detection capability of the web appli-
cation vulnerability scanner. This procedure can be used
to obtain the percentage of vulnerabilities that the scanner
cannot detect, and what are the most difficult types to
detect. In this typical offline setup, the vulnerabilities can
be injected one at a time (like in the case of vulnerability
scanners) or multiple vulnerabilities at once (for the case
of training security assurance teams, for example).

5.3 Attack scenario remarks
An attack can be considered successful if it leads to an

“error” [14]. Obviously, the consequences of the attack
(the “failure” and its severity) are dependent on the con-
crete situation, on what is compromised (credit card
numbers, social security numbers, bank account infor-
mation, passwords, emails, etc.), on how it is compro-
mised (information disclosure, ability to alter the data or
to insert new data, etc.) and on how valuable is the com-
promised asset (the value to the company, to the client
from which the information belongs, to the companies
operating in the same market, etc.) [10]. Although it is not
a direct goal of the attack injection methodology present-
ed here it can, however, provide important insights about
security related issues allowing further analysis to obtain
data about the consequences of the attack.

To avoid attacks, web application developers are cur-
rently reducing the number of error messages displayed
to the user. This does not prevent SQLi attacks, but makes
it harder to identify SQLi vulnerabilities using the black-
box approach. However, after the vulnerability is found it
is as easy to exploit as it was before. One consequence of
this trend is an extraordinary increase in the false-positive
and false-negative rates of black-box testing tools such as
automatic web application vulnerability scanners [42, 27].
This also applies to other security mechanisms that use
the same methodology, like the SQLmap sponsored by
the OWASP project, for example [43]. The attack injection
approach described in this chapter is quite immune to this
countermeasure technique, because of the way the data
used for the analysis is obtained: through the use of
probes placed in different layers of the web application
setup and correlating their data (e.g. HTTP and SQL in-
teractions).

6 EXPERIMENTAL EVALUATION AND RESULTS
To demonstrate the proposed VAIT we conducted three
groups of experiments. In the first group, we injected
vulnerabilities into three web applications to verify the
quality of the vulnerabilities injected and the attack per-
formance. In the second group, we tested an IDS for data-
bases by using it inline with the VAIT. The goal was to
evaluate the efficiency of the IDS in detecting the SQLi
attacks performed by the VAIT. In the final group of ex-
periments, we evaluated two top commercial web appli-
cation vulnerability scanners regarding the detection of
vulnerabilities that may be exploited by ad-hoc SQLi at-
tacks.

 For the evaluation experiments, we used LAMP
(Linux, Apache, Mysql and PHP) web applications. The
server runs Linux and the web server is Apache. This
server hosts a PHP web application that uses a Mysql
database. This software topology was chosen because it
represents one of the most common technologies used to
build custom web applications nowadays.

Three web applications were used in the experiments.
The first is the groupware/content management system
TikiWiki [44], which builds wikis (web sites allowing us-
ers to contribute to them by adding and modifying their

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

10 IEEE TRANSACTIONS ON DEPENDEBLE AND SECURE COMPUTING, MANUSCRIPT ID

contents). It is widely used for building sites, such as the
Official Firefox Support site and the KDE wiki. It was one
of the finalists of the sourceforge.net 2007 for the most
collaborative project award.

The second web application is the phpBB. It is a well-
known LAMP web application and it has become the
most widely used Open Source forum solution [45]. It is
used by millions of users worldwide and won the source-
forge.net 2007 community choice award for best project
for communications. It is also the forum module that is
integrated into the phpNuke content management and
portal web application. For these two applications (Ti-
kiWiki and phpBB) we bounded the attack surface only to
the public sections, in order to limit the quantity of data
that we had to analyze.

Lastly, there is a custom publication management web
application called MyReferences. It was developed by a
computer science PhD student for the management of
PDF documents, and information about them such as the
title, the conference, the year of publication, the document
type, the relevance, and the authors. The information may
be edited, queried and displayed.

Overall, the public section of TikiWiki has three files
with 1,857 lines of code, phpBB has five files with 4,639
lines of code, whereas MyReferences has two files with
479 lines of code.

6.1 Vulnerabilities and Attacks Injected
The goal of this experiment was to validate the ability of the
VAIT to inject vulnerabilities and also to exploit them to at-
tack web applications, automatically. Towards this end, we
wanted to know, on average, how many lines of code are
necessary to be able to inject a
vulnerability. Also, we wanted
to know how many of those
vulnerabilities can be successful-
ly attacked. This gives a meas-
ure of the quality of the vulner-
abilities injected, as it proves
that they are indeed exploitable.
Finally, we also wanted to know
the effort needed to attack them
and the success rate of these
attacks. This gives a measure of
the quality of the attacks. Be-
sides being used as a sanity
check of the VAIT, this data can
also be used to help improve it
in the future.

In the Preparation Stage, the
gathering of the information
about the web application pages
and their links can be done
manually or using a web crawl-
er. In order to keep the same
conditions for all the applica-
tions analyzed all the tests were
done using the same web
crawler, the one present in the

Acunetix Web Vulnerability Scanner. There are several web
crawlers available nowadays [46], but only a few are able to
insert values in the web application fields, such as the Web-
Sphinx. For this purpose, the crawler presented in the
WAVES framework can also be used [47] or the crawlers
built in the commercial web application vulnerability scan-
ners, which are usually very good in performing this task of
web site exploration.

The results of the attack injection in the target web ap-
plications are summarized in Table 3. The tool took ap-
proximately 11 minutes in the attack stage of the Ti-
kiWiki, 12 minutes in the phpBB and 4 minutes in the
MyReferences. The vulnerabilities injected represent all
the “Missing Function Call Extended (MFCE)” SQLi types
that can realistically be injected into the files used in the
experiments. As already stated, these vulnerabilities must
comply with a restrictive set of rules in order to be con-
sidered realistic [17]. On average, the tool injected one
vulnerability for every 129 lines of PHP code.

A collection of attackloads (see Table 2) was applied to
each vulnerability injected and 38% of these attacks were
successful. This measure of success comes from the pres-
ence of the attackload footprint in the SQL queries sent to
the database.

We analyzed, one by one, each vulnerability injected
that was not successfully attacked, in order to understand
the reason why the attack was not successful. In five situ-
ations, belonging to the edit_authors.php file of the
MyReferences web application the vulnerability was in-
jected by removing an intval PHP function. By remov-
ing this function it is expected that the variable could be
attacked injecting string values, such as “ or 1=1”.

Table 3. Attack injection results of the web applications analyzed

Web
apps. Files attacked Code

lines
Vuln.

injected Attacks Attacks
successful

Vulnerabilities
attacked

successfully

TikiWiki

tiki-editpage.php 904 3 84 34 3

tiki-index.php 648 1 7 6 1

tiki-login.php 305 3 21 0 0

Total 1857 7 112 40 (36%) 4 (57%)

phpBB

search.php 1405 3 42 42 3

login.php 224 1 21 21 1

viewforum.php 694 1 7 7 1

viewtopic.php 1210 5 84 84 5

posting.php 1106 4 112 112 4

Total 4639 14 266 266 (100%) 14 (100%)

MyRefs

edit_paper.php 310 27 525 61 20

edit_authors.php 169 6 196 46 5

Total 479 33 721 107 (15%) 25 (76%)

 Grand total 6975 54 1099 413 (38%) 43 (80%)

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

AUTHOR ET AL.: TITLE 11

However, the affected variables are used inside strings
formatted with the %d format, which also filters non-
numeric variables. Therefore, this string formatting gives
another level of protection preventing the attack to suc-
ceed through the supposedly vulnerable variable. In these
situations, when the tool injects one vulnerability (by re-
moving the code responsible for the sanitation of the var-
iable) it leaves the other pieces of code still preventing the
variable from being exploited. Recall that only a single
vulnerability is injected at a time (even when multiple
vulnerabilities can be injected in the same file). The rea-
son is that we have no field study data supporting the
realistic injection of more than one vulnerability at the
same time.

All the other situations where it was not possible to at-
tack the vulnerability, including the ones in tiki-
login.php of the TikiWiki web application, are the re-
sult of a simplification in the prototype of the VAIT. This
occurs when two variables with the same name are used
in the same PHP file, although they are used in different
blocks of code (they have a different scope). The VAIT
can be tricked by this situation and, therefore, may try to
inject a vulnerability in a place that has no relation with
the right variable. In this case, the change in the code has
no effect on the way the SQL query is built and, therefore,
it is not an injection of a vulnerability. In the particular
case tested, the problem was the use of a variable in a
query and the use of an unrelated variable with the same
name in a GET parameter of a HTML form. They are not
related to each other as their scope of action is disjoint.
This issue should be solved with the help of an improved
PHP parser built into the VAIT.

The vulnerabilities that could
not be attacked represent only
20% of all the vulnerabilities
injected. Except for the particu-
lar cases explained before, the
results show that the tool is ef-
fective in providing a sufficient
number of realistic vulnerabili-
ties in a web application and
that these vulnerabilities can be
successfully attacked. Further-
more, the output of some vul-
nerabilities that cannot be at-
tacked is not a limitation of the
methodology itself, but of sim-
plifications of the Variable Ana-
lyzer component of the VAIT
when evaluating the scope of
PHP variables. However, most
of these situations are going to
be addressed by a new version
of the PHP parser that is cur-
rently under development.

6.2 Case Study 1: IDS
Evaluation

One possible use for the VAIT is

the inline evaluation of security counter measures, such
as an IDS for databases. An IDS is a very interesting tool,
because it can defend the database from within, coping
with new exploitation techniques that many times pro-
vide new means to overcome perimeter counter
measures. In this case study, the IDS must be integrated
with the VAIT, because the IDS output must be closely
monitored during the attack stage.

From the previous experiment (Section 6.1) we know
that the vulnerabilities injected can be successfully at-
tacked. To evaluate the IDS we wanted to know its ability
to detect the attacks to these vulnerabilities. This is done
not only by obtaining the ratio of attacks detected (and
not detected) by the IDS, but also by the false positives
(false alarms). Both metrics are very important to charac-
terize the IDS as they give a degree of assurance of what
is expected to be detected (from the detection ratio) and
the manual workload effort to do the screening process of
all the alarms (from the false positive ratio). With the
missing attacks and false alarms data we also wanted to
know if the VAIT is able to provide enough information
to help the developers to improve the IDS.

For this case study, we used an IDS for databases [48].
It can deal with Oracle and MySQL databases, but we
only used the latter. This IDS implements an anomaly
detection approach and includes a learning phase and a
detection phase. Before initiating the attack injection, the
IDS is trained with the target web application using the
web crawler to execute the web application functions.
After the training phase of the IDS, the VAIT is config-
ured to operate together with the IDS and monitor its
output.

Table 4. Evaluation results of the IDS

Web
apps Files attacked Vuln.

injected
Total

attacks
Successful

attacks

Attacks
detected by

the IDS

IDS false
positives

TikiWiki

tiki-editpage.php 3 84 34 34 49

tiki-index.php 1 7 6 6 1

tiki-login.php 3 21 0 0 21

Total 7 112 40 40 (100%) 71 (99%)

phpBB

search.php 3 42 42 42 0

login.php 1 21 21 21 0

viewforum.php 1 7 7 7 0

viewtopic.php 5 84 84 84 0

posting.php 4 112 112 112 0

Total 14 266 266 266 (100%) 0 (0%)

MyRefs

edit_paper.php 27 525 61 61 294

edit_authors.php 6 196 46 41 28

Total 33 721 107 102 (95%) 322 (52%)

 Grand total 54 1099 413 408 (99%) 393 (57%)

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

12 IEEE TRANSACTIONS ON DEPENDEBLE AND SECURE COMPUTING, MANUSCRIPT ID

The results of these experiments, for the three target
web applications, are shown in Table 4. They show that
the IDS was able to detect 99% of the attacks injected and
missed only five of them (difference between the Success-
ful attacks and the Attacks detected by the IDS). It also
shows that, allied to the high detection rate of the IDS,
there is also a high false positive rate.

The VAIT not only collects the results shown in Table
4, but it also gives all the details of the attacks, like the
exact HTTP attack code, the target variable, the attackload
used, the query sent to the database, etc. With all this in-
formation, developers and security practitioners can im-
prove their security mechanisms and procedures. After
this experiment, we analyzed why the IDS was unable to
correctly detect all the attacks. Using the data collected by
the VAIT we could replay these attacks while debugging
the IDS. For example, this helped locate a defective func-
tion of the IDS, responsible for cleaning the SQL com-
mands. There was one particular situation when pro-
cessing the query structure that was not covered correct-
ly, missing converting TAB characters to SPACE charac-
ters. Thanks to the VAIT, the bug is now fixed and this
shows how the VAIT can also be used to improve security
mechanisms. After fixing this bug, the IDS was able to
detect all the attacks, although still providing some false
positive values. These may be related to an insufficient
learning period so, to be able to detect all good interac-
tions as they are, the IDS must be trained for a longer pe-
riod, until all the profiles are fully learned.

This experiment highlights the need to test security
mechanisms considering realistic scenarios, which is one
of the advantages of the VAIT. Further assessment of sev-
eral SQL detection tools was al-
ready done using the proposed
VAIT [39]. Some of the tools are
widely used, like Apache Scalp,
Snort or GreenSQL and others
are from academia research, like
the ACD Monitor and the IDS
used in this case study. The re-
sults of the experiments high-
lighted the overall difficulty of
these tools in detecting the at-
tacks with a reasonable false pos-
itive rate (see [39] for details).

6.3 Case Study 2: Web
Application Vulnerability
Scanners Evaluation

In this case study, we evaluate
another type of security tool: web
application vulnerability scanners.
These scanners are commercial
tools used to audit the web appli-
cation security from the point of
view of the attacker as they try to
penetrate the web application as a
black-box (without accessing the
source code). The scanners provide
an easy and automatic way to

search for vulnerabilities, avoiding the repetitive and tedious
task of doing hundreds or even thousands of tests by hand
for each vulnerability type. They can assess a myriad of se-
curity aspects such as XSS, SQLi, path traversal, file disclo-
sure, web server vulnerabilities, etc. They use signatures of
identified attacks of known web applications (and web ap-
plication versions), but they can also test for ad-hoc XSS and
SQLi vulnerabilities. In this study we used the HP WebIn-
spect 7.7 (WebInspect) [49] and the IBM Watchfire AppScan
7.0 (AppScan) [50] commercial web scanners to test their
ability to discover unreported SQLi vulnerabilities.

For the experiments with the scanners we wanted to
know the percentage of vulnerabilities that they are able
to detect. We also wanted to assess the relationship be-
tween the vulnerabilities detected by each scanner (to see
if they are complementary to each other or if they are sim-
ilar and detect the same set vulnerabilities). This data can
be used not only to compare the scanners but also to help
deciding if several scanners should be used, or if a manu-
al analysis should also be performed, before deploying a
web application.

The experiments are different from the ones conducted
for the IDS. In this case, the VAIT is executed in advance
(offline) for the three target web applications in order to
identify the collection of vulnerabilities that could be at-
tacked successfully. Then, for each vulnerability (one at a
time), the web applications were tested with each scanner
(also one at a time) and the results collected. Before run-
ning each scanner, the web application database was re-
stored to prevent bias from previous experiments.

The complete results of the tests are detailed in Table 5.
The number of SQLi vulnerabilities detected by the scan-

Table 5. Overall results of the web application vulnerability scanners

Web apps Files attacked Vuln.
injected

Vulnerabilities
attacked

successfully
WebInspect AppScan

TikiWiki

tiki-editpage.php 3 3 1 0

tiki-index.php 1 1 0 0

tiki-login.php 3 0 0 0

Total 7 4 1 (25%) 0 (0%)

phpBB

search.php 3 3 0 1

login.php 1 1 0 0

viewforum.php 1 1 1 0

viewtopic.php 5 5 1 1

posting.php 4 4 0 0

Total 14 14 2 (14%) 2 (14%)

MyRefs

edit_paper.php 27 20 1 0

edit_authors.php 6 5 0 1

Total 33 25 1 (4%) 1 (4%)

 Grand total 54 43 4 (9%) 3 (7%)

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

AUTHOR ET AL.: TITLE 13

ners is minimal. In fact, they were able to detect only 9%
(WebInspect) and 7% (AppScan) of the vulnerabilities
injected. The main reason for these poor results is that
scanners heavily rely on the output of the web application
(the HTML data the web browser receives from the web
server) to detect vulnerabilities. However, the way web
applications are built nowadays, hiding most of the error
messages, make the task of identifying this type of vul-
nerabilities really difficult for black-box scanners. As a
result, it is clear that the output of these scanners, when
used to assess the security of an ad-hoc web application,
cannot be the sole source used to assess the web applica-
tion for vulnerabilities.

When collecting this data we also observed that there
was only one vulnerability detected simultaneously by
both scanners. All the others were only detected by a sin-
gle scanner. The conclusion that different scanners find
different vulnerabilities is confirmed by the results from
other studies [27], so whenever possible several tools
should be used simultaneously.

To improve the detection rate of SQLi, the scanners
could use an approach similar to the one used by the
VAIT: use a probe in the SQL communication path to
gather data that can be sent back to the tool for analysis.
In fact, an analogous scanning procedure that searches for
an extensive collection of web application vulnerabilities
is used by the AcuSensor technology from Acunetix [51].

7 CONCLUSION
This paper proposed a novel methodology to automat-

ically inject realistic attacks in web applications. This
methodology consists of analyzing the web application
and generating a set of potential vulnerabilities. Each
vulnerability is then injected and various attacks are
mounted over each one. The success of each attack is au-
tomatically assessed and reported.

The realism of the vulnerabilities injected derives from
the use of the results of a large field study on real security
vulnerabilities in widely used web applications. This is, in
fact, a key aspect of the methodology, because it intends
to attack true to life vulnerabilities. To broaden the
boundaries of the methodology, we can use up to date
field data on a wider range of vulnerabilities and also on
a wider range and variety of web applications.

To demonstrate the feasibility of the methodology, we
developed a tool that automates the whole process: the
VAIT. Although it is only a prototype, it highlights and
overcomes implementation specific issues. It emphasized
the need to match the results of the dynamic analysis and
the static analysis of the web application and the need to
synchronize the outputs of the HTTP and SQL probes,
which can be executed as independent processes and in
different computers. All these results must produce a sin-
gle analysis log containing both the input and the output
interaction results. The VAIT prototype focused on the
most important fault type, the MFCE (vulnerabilities
caused by a missing function protecting a variable), gen-
erating SQLi vulnerabilities. Although this fault type rep-
resents the large majority of all the faults classified in the

field study and can be considered representative, other
fault types can also be implemented, namely those that
come next concerning their relevance.

The experiments have shown that the proposed meth-
odology can effectively be used to evaluate security
mechanisms like the IDS, providing at the same time in-
dications of what could be improved. By injecting vulner-
abilities and attacking them automatically the VAIT could
find weaknesses in the IDS. These results were very im-
portant in developing bug fixes (that are already applied
to the IDS software helping in delivering a better prod-
uct). The VAIT was also used to evaluate two commercial
and widely used web application vulnerability scanners,
concerning their ability to detect SQLi vulnerabilities in
web applications. These scanners were unable to detect
most of the vulnerabilities injected, in spite of the fact that
some of them seemed to easily be probed and confirmed
by the scanners. The results clearly show that there is
room for improvement in the SQLi detection capabilities
of these scanners.

8 ACKNOWLEDGEMENTS
This work has been partially supported by the project

“ICIS - Intelligent Computing in the Internet of Services”
(CENTRO-07-ST24-FEDER-002003), co-financed by
QREN, in the scope of the Mais Centro Program and Eu-
ropean Union's FEDER, and by the project PEst-
OE/EGE/UI4056/2011, financed by the Science and
Technology Foundation.

REFERENCES

[1] USA, “Sarbanes-Oxley Act”, 2002.
[2] PCI Security Standards Council, “Payment Card Industry (PCI) Data

Security Standard”, 2010.
[3] Christey, S., Martin, R., ”Vulnerability Type Distributions in CVE”,

Mitre report, May, 2007.
[4] Zanero, S., Carettoni, L., Zanchetta, M., “Automatic Detection of Web

Application Security Flaws”, Black Hat Briefings, 2005.
[5] Jovanovic, N., Kruegel, C., Kirda, E., “Precise Alias Analysis for Static

Detection of Web Application Vulnerabilities”, IEEE Symp. on Security
and Privacy, 2006.

[6] Williams, J., Wichers, D., “OWASP top 10”, OWASP Foundation, Feb-
ruary, 2013.

[7] IBM Global Technology Services, “IBM Internet Security Systems X-
Force® 2012 Trend & Risk Report”, IBM Corp., March, 2013.

[8] Verizon, “2011 Data Breach Investigations Report”, 2011.
[9] The Privacy Rights Clearinghouse, April, 2012,

www.privacyrights.org/data-breach, accessed 1 May 2013.
[10] Fossi, M. et al., “Symantec Internet Security Threat Report: Trends for

2010”, Symantec Enterprise Security, 2011.
[11] Fossi, M. et al., “Symantec Report on the Underground Economy,

Symantec Security Response”, 2008.
[12] Richardson, R., and Peters, S., “2010/2011 CSI Computer Crime &

Security Survey”, Computer Security Institute, 2011.
[13] Avresky, D., Arlat, J., Laprie, J.C., Crouzet, Y., “Fault Injection for For-

mal Testing of Fault Tolerance,” IEEE Trans. Reliability, vol. 45, no. 3,
pp. 443-455, September 1996.

[14] Powell, D., Stroud, R., “Conceptual Model and Architecture of MAFT-
IA”, Project MAFTIA, deliverable D21, 2003.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

14 IEEE TRANSACTIONS ON DEPENDEBLE AND SECURE COMPUTING, MANUSCRIPT ID

[15] Krsul, V., “Software vulnerability analysis”, PhD Thesis, Purdue Uni-
versity, 1998.

[16] Fonseca, J., Vieira, M., “Mapping Software Faults with Web Security
Vulnerabilities”, IEEE/IFIP Int. Conference on Dependable Systems
and Networks, June 2008.

[17] Fonseca, J., Vieira, M., Madeira, H., “Training Security Assurance
Teams using Vulnerability Injection”, IEEE Pacific Rim Dependable
Computing conference, December 2008.

[18] Arlat, J., Costes, A., Crouzet, Y., Laprie, J.-C., Powell, D., “Fault injection
and dependability evaluation of fault-tolerant systems”, IEEE Trans. on
Computers, 42(8):913.923, August, 1993.

[19] Iyer, R., “Experimental Evaluation”, Special Issue FTCS-25 Silver Jubi-
lee, IEEE Symp. on Fault Tolerant Computing, pp. 115-132, 1995.

[20] Carreira, J., Madeira, H., Silva, J. G., “Xception: Software Fault Injection
and Monitoring in Processor Functional Units”, IEEE Trans. on Soft-
ware Engineering, vol. 24, no. 2, February 1998.

[21] Stott, D.T., Floering, B., Burke, D., Kalbarczpk, Z., Iyer, R.K., “NFTAPE:
a framework for assessing dependability in distributed systems with
lightweight fault injectors”, Computer Performance and Dependability
Symp., 2000.

[22] Christmansson, J., Chillarege, R. “Generation of an Error Set that Emu-
lates Software Faults”. IEEE Fault Tolerant Computing Symp., 1996.

[23] Madeira, H. Vieira, M., Costa, D. “On the Emulation of Software Faults
by Software Fault Injection.”, IEEE/IFIP Int. Conf. on Dependable Sys-
tem and Networks, 2000.

[24] Durães, J., Madeira, H., “Emulation of Software Faults: A Field Data
Study and a Practical Approach”, IEEE Trans. on Software Engineering,
Vol. 32, No. 11, November 2006.

[25] Neves, N., Antunes, J., Correia, M., Veríssimo, P., Neves R., “Using
Attack Injection to Discover New Vulnerabilities”, IEEE/IFIP Interna-
tional Conference on Dependable Systems and Networks, 2006.

[26] Fonseca, J., Vieira, M., Madeira, H., “Testing and comparing web vul-
nerability scanning tools for SQLi and XSS attacks”, IEEE Pacific Rim
International Symposium on Dependable Computing, December 2007.

[27] Ananta Security, 2009, “Web Vulnerability Scanners Comparison”,
anantasec.blogspot.com/2009/01/web-vulnerability-scanners-
comparison.html, accessed 1 May 2013.

[28] Buchler, M., Oudinet, J., Pretschner, A., "Semi-Automatic Security Test-
ing of Web Applications from a Secure Model", International Confer-
ence on Software Security and Reliability, 2012

[29] Cgisecurity.net, December 2008, www.cgisecurity.com/articles/csrf-
faq.shtml#whatis

[30] Sam NG. CISA, CISSP. SQLBlock.com,
www.owasp.org/images/7/7d/Advanced_Topics_on_SQL_Injection
_Protection.ppt, 2006.

[31] McConnell, S., “Gauging Software Readiness with Defect Tracking”,
Software, IEEE, 1997

[32] SANS Institute, January, 2008, isc.sans.org/diary.html?storyid=3823,
accessed 1 May 2013.

[33] NTA, March, 2011, www.nta-monitor.com/posts/2011/03/01-
tests_show_rise_in_number_of_vulnerabilities_affecting_web_applicati
ons_with_sql_injection_and_xss_most_common_flaws.html

[34] The PHP Group, December, 2007, pt.php.net, accessed 1 May 2013.
[35] Halfond, W., Viegas, J., Orso, A., “A Classification of SQLi Attacks and

Countermeasures”, Int. Symp. on Secure Software Engineering, 2006
[36] Fonseca, J., Vieira, M., Madeira, H., “The Web Attacker Perspective - A

Field Study”, IEEE International Symposium on Software Reliability
Engineering, November, 2010.

[37] pentestmonkey.net, 2009, pentestmonkey.net/cheat-sheets, accessed 1
May 2013.

[38] Buehrer, G., Weide, B., Sivilotti, P., “Using Parse Tree Validation to
Prevent SQLi Attacks”, International Workshop on Software Egineer-
ing and Middleware, 2005

[39] Elia, I., Fonseca, J., Vieira, M., “Comparing SQLi Detection Tools Using
Attack Injection: An Experimental Study”, IEEE International Sympo-
sium on Software Reliability Engineering, November, 2010.

[40] Riancho, A., 2009, “moth, Bonsai - Information Security”, www.bonsai-
sec.com/en/research/moth.php, accessed 1 May 2013.

[41] Livshits, B., 2005, “Stanford SecuriBench”,
suif.stanford.edu/~livshits/securibench, accessed 1 May 2013.

[42] Grossman, J., “SQLi, eye of the storm”, The Security Journal, 26, 7-10,
2009.

[43] Damele, B., 2009, “sqlmap: automatic SQLi tool”,
sqlmap.sourceforge.net, accessed 1 May 2013.

[44] TikiWiki, December, 2008, tikiwiki.org, accessed 1 May 2013.
[45] phpBB, December, 2008, www.phpbb.com, accessed 1 May 2013.
[46] Java-source.net, 2008, java-source.net/open-source/crawlers, accessed

1 May 2013.
[47] Huang, Y.-W., Huang, S.-K., Lin, T.-P., Tsai, C.-H., “Web application

security assessment by fault injection and behavior monitoring”, Inter-
national Conference on World Wide Web, pp. 148-159, 2003.

[48] Fonseca, J., Vieira, M., Madeira, H., “Detecting Malicious SQL”, Confer-
ence on Trust, Privacy & Security in Digital Business, September, 2007.

[49] HP, September, 2013, download.hpsmartupdate.com/webinspect,
accessed 1 May 2013.

[50] IBM, September, 2013, www-
03.ibm.com/software/products/us/en/appscan, accessed 1 May 2013.

[51] Acunetix, 2009, “Finding the right web application scanner; why black
box scanning is not enough”,
www.acunetix.com/websitesecurity/rightwvs.htm, accessed 1 May
2013.

José Fonseca received his PhD in Informatics Engineering from the
University of Coimbra in 2011. Since 2005, he has been with the
CISUC as a researcher. He teaches computer related courses in the
Polytechnic Institute of Guarda since 1993. He is the author or co-
author of more than a dozen papers in refereed conferences. His
research on vulnerability and attack injection was granted with the
DSNʼs William Carter Award of 2009, sponsored by the IEEE Tech-
nical Committee on Fault-Tolerant Computing (TC-FTC) and IFIP
Working Group on Dependable Computing and Fault Tolerance (WG
10.4).

Marco Vieira is an Assistant Professor at the University of Coimbra,
Portugal, and an Adjunct Associate Teaching Professor at the Car-
negie Mellon University, USA. Marco Vieira is an expert on depend-
ability benchmarking and his research interests also include experi-
mental dependability evaluation, fault injection, security benchmark-
ing, software development processes, and software quality assur-
ance, subjects in which he has authored or co-authored more than
100 papers in refereed conferences and journals. He has participat-
ed in many research projects, both at the national and European
level. Marco Vieira has served on program committees of the major
conferences of the dependability area and acted as referee for many
international conferences and journals in the dependability and data-
bases areas.

Henrique Madeira is a full professor at the University of Coimbra,
where he has been involved in the research on dependable compu-
ting since 1987. He has authored or co-authored more than 150
papers in refereed conferences and journals and has coordinated or
participated in tens of projects funded by the Portuguese government
and by the European Union. He was the Program Co-Chair of the
International Performance and Dependability Symposium track of the
IEEE/IFIP International Conference on Dependable Systems and
Networks, DSN-PDS2004 and was appointed Conference Coordina-
tor of IEEE/IFIP DSN 2008.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

