Construction of Convex Function Relaxations Using

Automated Code Generation Techniques

Edward P. Gatzke, John E. Tolsma and Paul I. Barton

11th June 2001

Abstract

This paper describes how the automated code generation tool DAEPACK can
be used to construct convex function relaxations of codes with embedded nonconvex
functions. Modern deterministic global optimization algorithms involving continuous
and/or integer variables often require such convex function relaxations. Within the
described framework, the user supplies a code implementing the objective and con-
straints of a nonconvex optimization problem. DAEPACK then analyzes this code and
automatically generates a collection of subroutines based upon various symbolic trans-
formations used by automatic convexification algorithms. The convexification methods
considered include the convex underestimators of McCormick, aBB of Floudas and
coworkers, and the linearization strategy of Tawarmalani and Sahinidis. It should be
noted that the user supplied code can be quite complex, including arbitrary nonlinear
expressions, subroutines, and iterative loops.

The code generation approach has the advantage that it can be applied to general,

legacy models coded in programming languages such as FORTRAN. It also provides

a generic symbolic transformation service for researchers interested in developing new
global optimization algorithms. Numerical results are presented, including a study
of how these techniques can be used to generate convex underestimators based on a
hybridization of BB and the method of McCormick.

KEYWORDS Global Optimization, Convex Relaxation, Automatic Code Genera-
tion, DAEPACK

1 Introduction

Global optimization problems arise in many applications related to process design, process
operation, and computational chemistry. Deterministic methods for solving nonconvex op-
timization problems have progressed greatly over the past few decades. Branch-and-bound
methods have been developed for nonconvex problems involving continuous variables and /or
integer variables. Outer approximation methods have recently been extended to the solu-
tion of mixed-integer problems where the participating functions are nonconvex. Both the
branch-and-bound and outer approximation methods require creation of convex function
relaxations.

The seminal branch-and-bound approach [5] relies upon the generation of a convex lower
bounding problem over a specified region. As the solution space of continuous and integer
variables is partitioned by branching, the value of the convex underestimating functions must
approach the value of the original nonconvex function. Local search methods can be used
in the upper bounding problem to determine feasible solutions of the original nonconvex
problem. The algorithm converges when the lower bound for all partitions is greater than
(or within € of) the current upper bound. The branch-and-reduce method [15] significantly

improved the basic branch-and-bound method by developing methods to reduce the partition

sizes, making more nonconvex programming problems computationally tractable.

For mixed-integer nonlinear programming problems, the outer approximation decompo-
sition method [3, 6] in some cases can be more efficient than branch-and-bound methods.
This method has been limited to problems with convex constraints and convex objective
function. Recently, the outer approximation method was extended to problems where the
participating functions are nonconvex [10]. The mixed-integer nonconvex problem can be
relaxed to create a convex lower bounding problem. As the algorithm proceeds, a sequence of
upper bounding problems involving only continuous variables must be solved with the inte-
ger variables fixed. Some of these upper bounding problems will require solution of a global
nonconvex problem only involving continuous values. Obviously, both the branch-and-bound
and the outer approximation methods rely heavily upon creation of convex underestimating
functions for nonconvex problems.

Three general purpose convexification methods are considered in this paper. A general
method for convexification of factorable nonconvex functions has been developed [11, 16].
This method generates convex functions using the known convex envelopes of simple non-
linear functions. The original nonconvex problem is reformulated to a standard form with
constraints involving simple nonlinear functions by the introduction of new variables and
constraints. The a BB method [2] is another convexification approach that produces convex
relaxations from general twice-differentiable nonconvex functions. This method does not add
additional variables or constraints to the problem formulation for complex expressions, but
it does require calculation of the minimum eigenvalue for the Hessian of the nonconvex func-
tion over the region of interest. Linearization of nonlinear functions has also been proposed
as a convex underestimating technique [17]. This method takes advantage of the robustness

and scalability of Linear Programming technology to develop a lower bound for the region

of interest.

A new hybrid relaxation approach is now proposed, developed from the combination of
two relaxation techniques. In some cases, it is advantageous to generate relaxations using
both the BB approach and the McCormick method. The a BB relaxations can be extremely
loose for constraints where the minimum eigenvalue of the Hessian is poorly estimated by
interval analysis methods. McCormick based approaches can develop loose function relax-
ations in cases involving complex factorable nonlinear functions. Use of both types of convex
relaxations will create redundant relaxations but can produce tighter relaxations than either
method alone. Additionally, a tighter convex relaxation can be developed by application of
the a BB method to complex intermediate nonlinear expressions that arise in the reformu-
lation using the McCormick approach.

This paper also presents convexification extensions of the DAEPACK package, a compo-
nent library originally developed to support simulation of legacy FORTRAN models. Many
legacy models have been developed with extensive effort and meticulous care. These validated
models often contain proprietary or classified information. DAEPACK provides automatic
source-to-source transformation of models given source code. A variety of symbolic trans-
formations are available, including automatic differentiation [8], interval analysis [12], and
generation of convex function relaxations. This paper focuses on methods and application
of convex relaxation using DAEPACK. Use of the FORTRAN language for model develop-
ment supports a truly open general purpose modeling environment. DAEPACK generates
automatically many of the components needed by developers of new global optimization

techniques.

2 Relaxation Methods

McCormick [11] presents a method for generating convex relaxations of factorable composite

functions of the form

T+ U fu(x)] -V [v(x)] (1)

where ¢(x), u(x), and v(x) are continuous scalar valued functions of x € R*. T[], U[],
and V-] are continuous scalar valued functions mapping R — R. It is assumed that convex
underestimating and concave overestimating functions of x are available to bound #(x), u(x),
and v(x). Constant valued upper and lower bounds for #(x), u(x), and v(x) must also be
available on the region x € S with S convex. Under these assumptions, convex and concave
bounds on the original composite function can be derived as a function of x. As one reduces
the bounds on x, the convex and concave bounding functions will converge to the original
function. As stated in [11], the convex expression derived from Equation 1 may not be
continuously differentiable, although an equivalent form can be derived through addition of
new variables and inequality constraints.

This method can be used for arbitrarily complex expressions by recursive application.
In general, convex underestimating and concave overestimating functions are not known for
complex functions. However, for simple nonlinear expressions, convex underestimating and
concave overestimating functions are available for many classes of functions. The original
nonlinear function can be expressed in simpler terms by repeated introduction of new vari-
ables and convex constraints. Recursive methods for reformulation are described in [16, 17],

and will be referred to in this paper as the Basic Reformulation.

2.1 Basic Reformulation

Given a FORTRAN code implementing an arbitrary nonlinear factorable function f(x) :
R® — R, a tree representation can be developed via an automatic analysis as described in
[13, 18], based upon the notion of elementary functions. In the current implementation,
the operators for addition, subtraction, multiplication, division, and exponentiation are sup-
ported, as well as the intrinsic functions In(z) and e®. A recursive algorithm is used to
develop an equivalent representation of f(x) in terms of linear functions and simple non-
linear functions. This is accomplished by introducing new variables representing simple
expressions at the extremities of the tree. The convex envelopes for the simple nonlinear
functions are known, so that the convex relaxation of f(x) can be expressed in terms of
convex expressions.

Bounds can be developed for a new variable based upon the known bounds of the variables
involved in the simple expression. Inequality constraint functions can also be created based
on the convex and concave envelopes of the simple nonlinear expression, serving as convex
and concave constraint functions on the new variable. These inequality constraints are

dependent upon the variables involved in the simple expression.

2.1.1 Basic Example

Figure 1 shows a tree representation for a factorable nonlinear term in the form:

T
1/3
(x2$3 Lﬁg—m))

This example is motivated by terms appearing in a heat exchanger network synthesis prob-

f(xlv Z2, .7)3) =

lem formulated by [20]. The recursive reformulation algorithm introduces new variables w

/
Figure 1: Equation tree representation for z; (.Z'QCU?,(J:Q;imS)) including simple linear and

nonlinear expressions for subtrees.

representing portions of the overall tree, or subtrees. Each subtree resulting from a nonlin-
ear operation can be expressed in both simple terms involving one or two variables or in the
original complex composite form involving only the original variables.

The new linear and nonlinear variables, w € R!, can augment the original variables x as
y = [w’ XT}T € R*™. For a nonlinear function f(x) with {x|x* < x < xY}, the function

in terms of linear and simple nonlinear constraints can be written as:

fx)=c"y (2)
Ay =
yi <y <yY

Yi = YiYyr Vi, 5k € Ty
Yi = 3_; Via.ja k S Tt
Yi = Yy Vi, j € Tyt

yi = fn;(y;) Vi,j €y
This transformed representation includes new linear constraints, bounds on the variables,
and simple nonlinear equality constraints consisting of bilinear terms, fractional terms, power
terms, and univariate terms. The convex and concave envelopes are known for these simple
nonlinear expressions as functions of the variables and their upper and lower bounds. A
convex relaxation of the original function can be realized by replacing the simple nonlinear
equality constraints in Equations 2 with the convex underestimating functions §; and concave

overestimating functions g; for the nonlinear equality constraints as

G v vl v vk ul) < v < Gy vl uY vk yl) Visgk € T

3iWi v vl v v ul) < v < i vyl uY s uksuE) Visgk € T -
iy vl vY) < i < 9i(v vk, vY) Vi, j € Tt
gy vl yY) < vy < 9y, yF, vy Vi, j € Tut

Convex and concave relaxations for a variety of simple nonlinear terms are given in
Appendix A. Interval bounds for variables involved in simple nonlinear expressions are also
described in Appendix A.

This relaxation method is quite useful in that it can be used for any complex expression
that can be represented as a finite sequence of instructions in a computer code involving
a variety of standard operators and intrinsic functions with known convex and concave en-
velopes. Others have described this relaxation method applied to high level declarative mod-
eling languages [16, 17], while this work extends such methods to general purpose procedural

FORTRAN models. The Basic Reformulation does introduce new constraints and variables,

potentially increasing the problem size and computational complexity. Some functions, such
as the gamma distribution, cannot be bounded using this method because they cannot be
represented by the representation described above. Additionally, symbolic representations
are not necessarily unique, as pointed out in [11]. The Basic Reformulation method may
over-relax a function for a given representation. The function x? could be represented as
x-x, which would be mis-underestimated as a bilinear term rather than using z?, the tightest

convex underestimating function.

2.1.2 Subtree Expressions

Typically, a global optimization procedure would classify nonlinear constraints as convex or
nonconvex, applying a reformulation method to only the nonconvex constraints. Nonlinear
equality constraints are nonconvex. Nonlinear inequality constraints in the form f(x) < 0
are convex if f(x) is twice-continuously differentiable and the Hessian of f(x) is positive
semidefinite (nonnegative eigenvalues) for {x|x* < x < xV}.

It should be noted that the nonlinear equality expressions representing the function sub-
trees from Equations 2 may also be written only in terms of the original variables x. In
some cases, a subtree expression may be purely convex or concave over the original range of
x. In other cases, as an optimization procedure progresses, one or more subtree expressions
may become purely convex or concave over the current range of x. In these instances, the
problem reformulation could potentially use the original subexpression as a upper or lower
bound for y; rather than relaxing the constraints on y; using the underestimating function g;
or the overestimating function g;. For the original range of x, the Hessian eigenvalue bounds
for each subtree expression resulting from the Basic Reformulation could be analyzed, poten-

tially providing additional convex or concave constraints for some complex nonlinear terms

in the reformulation. Hessian information is currently under development for inclusion in
future releases of DAEPACK which could automate this procedure.
. This could

ol

In Example 1, the subtree expression for w, may be written as wy = (w3)
also be expressed in terms of X as wy = (2o23(xs + 23)/2)5. It can be verified that this
expression is concave given the original bounds on z5 and x3, 10 < x5, x3 < 280. Therefore
(zox3(z2 + x3)/2)* is a valid concave upper bound for wy, resulting in the convex constraint
wy — (za23(w2 + 73)/2)3 < 0. Using the Basic Reformulation method, the upper bounding
function for wy would depend upon ws, which would be relaxed in the bilinear expressions

for the w3 and wq subtrees.

2.2 «aBB Reformulation

The aBB based reformulation of Adjiman et. al [2| presents an alternative method for
creation of convex and concave bounds for complex nonlinear expressions. This method
does not require the introduction of new variables or constraints for complex expressions,
but does require that the complex function be twice-continuously differentiable and lower
bounds be calculated on the eigenvalues of the interval Hessian expressions for each complex
nonlinear term.

The nonlinear function f(x) can be written as a sum of linear terms, bilinear terms,

linear fractional terms, simple univariate nonlinear terms, and complex nonlinear terms.

f(x)= c"x+ Z?il Bixpi, w2 + thzl F; 2t

TR,

+ Zyil fUi (xUz) + Z?il fNi (X)

The complex nonlinear terms fy,(x) are assumed to be twice-continuously differentiable. A

10

lower bounding function for fy,(x) is given by
L(x) < fr(x)+) ai(ef —ay) (@] —a)
j=1

where «; is chosen such that the Hessian of L(x) is positive semidefinite. This can be
accomplished by calculating a lower bound on the eigenvalues A; of the Hessian of complex
function fy, (x).

1
aizmax{(],—— min)\]}

x! <x<xv

Calculating the exact values of the eigenvalues of the Hessian over the range of x can be
computationally demanding. As a result, a variety methods have been proposed in [1, 9] for
deriving lower bounds for the eigenvalues of the Hessian function, given interval bounds on
the elements of the Hessian matrix. While the « BB method does not require the introduction
of numerous variables and constraints for complex nonlinear terms, calculating eigenvalue
bounds for the interval Hessian adds computational complexity that must be repeated as
the bounds for x change in a spatial branch-and-bound algorithm. If a given partition
explored by the branch-and-bound algorithm results in a positive bound on the interval
Hessian eigenvalues, the a« BB method produces the tightest underestimating function for

the expression as a; = 0.

2.3 Simple Hybrid Reformulation

The Basic Reformulation and BB methods are both limited in that the function f(x)
may be relaxed more than is necessary (i.e. beyond its convex envelope) resulting in poor
lower bounds for a given partition explored by a branch-and-bound algorithm. A poor

lower bound for a partition forces increased partitioning, resulting in additional iterations.

11

It is desirable to provide the tightest possible bounds for a function using continuously
differentiable functions. A hybrid approach is proposed here to mitigate this over relaxation
of nonlinear terms.

In the Simple Hybrid Reformulation, both the Basic Reformulation and BB Refor-
mulation methods are applied simultaneously to complex nonlinear terms appearing in the
function f(x). As in the aBB Reformulation, bilinear, linear fractional, and simple uni-
variate functions are bounded using the known convex and concave envelopes. For complex
nonlinear terms appearing in the function f(x), both the Basic Reformulation and «BB
Reformulation methods can be applied to the subtree corresponding to the complex term.
The resulting constraints will be redundant, but may lead to tighter bounds in cases where
the Hessian eigenvalue bounds are poor or the Basic Reformulation produces overly relaxed
expressions. This hybrid method retains all disadvantages of the two methods, requiring
eigenvalue bounds for the interval Hessian of complex expressions while also increasing the

problem size by addition of new constraints and variables.

2.3.1 Hybrid Example

Consider the function f(z) = z(z?—1). Assume the original bounds for z as {z|-1 < z < 1}.
The Basic Reformulation results in three new variables and bounds on those variables shown
below. The term w; = x? uses 22 as the convex underestimating function and a secant

between (z”)? and (zV)? as the concave overestimating function. The bilinear term can be

12

relaxed using the convex and concave envelopes given in Appendix A.

w = T
wy = w;—1
w3 = T-Ws
0< w <1
-1< wy, <0
-1< wy <1

The underestimating relaxations for z(z*—1) are plotted in Figure 2 using both the Basic
and BB methods. The two bounds appearing from the Basic Reformulation result from
the minimal value of the projection of ws onto the z, ws plane for the two convex functions
used in the relaxation of the bilinear term z - wy. The resulting tightest lower bound on w3
isalinefor -1 <z<0and2?—-1for0 <z <1.

For the aBB Reformulation, the Hessian for the function z(z? — 1) is 6z, resulting
in o = 3 for the original partition. The BB method clearly produces a loose function
relaxation in this case, even when the exact eigenvalue of the Hessian function is known.

Figure 2 also shows the convex lower bounds for the partition {z|0 < x < 1}. In this
case, & = 0, resulting in a tight underestimate for the original function. For this partition,
the Basic Reformulation produces a looser function relaxation. In this example, the Basic
Reformulation or the aBB Reformulation will produce the tighter relaxation, depending
upon the current partition for x. Typically, the best relaxation method will not be known a

priori, so the combined approach is suggested.

13

0.5 ‘ |
— x(xz—l)
- == o BB lower bound
ok L7 Basic Reformulation
2" 4
) K4
s/\ ¢
~0.5| ot
\' \/
-3 - . 1 | g
3 0 1 0 0.5 1
x X

Figure 2: Underestimating relaxations for z(x? — 1) for two different partitions, —1 < z < 1
and 0 < z < 1 using the Basic and BB methods. The aBB lower bound relaxations equals
the original function for the second partition.

14

This example function representation is not unique and could also be coded as f(z) =
23 —x. This alternative representation results in a significantly different relaxation using the
Basic Reformulation method. The original representation may be coded by a user in order
to reduce the number of terms resulting from multiplication of polynomials. Obviously, the
representation of a nonlinear expression chosen by the user may greatly affect the resulting
relaxation of the function. This simple scalar function is used to aid the visualization of the
problem. The example in Section 2.1.2 demonstrates a complex multivariable expression that
is not trivially classified as convex or concave. As a branch-and-bound algorithm progresses,

complex nonlinear expressions may be convex or concave for a given partition, resulting in

tight bounds using the BB approach if a BB detects convexity of concavity.

2.4 Advanced Hybrid Reformulation

The Simple Hybrid Reformulation can be extended in order to potentially produce tighter
bounds for complex expressions. Using the Basic Reformulation, the BB method can be
applied to complex nonlinear terms appearing in the original nonlinear expressions, as well
as application of aBB to intermediate complex nonlinear terms that appear as a result
of the Basic Reformulation method. The BB method should be applied to the nonlinear
expression expressed in terms of the original variables x. For intermediate terms with known
convex and concave envelopes, the aBB method should not be applied.

Again, the constraints will be redundant but may lead to tighter bounds in some cases,
potentially reducing the number of partitions created in a branch-and-bound algorithm. This
hybrid method retains all disadvantages of the Basic and BB methods, but now requires
evaluation of eigenvalue bounds for the interval Hessian of many complex expressions.

The example in Section 2.1.2 contains four intermediate terms that may be relaxed using

15

both methods. The upper bound for the variable w4 can be calculated exactly using the a BB
Reformulation in this example. In other cases, intermediate terms that cannot initially be
classified as convex or concave may become purely convex or concave for a smaller partition

in a branch-and-bound algorithm, resulting in tight bounds due to the BB reformulation.

2.5 Linear Reformulation

Given a nonlinear function, the Basic Reformulation method creates new nonlinear and
linear constraints describing a convex relaxation of the original function. This set of convex
constraints can be further relaxed to a set of linear constraints. This is accomplished by
creation of valid outer approximation functions for the convex nonlinear expressions [17].

The convex envelopes resulting from bilinear and linear fractional terms are linear expres-
sions. Other nonlinear terms considered are univariate functions. For monotonic univariate
functions, the linear secant function can be used to bound the nonlinear function above or
below as appropriate on an interval. In the Basic Reformulation, the nonlinear monotonic
function itself is the upper or lower bound for monotonic nonlinear functions. In the Linear
Reformulation, valid support functions for nonlinear expressions can be readily derived at
the end points on the interval for the function. Additional linearizations of the convex non-
linear functions can be developed at additional points on the interval, tightening the linear
relaxation.

The linear bounding functions for the nonlinear functions depend upon the variable
bounds. Branch-and-bound procedures proceed by creating partitions of the variable space.
When using the Linear Reformulation method for deriving lower bounds on partitions, the
new linear relaxation bounding functions must be evaluated for each partition. The nonlinear

relationships derived in the Basic Reformulation method can be used to tighten the variable

16

Linear relaxation for W:XZ, -1<x <2

Figure 3: Example linear relaxation for w = 22, —1 < x < 2. The secant serves as the upper
bound for the function. Outer approximation supports are developed at end points and an
additional single uniformly spaced point.

bounds. Lagrangian based bounds tightening methods [15] are also applicable to the convex
linear relaxation problem.

It should be noted that for optimization problems involving both nonconvex and convex
nonlinear constraints, both the nonconvex and convex nonlinear constraints are used to derive
linear support functions for the linear relaxation reformulation. The convex lower bounding
problem becomes a problem involving only linear constraints, some of which depend upon
the variable bounds for the current partition. The Linear Reformulation method can also be
applied to problems originally containing only convex and linear constraints. The resulting
linear relaxation provides a lower bound for the convex nonlinear problem. The solution of

the convex problem can be found using branch-and-bound techniques [17].

3 Application

DAEPACK is a software library consisting of symbolic and numeric components for general

numerical calculations [19]. A distinguishing feature of DAEPACK is the set of symbolic

17

components which perform source-to-source transformations on computational codes. For
example, given a legacy FORTRAN code for evaluating a model, DAEPACK automatically
generates new code for evaluating the analytical partial derivatives of the original model with
respect to specified independent variables. This concept, originally developed in the auto-
matic differentiation community, has now been extended to include automatic generation of
a larger class of information. The current version of DAEPACK accepts FORTRAN 77 (with
some FORTRAN 90 and 95 extensions) and automatically generates portable FORTRAN
code. However, DAEPACK has been designed to be readily extended to other procedural
programming languages for both the source and target codes.

These new applications include the generation of code for determining the sparsity pat-
tern of a model, construction of a discontinuity-locked model, and the automatic construction
of the interval extension of a model. In this paper, these ideas are extended to generate auto-
matically a convex relaxation of a nonlinear model. Specifically, the user provides the original
nonlinear nonconvex model coded into a FORTRAN program and DAEPACK automatically
generates a collection of new codes which evaluate the convex relaxation of the original model
using any of the methods described above: reformulation of the factorable nonconvex func-
tions to simple nonlinear terms, creation of BB underestimators for complex nonlinear
terms, linearization of nonlinear functions, or a hybrid relaxation approach. DAEPACK
implements these multiple methods for automated code generation starting from a general
constraint formulation, producing portable FORTRAN code which can then be used in any
user-developed application.

Optimization applications can significantly benefit from the use of DAEPACK for convex-
ification, interval extension, numerical integration, and automatic differentiation. General

nonlinear programming algorithms take advantage of the automated Jacobian evaluation

18

using automatic differentiation techniques. Nonconvex global optimization algorithms can
use a variety of automated convexification methods. aBB based methods can incorporate
interval extensions produced by DAEPACK. Dynamic optimization methods can integrate
models and evaluate parametric sensitivities using DAEPACK subroutines. DAEPACK de-
livers the supporting services that enable rapid formulation and solution of nonlinear and
mixed-integer optimization problems.

DAEPACK is designed to support the general constructs used in procedural programming
languages. Assignment statements, conditional statements, control loops, goto statements,
intrinsic functions, and user-supplied subroutine and function calls can be abstracted into
this framework. DAEPACK also supports common blocks and general input/output.

Given a FORTRAN source code for a model, the original file is initially translated into
internal data structures representing the problem. This first translation step converts the
model into an intermediate representation that is essentially independent of the program-
ming language of the original source code. That is, data structures for holding programming
constructs such as assignments, loops, procedure calls, and conditional statements are suffi-
ciently general to represent a wide variety of procedural programming languages. In order
to extend DAEPACK to handle source code in other programming languages, a translator
may be written that converts the desired source into this intermediate representation.

During the next phase, the intermediate representation is converted into a set of data
structures used for code transformation and code generation. At this point, common subex-
pressions appearing in the model are eliminated. This means that if the same expression
appears multiple times throughout a model, the subexpression will only introduce one new
linear or nonlinear variable into the reformulation. Due to precedence rules, all repeated

linear subexpressions are eliminated. Repeated complex nonlinear subexpressions may not

19

be removed, depending upon the original representation. Future versions of DAEPACK will
support limited symbolic reformulation in order to identify additional common subexpres-
sions that would currently remain unexploited.

The user must specify the dependent and independent variables for the problem. With
the dependent and independent variable specified, an interprocedural dependency analysis
is performed to determine how the independent variables influence the intermediate and de-
pendent variables. Variables that depend on independent variables are referred to as “active”
variables, whereas variables that do not are “nonactive” or “passive”. This information is used
to avoid reformulating sections of code that have no impact on the dependent variables (for
example, code which simply computes data in the model).

Symbolic convexification takes place by creating a transformed convex representation of
the original problem using one of the procedures described in Section 2. This procedure is
straightforward for models involving flat sequences of expressions containing no intermediate
variable expressions, loops, conditional statements, or external subroutine calls. In this
case, the elementary function representation for each dependent variable expression can be
analyzed to identify complex nonlinear and complex intermediate subtree expressions as
required by the BB and hybrid Reformulation methods. The transformation proceeds by
recursively reducing the tree expression, producing a new forest of expressions representing
the convex relaxation. A source code representation of the convex relaxation new problem
can then be generated from this forest.

In more general cases, the internal code generation techniques become more complex. For
example, typical codes contain intermediate variables used to avoid repeated computation
of the same quantity and simplify large, complex expressions. The dependent variables are

then functions of one or more intermediate and/or independent variables. These interme-

20

diate variables are treated as a part of the expressions describing the dependent variables,
which is automatically relaxed using the recursive convexification procedures. New linear
or nonlinear variables are introduced during the convex relaxation of the active intermedi-
ate variables. These new variables are then used during the convex relaxation of any other
expression containing the corresponding intermediate variables. If an intermediate variable
is reassigned to a new expression involving active variables then the convex relaxation of
the new expression is constructed and the corresponding intermediate variable is assigned
to a new linear or nonlinear variable. Care must be taken if intermediate variables are
contained within the logical expressions of IF statements present in the code. In this case,
the convex relaxation of the intermediate variables may alter the program flow. DAEPACK
will replace logical expressions in the IF statements with expressions solely in terms of the
original independent variables so that the sequence of statements and their corresponding
convex relaxations encountered during execution is the same for both the original code and
the convexified code. The presence of conditional statement in the original code is discussed
in more detail below.

External user-supplied subroutines and functions that are called within the code are also
considered, although they must be available as source in order to be analyzed. There are a
number of reasons a programmer will use subroutines and functions within a code, including
reducing complexity, increasing reuse, and avoiding duplication of code in several areas of
the program. From the standpoint of convex relaxation, these subroutine and function calls
simply define additional relationships between the independent and dependent variables.
New code will be automatically generated for the user-supplied subroutines and functions
for evaluating the convex relaxations of the code defined within them. The interprocedu-

ral dependency analysis described above, will identify which of the subroutine or function

21

arguments are functions of independent variables and, thus, must be convexified. In some
cases, the subset of arguments of the subroutine or function that are active will be different
at different places the subroutine or function is called. In order to avoid the introduction of
unnecessary variables and constraints, several new subroutines or functions will be generated
depending on the activity of the subroutine and function arguments. The argument lists of
these transformed subroutines or functions are augmented with the additional variables that
are introduced within the code during convexification. The outputs of these modified sub-
routine or function calls are the convex relaxation of the outputs of the original subroutine
or function.

Loops within the code may define one or more intermediate and /or dependent variables.
These constraints are convexified exactly as they would be if they appeared outside the
loop, however, the number of new linear or nonlinear variables introduced are computed
as the loop is evaluated. The number of executions of the loop may not be known until
run-time. However, by dynamically computing the number of new constraints added during
the execution of the loop, the generated code will be correct for any valid input. A special
case for the use of a loop is to compute the limit of a convergent sequence. Depending on the
initial value for the limit of the sequence, the number of loop iterations performed during a
program execution may change from one execution of the loop to the next. Consequently,
the number of new variables and constraints introduce will change from call to call. These
types of implicit functions are not considered in the convexification methods presented in
Section 2. As a result, DAEPACK does not support these types of loops.

Conditional statements can also be considered. Each conditional clause in an IF state-
ment can be considered an atom, taking only Boolean values. Complex conditional expres-

sions can be represented internally using a tree expression involving equality, inequality,

22

AND, OR, and NOT operators. Using propositional logic techniques [14], new constraints
can be written for each subtree expression represented by a Boolean operation. A binary
variable can then be used to represent the Boolean value of each subtree in an expression for
the current evaluation. Assignment statements within a conditional expression containing
dependent or intermediate variable assignments can be treated as normal expressions to be
relaxed accordingly. The resulting convex constraints can be enforced or ignored, depending

upon the current values of the binary variables.

3.0.1 Logic Example

The user could supply the following code fragment containing a conditional statement:
IF ((x(1) .GE. 3).AND.(x(1) .LE. 3)) THEN
x(1)=x(2)*%2.0d0
ELSE
x(1)=x(2)*x3.0d0
END IF

This represents the following logic constraints:

(@1 23) A (21 <5) = 21 = (22)°

(31> 3) A (21 <5) = 21 = (22)°

The conditional clause contains three atoms, resulting in three new binary variables by, bg,

and b3. First consider expressing the atom z; > 3 = b;. The following constraints can be

23

used to represent this relationship and its converse, assuming M takes a large positive value:

.771—3 S Mb1

—r1+3 < M(l—bl)

In the previous expression, the second new constraint forcing b; to 0 when z; — 3 < 0 can
be written as —x; + 3+ ¢ < M(1 — b;) for € > 0. The second expression z; < 5 = by and

the overall expression b; A b, = bs result in the following constraints:

5—x1 < Mb,
—S5+z1+e < M(1—by)
by +b—1 < bs
2—(bi+b) < 2(1—by)

In cases where b3 = 1, the constraint z; = (x2)2 must be enforced, and when b3 = 0,
the constraint z; = (x2)3 must be enforced. This is accomplished with the following four

constraints. These constraints can be relaxed using the normal methods.

zy — (22)° < M(1—bs)
—z1 4 (23)° < M(1—0by)
zy — (22)° < Mbs
—z1 + (22)° < Mbs

24

CVRES Convex residual subroutine

NLCRES Input Code Parsing
Removal of Common Subexpressions

Interprocedural Depenency Analysis
User supplied Symbolic Convexification
subroutine containing | Output Code Generation

resdual functions

BOUNDS | Subroutine for evaluating variable bounds

Subroutine cal culating distance of new nonlinear
DIST) L .
variable from original nonconvex expression

ERNN

NONLIN Subroutine evaluating new nonlinear variablesin
terms of the origina variables

Figure 4: DAEPACK source-to-source conversion of FORTRAN constraint representation

3.1 DAEPACK Example

Given a FORTRAN vector valued residual subroutine, DAEPACK can produce four new
source code files for evaluation of a variety of convex model information, as represented in
Figure 4. The user provides a file containing a subroutine of residual values for a set of
nonlinear expressions, NLCRES. The first automatically generated file, CVRES, contains a
new subroutine which returns residual values for the linear version of the original equations,
the residual values for the new linear relationships, and the residual functions for the new
convex relationships. This routine also provides the number of new linear and nonlinear
variables used in the reformulation, as well as the new number of constraints derived from
nonconvex expressions. The second file, BOUNDS, contains source code used to evaluate and
tighten variable bounds, based upon existing variable bounds. The third file, DIST, contains
code that can be evaluated to determine the difference between a new nonlinear variable and
the corresponding original nonconvex function. For example, the nonlinear variable w may
be introduced for the bilinear term z,x5. The distance would be evaluated for the current
variable values as w — z125. This information can be used in global optimization routines to
determine which nonconvex term is poorly relaxed, providing information useful for deciding
on potential branching variables. The final file, NONLIN contains code which returns the

value of the new nonlinear variables in terms of original variables. This can readily be

25

used to determine the dependency of new nonlinear variables on the original variables. This
information is also useful for developing Hessian information used in the BB and Hybrid
Reformulation methods.

Figure 5 shows example source code produced by DAEPACK. The resulting source code

contains normal FORTRAN code which can be manipulated by DAEPACK for automatic

differentiation or interval analysis purposes.

3.2 Branch-and-Bound Application

Applications of DAEPACK in a branch-and-bound algorithm using convexification, auto-
matic differentiation, and interval analysis techniques are shown in Figure 6 for solution
of a nonconvex nonlinear programming problem. The constraints of the original problems
are currently classified as linear, nonlinear convex, and nonconvex by the user and separated
into respective source files LINEAR, CONVEX, and NLRES. This preprocessing is currently
accomplished using MAPLE, but will eventually be accomplished with DAEPACK Hessian
functionality. DAEPACK automatic differentiation can be used to generate Jacobian infor-
mation for the nonlinear constraints, generating files CONVEXAD, and NLRESAD. When
compiled, subroutines evaluating constraint values in LINEAR, CONVEX, and NLRES along
with the analytical Jacobian values obtained from CONVEXAD and NLRESAD can be used
to solve a local nonconvex upper bounding problem for a specified branch-and-bound parti-
tion.

Convexification of the original nonconvex constraints results in four new subroutines.
The Jacobian of the CVRES subroutine yields the linear coefficients for the original non-
convex constraints, the linear coefficients for the new linear relationships, and the Jacobian

of the new nonlinear convex constraints. Using this information, a lower bounding con-

26

subroutine cons(delta,mm,nn,x)

double precision delta(mm),x(nn)

integer mm,nn

delta(1) =x(1)-x(13)* ((x(25)*x(26)* (x(25)+x(26))* 0.5d0)
¢ **-0.3333333333d0)

Origina Code >

Transformed Code for

Convex Resdua Evauation

~

subroutine conscv(deltamm,nn,x,x_lo,x_up,zzz_nlvar,zzz_lvar,
$ zzz_lvar_lo,zzz_lvar_up,zzz_Icon,zzz_nnvar,zzz_nvar,
$ zzz_nvar_lo,zzz_nvar_up,zzz_nncon,zzz_ncon,zzz_nrhs)
!lindependent { x }
Ildependent { delta}
implicit none
integer nn
integer mm
double precision x(nn),x_lo(nn),x_up(nn)
double precision delta(mm)
integer zzz_nlvar
double precision zzz_lvar(zzz_nlvar)
double precision zzz_Ivar_lo(zzz_nlvar),zzz_lvar_up(zzz_nlvar)
double precision zzz_lcon(zzz_nlvar)
integer zzz_nnvar
double precision zzz_nvar(zzz_nnvar)

double precision zzz_nvar_lo(zzz_nnvar),zzz_nvar_up(zzz_nnvar)

integer zzz_nncon
double precision zzz_ncon(zzz_nncon),zzz_nrhs(zzz_nncon)
double precision zzz_alpha,zzz_tmp

CHt#t New constraints for convexification of bilinear term #1
zzz_ncon(1)=x_lo(25)*x(26)+x_lo(26)*x(25)-zzz_nvar(1)
zzz_nrhs(1)=x_lo(25)*x_lo(26)
zzz_ncon(2)=x_up(25)*x(26)+x_up(26)*x(25)-zzz_nvar(1)
zzz_nrhs(2)=x_up(25)* x_up(26)
zzz_ncon(3)=-x_l0(25)*x(26)—x_up(26)*x(25)+zzz_nvar(1)
zzz_nrhs(3)=—x_lo(25)*x_up(26)
zzz_ncon(4)=-x_up(25)*x(26)-x_lo(26)* x(25)+zzz_nvar(1)
zzz_nrhs(4)=—x_up(25)*x_lo(26)

Cittt

Ctt#t New linear constraint #1
zzz_|con(1)=zzz_lvar(1)—(x(25)+x(26))

Ctit

CHt#t New constraints for convexification of bilinear term #2
zzz_ncon(5)=zzz_nvar_lo(1)*zzz_lvar(1)+zzz_lvar_lo(1)*
$ zzz_nvar(1)-zzz_nvar(2)
zzz_nrhs(5)=zzz_nvar_lo(1)*zzz lvar_lo(1)
zzz_ncon(6)=zzz_nvar_up(1)*zzz_Ivar(1)+zzz lvar_up(1)*
$ zzz_nvar(1)-zzz_nvar(2)
zzz_nrhs(6)=zzz_nvar_up(1)*zzz_lvar_up(1)
zzz_ncon(7)=-zzz_nvar_lo(1)*zzz_lvar(1)-zzz_Ivar_up(1)*
$ zzz_nvar(1)+zzz_nvar(2)
zzz_nrhs(7)=-zzz_nvar_lo(1)*zzz_Ivar_up(1)
zzz_ncon(8)=-zzz_nvar_up(1)*zzz_lvar(1)-zzz_lvar_lo(1)*
$ zzz_nvar(1)+zzz_nvar(2)
zzz_nrhs(8)=-zzz_nvar_up(1)*zzz_lvar_lo(1)

Citifit

CH## New linear constraint #2
zzz_|con(2)=zzz_lvar(2)—(zzz_nvar(2)*0.5d0)

if(zzz_lvar_lo(2).ge.0.0d0) then
Ctitt New constraints for convexification of nonlinear term #3
zzz_ncon(9)=-zzz_nvar(3)+(zzz_lvar(2))**-0.3333333333d0
zzz_nrhs(9)=0.0d0

zzz_ncon(10)=zzz_nvar(3)—(zzz_Ivar_up(2)**-0.3333333333d0

$ -zzz lvar_lo(2)**-0.3333333333d0)/(zzz_lvar_up(2)—
$ zzz_Ivar_lo(2))*(zzz_Ivar(2)-zzz_lvar_lo(2))
zzz_nrhs(10)=zzz_lvar_lo(2)**-0.3333333333d0
Cittt
else
write(*,*) ' Invalid nonlinear expression.’
write(*,*) ' Try reformulating problem.’
stop

end if

Ctitt New constraints for convexification of bilinear term #4

zzz_ncon(11)=x_lo(13)* zzz_nvar(3)+zzz_nvar_lo(3)*x(13)
$ -zzz_nvar(4)

zzz_nrhs(11)=x_lo(13)*zzz_nvar_lo(3)
zzz_ncon(12)=x_up(13)*zzz_nvar(3)+zzz_nvar_up(3)*x(13)
$ -zzz_nvar(4)

zzz_nrhs(12)=x_up(13)*zzz_nvar_up(3)
zzz_ncon(13)=-x_lo(13)*zzz_nvar(3)-zzz_nvar_up(3)*x(13)
$ +zzz_nvar(4)

zzz_nrhs(13)=-x_lo(13)*zzz_nvar_up(3)
zzz_ncon(14)=-x_up(13)*zzz_nvar(3)-zzz_nvar_lo(3)*x(13)
$ +zzz_nvar(4)

zzz_nrhs(14)=-x_up(13)*zzz_nvar_lo(3)

Ctt
delta(1)=x(1)—zzz_nvar(4)

Ctt New constraints for convexification of bilinear term #5
zzz_ncon(15)=x_lo(26)*x(27)+x_lo(27)*x(26)—zzz_nvar(5)
zzz_nrhs(15)=x_lo(26)*x_lo(27)
zzz_ncon(16)=x_up(26)*x(27)+x_up(27)*x(26)~zzz_nvar(5)
zzz_nrhs(16)=x_up(26)*x_up(27)
zzz_ncon(17)=-x_lo(26)*x(27)-x_up(27)*x(26)+zzz_nvar(5)
zzz_nrhs(17)=-x_lo(26)*x_up(27)
zzz_ncon(18)=—x_up(26)*x(27)-x_lo(27)*x(26)+zzz_nvar(5)
zzz_nrhs(18)=-x_up(26)*x_lo(27)

Ct# New linear constraint #3
zzz_|con(3)=zzz_lvar(3)-(x(26)+x(27))
Citt

Figure 5: Example of original model source code and resulting convex model source code
using basic formulation.

27

LINEAR DAEPACK Code Generation Methods:
— AD AD = Automtic Differentiation
Origind 7 | convex | —— |CONVEXAD| CV =Comvexfication
Problem INT = Interval Analysis
\ AD
NLRES | —» | NLRESAD Used for convex problem:

Used for nonconvex problem: * Cv gg[\lf\//-\ERx
I(_:ICI)\II\IIEOERX - - - -~ - AD CONVEXAD
CONVE CVRES 3 CVRESAD CVRES

| ORIGINAL | GvRrESAD

| NEWLIN For Linear Reformulation, new nonlinear

: NEWNL constrai nts Use outer approxi mation, convex
: congtraintsincluded in convexification
I

I

I

CONVEXAD
NLRESAD

BOUNDS

For a BB Reformulation and Hybrid
approaches, HESSIANINT supplies
interval Hessanvalues

DIST

NONLIN

INT
T HESSIAN | —{HESSIANINT

[T R |

AD /

Dependancy of new nonlinear
variableson original variables

Figure 6: Application of DAEPACK for global solution of nonconvex optimization problems,
solving local upper bounding problems and convex lower bounding problems for a given
partition.

28

vex problem can be solved for a given partition in the branch-and-bound algorithm. The
BOUNDS subroutine can be used to update variable bounds based on the interval extensions
of the nonlinear relationships. The DIST subroutine provides information useful for deciding
which nonconvex relationship is poorly approximated in the convex problem. The NONLIN
subroutine provides the actual relationships for the new nonlinear variables in terms of the
original variables. This can also be used to provide reasonable initial guess for new nonlinear
variables, given values of the original variables. The sparsity pattern of this subroutine also
provides the relationships for each nonlinear constraint, information useful for deciding on
new branching variables.

Using the Linear Reformulation, the new nonlinear convex relations in the file CVRES
actually only contain linear constraints derived as outer approximations of the nonlinear
convex expressions. The Jacobian values from CVRESAD can be updated based upon the
current variable bounds, providing the linear constraint coefficients for a given branch-and-
bound partition. For « BB and Hybrid Reformulation, the nonlinear relationships expressed
in NONLIN can be used to derive Hessian expressions. The interval extension of source code

containing the Hessian elements can be used to bound the eigenvalues of the Hessians.

4 Results

A branch-and-reduce optimization routine has been developed based on [15, 16, 2| to support
development of the general purpose outer approximation algorithm described in [10]. This
method has been tested on a variety of example from taken from [15, 4]. Bounds tightening
techniques based upon interval analysis of nonlinear constraints and linear constraints have
been established. Additionally, Lagrangian based techniques can be used for bounds tight-

ening. General optimization problems can be automatically analyzed, generated, and solved

29

Table 1: Comparison of objective function results using various relaxation techniques for

HENS problem on a single partition.

Reformulation Simple | Advanced Linear Linear Linear
Type Basic aBB | Hybrid Hybrid 3 Supports | 6 Supports | 10 Supports
Objective 1 112563 | 104192 | 112563 120276 111741 112418 112549
Objective 2 134338 | 125466 | 134338 137026 133141 134084 134325
Variables 136 72 136 136 136 136 136
Nonlinear Constraints 12 24 36 84 0 0 0
Linear Constraints 249 65 249 249 285 321 369

starting from a simple text file containing the problem formulation.

4.0.1 Lower Bound Comparison

Table 1 shows a comparison of objective function lower bound results for using the various
relaxation techniques on the MINLP HENS problem presented in |20, 2, 1]. These problems
were derived by fixing the binary variables to the global solution values and solving the
resulting lower bounding convex problem on two different variable partitions. The row for
Objective 1 corresponds to the relaxation at the root node (first partition), while Objective
2 is the lower bound for a partition potentially encountered in the branch-and-bound search.

NPSOL 5.0 was used to solve the nonlinear convex NLP problems with a tolerance of
le-6, while CPLEX 7.0 was used for the linear problems. The eigenvalue bounds for a BB
and Hybrid methods were calculated using the interval extension of Gerschgorin’s theorem
[2]. The known concavity of intermediate terms was exploited for the Advanced Hybrid
method.

The number of linear outer approximation support functions for this example was ex-
amined at values of 3, 6, and 10 evenly spaced intervals. As expected, the Basic method
presents a better lower bound than the linear formulations, although the linear formulation

with 10 evenly spaced approximations is within the relative tolerance of the nonlinear con-

30

y -2 -2

Figure 7: Objective function manifold for example problem for Problem 4.

vex NLP result. Compared to the Basic reformulation, the a BB method lower bound is
worse, the Basic Hybrid method shows no improvement, and the Advanced Hybrid method
provides a better bound. A variety of methods for bounding the eigenvalues of a symmetric
matrix are available, and could easily yield tighter bounds for the a BB and hybrid meth-
ods. DAEPACK creates general purpose code for calling eigenvalue bounding subroutines,

allowing the user to use the default method or a user developed method.

4.0.2 Global Solution Comparison

The following problem from |7, 4] is considered for global solution. This problem has no

constraints, but exhibits significant nonlinearity, as seen in Figure 7.

31

min [1+ (z+y+1)* (19 — 147 + 322 — 14y + 62y + 3y°)] (4)

x [30+ (22 — 3y)* (18 — 327 + 1222 + 48y — 36zy + 27y?)]

The global solution occurs at z = 0, y = —1 with an objective value of 3. The relaxation
techniques require that realistic variable limits be specified. Results are presented for z* =
y’ = -2 and 2V = ¢yY = 2.

NPSOL 5.0 was used with a relative tolerance of le-6 for solution of nonlinear convex
lower bounding problems. The absolute tolerance for the global branch-and-bound solution
was le-2. The upper bound values for each partition were generated by evaluating the
objective function at the corners and midpoint of the rectangular partition. At each iteration,
Lagrangian values, nonlinear relations, and linear relations were used for bounds tightening.
A limit of 15 bounds tightening iterations was enforced per iteration. No optimization based
bounds tightening was performed at any point in the algorithm. Branching variable decision
was based upon worst constraint, then worst ratio of current bounds to original bounds for
constraints with more than one variable. Bisection was used for branchpoint selection. An
objective function cut was used in the lower bounding problem, based on the current best
upper bound. The aBB constraints were scaled by le-4. Gerschgorin’s theorem was used
for calculation of Hessian eigenvalues. The objective function was expressed as a nonlinear
constraint, requiring addition of a single variable and constraint. All runs were performed
on a Pentium IIT 755 MHz processor with 128 MB RAM running Linux 2.2.14.

Table 2 shows a comparison of branch-and-reduce results for Problem 4. The aBB
method did not converge after 10,000 iterations. This may be due to calculation of loose lower

bounds for Hessian eigenvalues using Gerschgorin’s theorem. A variety of other methods are

32

Table 2: Comparison of branch-and-reduce results using various relaxation techniques for
Problem 4.

Reformulation Simple | Advanced Linear Linear
Type Basic | aBB | Hybrid Hybrid 3 Supports | 10 Supports
Partitions Created 3147 | >10000 | 2625 2128 3265 3255
Convex Problems 7847 | >10000 | 9201 7435 6531 6511
Solution Time (s) 420 * 736 773 150 166
Variables 20 3 136 20 20 20
Nonlinear Constraints 28 2 30 34 0 0
Linear Constraints 9 1 9 9 45 73

*aBB did not converge for this problem after 10,000 iterations.

available for bounding the eigenvalues of a symmetric matrix. Additionally, improved interval
bounds on the Hessian elements may be possible using symbolic reformulation techniques.
The aBB method converges to the global solution in this implementation when limiting
the variable range to the global solution £1e-4 using 511 partitions in 31 seconds. Table 2
shows the hybrid methods benefit from the use of additional constraints via a reduction the
total number of partitions created, although overall solution times are worse than solution
using the Basic Reformulation method. Again, improved techniques for bounding Hessian
eigenvalues could improve results when using the hybrid methods for convexification.

The linear formulation appears quite promising. As compared to the Basic Reformulation,
these results show a slight increase in total number of partitions created while improving the
overall solution times. The linear formulation with 10 support functions for each nonlinear
expression exhibits little difference in terms of number of partitions as compared to the
basic reformulation. The linear method approaches the moderately tight convexification of
the Basic method, while exploiting the stability, robustness, scalability, and speed of linear
programming techniques.

This simple comparison of convexification techniques is by no means intended to be ex-

haustive. Obviously, different problems will present different results using various relaxation

33

methods. Results may also change with application of different heuristics or additional
extensions to the current global optimization implementation, including interval tests for
constraints and optimization based bounds tightening techniques. This example shows that
the hybrid reformulation techniques can potentially reduce the total number of partitions ex-
plored in a branch and bound problem. Further, this example demonstrates that DAEPACK
can automatically produce the varied information needed by global optimization algorithms

using a very general model representation.

5 Conclusions

The symbolic source-to-source functionality of DAEPACK has been extended to create con-
vex problem reformulation given an original source code model. This general purpose tool
can be used for development of new global optimization algorithms. DAEPACK produces
portable code given a model represented in a general FORTRAN subroutine. A variety of
convexification techniques are available, including the Basic Reformulation of McCormick,
the a BB Reformulation of Adjiman et. al, and the Linear Reformulation of Ryoo and Sahini-
dis. Hybrid methods have also been proposed for improving the resulting convex relaxation.
These relaxation methods have been demonstrated in a branch-and-reduce example, pre-
senting tradeoffs between convexification tightness and computational time for nonlinear
relaxation techniques. Relaxation based on linear outer approximation of the Basic Refor-
mulation of McCormick can mitigate this tradeoff, using linear programming technology with
moderately tight bounds on the problem relaxation.

Acknowledgement

The authors would like to acknowledge financial support from the National Computa-

tional Science Alliance.

34

References

[1]

2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

C. S. Adjiman. Global Optimization Techniques for Process Systems Engineering. PhD thesis,

Princeton University, Princeton, NJ, 1998.

C. S. Adjiman, S. Dalliwig, C. A. Floudas, and A. Neumaier. A Global Optimization Method,
aBB, For General Twice-Differentiable Constrained NLPs - I Theoretical Advances. Comput.

Chem. Eng., 22(9):1137-1158, 1998.

M. A. Duran and I. E. Grossman. An Outer-Approximation Algorithm for a Class of Mixed-

Integer Nonlinear Programs. Mathematical Programming, 36:307-339, 1986.

C. A. Floudas et. al. Handbook of Test Problems in Local Global Optimization. Kluwer Academic

Publishers, 1999.

J. E. Falk and R. M. Soland. An Algorithm for Separable Nonconvex Programming Problems.

Management Science, 15(9):550-569, 1969.

R. Fletcher and S. Leyffer. Solving Mixed Integer Nonlinear Programs by Quter Approximation.

Mathematical Programming, 66:327-349, 1994.

A. Goldstein and J. Price. On Descent from Local Minima. Mathematics of Computation,

25:569-574, 1971.

A. Griewank. Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation.

SIAM, Philadelphia, 2000.

D. Hertz, C. S. Adjiman, and C. A Floudas. Two Results on Bounding the Roots of Interval

Polynomials. Comput. Chem. Eng., 23:1333-1339, 1999.

P. Kesavan and P. I. Barton. Decomposition Algorithms for Nonconvex Mixed-Integer Non-
linear Programs. Fifth International Conference on Foundations of Computer-aided Process

Design, Breckenridge, CO. AIChE Symposium Series, 96:323—-325, 2000.

35

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

G. P. McCormick. Computability of Global Solutions to Factorable Nonconvex Programs: Part

I - Convex Underestimating Problems. Mathematical Programming, 10:147-175, 1976.
R. E. Moore. Methods and Applications of Interval Analysis. STAM, Philadelphia, 1979.

L. B. Rall. Automatic Differentiation: Techniques and Applications. In G. Goos and J. Hart-

manis, editors, Lecture Notes in Computer Science. 1981.

R. Raman and I. E. Grossman. Integration of Logic and Heuristic Knowledge in MINLP

Optimization for Process Synthesis. Comput. Chem. Eng., 16(3):155-171, 1992.

H. S. Ryoo and N. V. Sahinidis. Global Optimization of Nonconvex NLPS and MINLPs With

Application to Process Design. Comput. Chem. Eng., 19(5):551-566, 1995.

E. M. B. Smith. On the Optimial Design of Continuous Processes. PhD thesis, Imperial College,

London, 1996.

M. Tawarmalani and N. V. Sahinidis. Global Optimization of Mixed Integer Nonlinear Pro-

grams: A Theoretical and Computational Study. Technical report, 2000.

J. E. Tolsma and P. I. Barton. On Computational Differentiation. Comput. Chem. Eng.,
22(4):475-490, 1998.

J. E. Tolsma and P. I. Barton. DAEPACK: An Open Modeling Environment for Legacy Code.

Ind. Eng. Chem. Res., 39(6):1826-1839, 2000.

T. F. Yee and I. E. Grossman. Simultaneous Optimization Models for Heat Integration - II.

Heat Exchanger Network Synthesis. Comput. Chem. Eng., 14(10):1165-1184, 1990.

36

6 Appendix A- Convex Envelopes and Bounds of Simple

Nonlinear Functions

6.1 Bilinear and Linear Fractional Terms

Bilinear terms appear as w = x;x9. Bounds for w and z; are expressed in Table 3. Bounds

1
Z2

for x5 are similar to those displayed for x;. Linear fractional terms appear as w = £ and

can be reformulated to a bilinear form, z, = wx,.

w < xfxg + :rlxg — xfxg
w < z{zy+ 737y — 22y
w > (T + 11Ty — T Ty
wo > x?xz + xlxg - xlUxQU

6.2 Univariate Monotonic Functions

Univariate monotonic functions w = f(z) can be bounded using the secant function. For
convex functions, the secant function derived from the bounds on x becomes the upper bound
and the function itself serves as a lower bound. For concave functions, the secant function
can be used as the lower bound and the function itself serves as a upper bound. Bounds
on w can be derived by evaluating the function at z and zU. If the function is invertible,

bounds can be derived for z as a function of w’ and wV.

37

6.3 Univariate Power terms
6.3.1 Variable Raised to a Constant

There are many possible cases for creating the convex relaxation of equations in the form
w = z¢, where ¢ is some constant in R and w, x € R. A secant function can be used as an
upper or lower bound on the function w = x¢, depending upon the case.

The special case for w = x¢ where c is an odd integer and 0 € [z¥, 2V] should be noted.
This function contains both convex and concave portions on the region [zX,zY]. Secant
functions of the following form can be used to bound this function. These bounds converge

to w = x¢ for z = 0. For 0 ¢ [xL, 2Y], the normal convex envelope functions are used.

Given upper and lower bounds on w and =z, it is also useful to develop bounds on w and zx.
These bounds are given in the Table 4.
6.3.2 Constant Raised to a Variable

Consider the function w = ¢®, where c is some strictly positive constant in R and w, x € R.
A secant function can be used as the upper bound on the function. The function itself serves

as the lower bound. The bonds on w and z are given in Table 5.

6.3.3 Variable Raised to a Variable

For the expression w = (x1)%2, constraint can be reformulated as In(w) = zsln(z;) and

treated as an expression involving monotonic functions and a bilinear expression.

38

New Bounds on w New Bounds on z1 if [za] > €
L L. wl wl ¥ U
L _ L . L L LU UL U U ry =max{zy,ming ——, —, —, 7
w —max{w ,mm{mlmz,mlmQ,mlmz,mlmz}} ’ w%’wéJ’w%’acgU
U,-{U {LLLUULUU}} L L .U .U

w” =min{w"~ ,max{zyey,ry Ty, 2] 5,y T .

» MAX Ly Ty, Ty L5, Ty Ty, Ty Ty m?:mln zij,max wo W Wl W
T2 %3 T3 %3

Table 3: Bounds for w and z; given the function w = z1x9 with w, z1, o € R

P T Secant New Bounds on w New Bounds on z
L L Lye 2l = max {2t (U)L)%
L w :max{w ,(z7) ’
c>1,c¢gN 0<= Over U . U (.Uye 1
w :mm{w , () wU:min{ccU,(wU)E
1
L L L=
L wL:max{wL,(wL)c » :max{m (wye
0<ec<1 0< = Under . U (Uye 1
:mm{w ,(zY) g;U:min{a:U,(wU)E
c=1 z € [z7,27] Linear
1
wL—max{w ,0} =L :max{wL,f(wU)E}
c=2n,neN 0¢€ [zl 2¥] Over wY = min{wY, U U ULl
max{ ()¢, («Y)°}} z :min{m »(w)C}
L L LN%
L wL:max{wL,(mL)c} ® :max{m (w)c}
0<z Over U . U (,Uye
w :mm{w , (z)} zUzmin{acU (wY)e
U wl = max {wT, (zV)° ol = max{zl, —(wY)?
z” <0 Over 1% . U Lie
w” =min{w”, (z”) 2V = min :EU,*(U)L)C
T
L L Ly=
. wl = max {wk, (zY)° z :max{m ,(w™)e
c=2n+1,n €N 0€[z”,2"] Both U . U Lye 1
w"” = min{w"”, (") g;U:min{a\cU,(wU)E
1
L L L=
. wE = max{wl, (@V)° z =max{z ,(w™)e
0< z Over U i U Lie 1
w” = min{w", (z") g;U:min{mU,(wU)E
I
U wl = max {w’, (2V)° @t = max{mL’(WL)c
z¥ <0 Under . Lie 1
w” = min{w",(z") mU:min{mU,(wU)?
1
L L Uy=
r wL:max{wL;(mU)c} ® :max{ac ’(w)C}
c=—-2n,n €N 0<z Over 1% . U Lye 1
w :mm{w ,(z)} xU:min{wU,(wL)z}
1
L L Ly=
. wL:max{wL,(wL)c » :max{m (w)e
z- <0 Over U . U (,Uyc 1
w :mm{w , (2Y) g;U:min{a\cU,(wU)E
T
L L <
L wL:max wL,(xU)c T = max< o ,(wU)C
c=-2n+1,n €N 0< z Over U . U Lye 1
w” =min{w", (") 2V = min{2V, (wl)e
1
U wl = max wL,(mu)c @b = max mL’(wU)c
z¥ <0 Under U . U Lie 1
w” =min{w", (z7) 2Y = min a:U,(wL)z

Table 4: Enumeration of possible cases for creation of the convex relaxation of w = x¢. Here
it is assumed w, xR with ¢ a constant € R. The secant function can over/under estimate
the function, depending upon the case. Additionally, expressions are provided for developing
tight bounds on w and z.

39

New Bounds on w New Bounds on w
L U
. L U
w? = max { w¥, min c(”),c(”) 2L = max d gL min { ™) InwY)
’ In(c) * In(ec)
L U U_ . U In(wl) In@Y)
wU=min{wU,max C(E)’C(m) T 7m1n{m , max ORI OR

Table 5: Bounds expressions for the function w = c*where ¢ is some strictly positive constant
in R and w, z € R.

40

