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Abstract

A rigorous decomposition approach to solve separable mixed-integer nonlinear pro-
grams where the participating functions are nonconvex is presented. The proposed al-
gorithms consist of solving an alternating sequence of Relaxed Master Problems (mixed-
integer linear program) and two nonlinear programming problems (NLPs). A sequence
of valid nondecreasing lower bounds and upper bounds is generated by the algorithms
which converge in a finite number of iterations. A Primal Bounding Problem is intro-
duced, which is a convex NLP solved at each iteration to derive valid outer approxima-
tions of the nonconvex functions in the continuous space. Two decomposition algorithms
are presented in this work. On termination, the first yields the global solution to the
original nonconvex MINLP and the second finds a rigorous bound to the global solution.
Convergence and optimality properties, and refinement of the algorithms for efficient
implementation are presented. Finally, numerical results are compared with currently
available algorithms for example problems, illuminating the potential benefits of the
proposed algorithm.
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1 Introduction

A general class of optimization problems involving integer and continuous variables can be
defined as:

min f(z, y)
T,y

s.t. h(z,y)=0

g(z,y) <0
zeXCR

yeY ={0,1}4 (1)

This problem is essentially finding the minimum of a real valued function (f) subject to
constraints defined by vector valued functions (¢ and h) in the continuous-discrete (z-y)
space. Integer and discrete valued variables with given lower and upper bounds may al-
ways be represented by sets of binary variables [13]. Problems of this type are generally
termed Mixed-Integer Nonlinear Programming problems (MINLP). MINLP has applications
in several disciplines: design and scheduling of multipurpose batch plants [28], topology op-
timization in transportation networks [17], optimal unit allocation in electrical networks [9],
computer aided molecular design [26] and process systems synthesis [20] are some examples.

Significant advances have been made in the last four decades in solving problems de-
fined by equation 1 by exploiting the special problem structures that result under certain
assumptions. A class of such algorithms known collectively as decomposition strategies are
derived based on the principles of projection, outer approximation and relaxation. Gener-
alized Benders Decomposition (GBD) [15] and its variants use dual information for outer
approximation and the Outer Approximation (OA) algorithm and its variants are based on
using optimal primal information for outer approximation [10, 12]. The GBD algorithms are
valid under the main assumptions that the functions f : X xY — Rand g: X XY — RP are
convex, and h: X X Y — R™ is linear in the continuous variable x € X C R" for each fixed
y € Y = RY. Several variants of GBD have been developed under further assumptions such
as f, g and h being separable in x and y, and the y variables appear linearly in the problem
defined by equation 1. The original OA algorithm [10] can find the global solution of problem
1 when the functions (f and g) are convex and separable in x and y and are linear in y, in the
absence of equality constraints (h). The OA algorithm developed by Fletcher and Leyffer
[12] can solve the problem defined by equation 1 to find the global optimum in the absence
of nonlinear equality constraints (the algorithm allows linear equality constraints as long as
they are included in the definition of X X Y') and when f and g are convex. An excellent
review of currently existing algorithms when f, g and h are convex is given in Floudas [13].

Many practical optimization problems often involve nonconvex functions f, ¢ and h, and
this class of problem is generally termed a nonconvex MINLP. Global solutions of these
problems cannot be guaranteed by the aforementioned algorithms. The reason is that lin-
earizations derived at the solutions (even global) of the nonconvex primal NLPs can cut off
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portions of the feasible space, and hence a global solution cannot be guaranteed by OA.
Similarly, in the GBD algorithms the support functions derived can also cut off portions of
the feasible space [30]. However, more recently, deterministic algorithms based on branch
and bound strategies have been developed (e.g., branch-and-reduce [29], GMIN-aBB and
SMIN-aBB [1] and spatial branch and bound [33]) to find the global solutions of nonconvex
MINLPs. All of these algorithms are based on solving a lower bounding Relaxed Mas-
ter Problem and an upper bounding Primal Problem at each node of the branch and bound
tree. They differ only in the formulation of the Master and Primal problem, and the heuristic
branching strategy. A brief review of these algorithms is given in the following paragraphs.

The Master Problem in all the algorithms is derived using the principle of convex relax-
ation of a nonconvex function defined on a specified domain. The concept of constructing the
convex hull of the feasible region and convex envelope of the objective function to solve non-
convex NLPs has long been established [11, 18, 34|. The major difficulty in implementation
however has been in deriving the same efficiently in practice. There have been significant
developments in deriving convex relaxations of a given function of special structure in the
last couple of decades. For example, convex envelopes for bilinear functions [24, 6], univari-
ate concave, trilinear, fractional and fractional trilinear functions [23] have all been derived.
A method for constructing convex underestimators for factorable functions was presented in
[24]. More recently, a valid convex underestimator for arbitrary general twice continuously
differentiable nonconvex functions has been derived [3, 22]. It should be noted that while
elucidating the convex envelope of a given function is as hard as solving the nonconvex op-
timization problem, deriving a convex underestimator (not necessarily the convex envelope)
of a given function can be achieved with polynomial complexity for a broad class of func-
tions [3, 24]|. This concept is pivotal to this paper because any valid convex underestimating
function will serve the desired theoretical purpose, at the cost of a potential loss of efficiency.

The branch-and-reduce algorithm [29] is applicable to nonconvex MINLPs of the general
type defined by equation 1. The lower bounding Master problem is obtained by relaxing the
binary variables in the nonconvex MINLP to be continuous, adding constraints that force
the binary variables of the original problem to take discrete values, convexifying this NLP,
and then solving the resulting convex NLP at each node. Any procedure (which is valid)
could be used to find the upper bound. A set of branching rules has been developed.

The SMIN-aBB algorithm [1] is applicable to nonconvex MINLPs in which the integer
variables participate linearly or in bilinear mixed integer terms in equation 1. A branching
strategy that allows branching on a combination of integer and continuous variables has
been developed. For each partition, a valid convex MINLP is constructed based on the
principles of a-BB [3, 22| for twice continuously differentiable functions. The solution of
the convex MINLP and the (rather unpredictable) result produced by applying a standard
procedure such as OA and GBD to the original nonconvex MINLP provide the lower and
upper bounds respectively, restricted to the current partition (node of the branch-and-bound
tree). The upper and lower bounding MINLPs can be solved by GBD or OA. The GMIN-
aBB algorithm [1] is applicable to nonconvex MINLPs described by equation 1 and where the



functions f, g and h are twice continuously differentiable. The algorithm is very similar to
SMIN-aBB except for the generation of the lower bounds, which are obtained in each region
of interest (each node of the branch-and-bound tree) by first relaxing the integer variables
to be continuous, and then solving the resulting nonconvex NLP using the a-BB algorithm
[3]-

A heuristic based set of branching rules to prune the feasible space have been suggested
in each of these algorithms. On the other hand, the development of decomposition algo-
rithms to solve nonconvex MINLPs has been limited due to the difficulty in constructing
valid support functions/linearizations, as mentioned previously. However, empirical experi-
ence indicates that decomposition algorithms perform better on average than Branch and
Bound approaches [13] for solving convex MINLPs, and this motivates the development of
decomposition approaches to solve nonconvex MINLPs. In this paper, we show that the con-
vex underestimators employed by the branch-and-bound approaches may also be exploited
to develop rigorous decomposition algorithms for nonconvex MINLPs. The theoretical and
algorithmic development is detailed in the sections that follow.

2 Problem Description and Reformulation

The class of nonconvex MINLPs considered in the present work conform to the following
formulation:

min c]y + f(z)
Y
st.gi(z)+ By <0
go(z) + By < 0
re X CR?
yeY ={0,1}1 (2)

where f : X — R and ¢g; : X — RI* are continuous but nonconvex, and g : X — R
is convex on the nonempty, compact, convex set defined by X = {z : z € R”, D1z < ¢y}.
By, By, Dy and ¢, ¢y are matrices and vectors of conformable dimensions respectively. The
problem as defined by equation 2 will be referred to as P hereafter. These assumptions are
sufficient to guarantee that either a minimum exists or the problem is infeasible.

Remark 2.0.1. Fquality constraints which are separable in the continuous and the binary
variables and which are linear in the binary variables can be represented as a pair of inequal-
ittes which then conform to the form defined in P. Further if the constraints are linear in
the continuous variables, then the inequalities are conver and can be included in (go). If the
constraints (inequalities) are nonlinear and nonconver, then they are included in (g1).

Remark 2.0.2. Mized bilinear terms (product of continuous and binary variables) in the
equality and inequality constraints can be reformulated using the exact linearization strategy
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developed by Glover [16]. The resulting linearized constraints conform to the form defined
in P. It should be noted that the mized bilinear constraints (as well as mized trilinear and
fractional constraints) are linearized at the expense of introducing additional variables.

Two different algorithms are developed in this paper to solve P as defined above. On
termination, the first algorithm (Figure 1) finds the global solution of P and the second al-
gorithm finds rigorous bounds bracketing the global solution of P . The algorithms presented
here are based on the construction of the following subproblems:

Lower Bounding Convex MINLP the solution of which yields a valid lower bound
to the global solution of problem P.

Master Problem a MILP, the solution of which represents a valid lower bound to the
global solution of P.

Relaxed Master Problem a MILP, the solution of which represents a valid lower bound
to that subset of Y not yet explored by the algorithm.

Primal Problem which is a nonconvex NLP obtained by fixing the binary variables

(y) in P. Any feasible solution yields a rigorous upper bound to the solution of nonconvex
MINLP (P).

Primal Bounding Problem which is a convex NLP and the solution of which provides
a valid and a tighter lower bound to the Primal problem for each fixed binary realization y
than that provided by the Relaxed Master problem that generates .

In the remainder of this section, the problems defined above will be derived. In Section
3 the algorithms are presented and their properties are discussed. In Section 4.1 implemen-
tation considerations and refinements of the algorithms are presented. Finally, in Sections
4.2-4.3, preliminary results are presented with comparison to currently available algorithms.

2.1 Lower Bounding Convex MINLP

Problem P reduces to a convex MINLP if the functions f and g; are convex on X, which can
be solved to global optimality using GBD or OA. Indeed, our algorithm reduces to OA in
this case because the Primal and Primal Bounding Problems become equivalent. Otherwise,
the aforementioned algorithms can yield invalid support functions or linearizations which cut
off portions of the feasible region, and hence convergence to the global solution of P cannot
be guaranteed, and convergence to an arbitrary suboptimal point is more likely |1, 30].

Since problem P is separable in the continuous and the integer variables, the continuous
and discrete feasible spaces can be individually characterized [10]. Therefore, in order to
construct a valid lower bounding convex MINLP for Problem P, it suffices to convexify and
underestimate the nonconvex functions defined in the continuous variables (f and g;). In
particular, the convex envelopes of the functions f and g; (each of the P, constraints) are
not necessary and any valid convex underestimator is sufficient. However, the closer this



underestimator is to the convex envelope, the tighter the lower bound thus generated. While
this may seem rather difficult, several different methods have been developed recently for
relatively broad classes of problems, examples of which are presented in the introduction
of this paper. All the branch-and-bound algorithms described previously also depend on
deriving convex underestimating functions. Hence with the current state-of-the-art, given a
twice continuously differentiable nonconvex or factorable MINLP as defined by equation 2,
a lower bounding convex MINLP can be constructed. Moreover, we refrain from restricting
problem P to twice continuously differentiable functions, since any advances that yield convex
underestimators for broader classes of functions can be exploited by the algorithms presented
in this paper. Thus, we merely require continuity of the participating functions.

Let Li(z) and Lg(x) represent the convex underestimators of f(z) and ¢g; on X re-
spectively. Conceptually, this is equivalent to underestimating the objective function and
overestimating the continuous feasible space of Problem P as shown in Figures 2 and 3. In
Figure 3, f(z) is the original function, L,(z) is a convex underestimating function and u,,
ug, ug and uy are outer approximations of Li(x) at four points. In Figure 4, aq1, ao1, a12
and ago are linear constraints that define X, g5 is a convex constraint, g;; is a nonconvex
constraint, and Ly is a convex constraint that relaxes g;; on X. It should be noted that L
is convex only on X. Hy; and Hi are supporting half spaces of g1» and Lq; at a particular
point respectively. The lower bounding convex MINLP (referred to as P1 hereafter) is:

mincly + L (z)
2y

st. Lo(z) + Biy < 0
g2(x)+ By < 0
re X CR
yeY ={0,1}7 (3)

Every element of the feasible set of P for each y is in the feasible set of P1 and there may
be elements of feasible set of P1 that are not in P. Therefore P1 contains the feasible set of
P for each y € Y, and the objective function of P1 underestimates the objective function
of P for each y € Y. Hence the solution of P1 represents a valid lower bound to the global
solution of P by construction.

In order to derive P1 from P additional assumptions are required on Problem P which
depend upon the specific nature of the problem being solved, as discussed below:

1. The functions f(z) and g;(z) can be represented as sums of terms of special structure
(for example, bilinear, univariate, concave, etc.) only, for which once continuously
differentiable convex underestimators can be derived without any assumptions on the
differentiability of functions f and g¢;. In this case no additional assumptions on P
are necessary. P as defined is then very general and covers a broad class of problems.
Furthermore, by the principles of symbolic reformulation [31] a wide variety of fac-
torable problems can be reformulated automatically into problems involving terms of
the special structure. A detailed discussion is presented in Smith [32].
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2. The functions f(x) and g;(z) involve general nonconvex terms. At present, a valid con-
vex underestimating function can be derived for a given nonconvex elementary function
that is twice continuously differentiable |3]. Therefore an additional assumption that
general nonconvex terms in the functions f and g; be twice continuously differentiable
is required to be satisfied by P in this case.

The following assumptions on P1 are necessary:

1. The functions Li, L, and g, are once continuously differentiable at the KK'T points of
each subproblem (convex NLP) obtained by fixing the binary variables y in P1.

2. A constraint qualification holds at the solution of every NLP subproblem obtained by
fixing the binary variables y in P1.

Remark 2.1.1. Assumptions 1 and 2 guarantee that the KKT points are both necessary and
sufficient to identify the global minimum of the Primal Bounding problems at each iteration
of the proposed algorithms.

Remark 2.1.2. Assumption 1 is slightly different from that assumed by OA [10, 12] in
that the functions L1, Lo and go are not required to be once continuously differentiable over
the entire domain. However, the OA algorithm is derived based on stronger assumptions to
ensure that assumptions 1 and 2 are satisfied. Therefore the OA algorithm with the above
weaker assumptions s still valid to find the global minimum of convex MINLP:s.

Remark 2.1.3. The convexr underestimators derived for P consisting of bilinear, trilinear,
univariate concave, fractional and fractional trilinear terms are once continuously differen-
tiable [3]. Hence Ly and Lo are once continuously differentiable by construction. Also, if
f and g1 contain terms of generic structure that are twice continuously differentiable, then
the corresponding terms in L and Ly derived are also twice continuously differentiable by
construction [3].

2.2 Primal Problem

The Primal problem (NLP(y?)) is a nonconvex NLP obtained by fixing the binary variables
(y =’) in P:

min ¢}y’ + f(z)
x

gao() + Byy’
rzeX (4)
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Any solution (local or global) of the Primal Problem is a valid upper bound (UBD) on the
global solution of P.

2.3 Primal Bounding Problem
Fixing the integer variables (y = 3’) in Problem P1 (NLPB(y)) yields:

min c] 4’ + Ly (z)
xz

s.t. LQ(Q?) + Blyj S 0
92(z) + Boy? < 0
r€e X (5)

For a fixed realization of y, the feasible set of NLPB(y’) overestimates the feasible set
of NLP(y?) and underestimates the objective function of NLP(y’). Hence the solution of
NLPB(y’) represents a valid lower bound to the solution of NLP(y’). Furthermore, the
solution of NLPB(y?) is greater than or equal to the solution of the Relaxed Master Problem
that generated y/ (this will be established below). Hence (NLPB(y”)) is a Primal Bounding
Problem for P.

2.4 Master Problem

Problem P1 is a MINLP which is linear in the discrete (y) variables and in which the functions
Ly(z), Ly(z) and go(z) are convex and once continuously differentiable (by construction).
Therefore, the outer approximation development of Duran and Grossmann [10], later mod-
ified by Fletcher and Leyffer [12], can be used to derive the equivalent MILP (M) which is
given below:

( min, ., 7
s.t.
n>Li(z7) 4+ VLi(29) ' (z —27) + cly
Ly(27) + V(29 (z —27)+ Biy <0 pVjeT
M =23 go(2?) + Vgo(z/)T(x — 27) + By <0 (6)

Lo(2%) + VLy(2*)T (2 — 2%) + Biy < 0 VE € S
92(a*) + Vga(a*)" (z — 2*) + Boy < 0
re X, yeyY

\

where,
T ={j: NLPB(y) is feasible and 27 is an optimal solution to NLPB(y’) }
S = {j: NLPB(y) is infeasible and z? solves F(y*) (as defined by Fletcher and Leyferr
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[12]) }

Remark 2.4.1. Derivation of M requires the assertion of a constraint qualification at the
KKT points of the Primal Bounding Problems on which the outer approximation is based
[12]. While any suitable constraint qualification can be employed, the treatment of equal-
ity constraints appearing in P by the constraint qualification merits some comments. Any
nonlinear equalities will be relaxed to a pair of conver inequalities in the Primal Bounding
Problem, and will be treated as inequalities in the constraint qualification. On the other
hand, any linear equalities will appear as a linearly dependent pair of linear inequalities in
the Primal Bounding Problem. Such linear pairs should be treated as the original equality in
any suitable constraint qualification.

Theorem 1 of Fletcher and Leyffer [12] establishes the relation between P1 and M.

Theorem 2.4.2. M is equivalent to P1 in the sense that x*, y* solves P1 iff it solves M.

Since P1 is a relaxation of P, the following Corollary establishes the relationship between
P and M.

Corollary 2.4.3. If (z*,y*) is the global optimal solution of P then it is feasible in M.

Proof: The proof of theorem 2.4.2 establishes that the feasible region of M is a relaxation
of that of P1. Similarly, by construction the feasible region of P1 is a relaxation of that of
P. Hence (z*, y*) is feasible in M. O

2.5 Relaxed Master Problem

The solution of the Master Problem (identical to the solution of P1) derived represents a
valid lower bound to the solution of P. However this requires solution of all the NLPBs and
is impractical to solve, and therefore relaxations of M are solved at each iteration of the
algorithms (similar to the original OA algorithm). Since the Primal Bounding Problem is a
convex NLP and is a valid underestimator of the nonconvex NLP (Primal Problem) for each
integer realization, and since the integer variables appear linearly and are separable, valid
linearizations of the constraints can be derived at the solution of the Primal Bounding Prob-
lem at each iteration. The solution of the Primal Problem at each iteration is therefore not
used to derive the linearizations required to construct the current Relaxed Master Problem
and the proposed decomposition strategy essentially decouples the Primal and Relaxed Mas-
ter Problems. Integer cuts [8] that exclude the previously examined integer realizations are
added to the Relaxed Master problem. The solution of the Relaxed Master Problem yields
a new integer realization and the iteration is repeated. The solution of the Primal Problem
however is required to update the UBD to the global solution of P. This is done by solving
only those Primal Problems corresponding to the integer realizations with a corresponding
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Primal Bounding solution less than or equal to the global solution of P. The algorithm ter-
minates when the minimum of the Primal Bounding solutions (UBDP) is greater than or
equal to the current UBD or the Relaxed Master is infeasible.

At each iteration in both the algorithms, a new integer realization is chosen and the
Primal Bounding (NLPB(y*)) problem is solved. Either a feasible solution of the Primal
Bounding Model z* is obtained or it is infeasible in which case the feasibility problem F(y*)
[12] is solved. Note that, if NLPB(y*) is infeasible then NLP(y¥) is also infeasible. The sets
T and S are replaced in the algorithms by:

T ={jlj <k:NLPB(y) is feasible and 27 is an optimal solution to NLPB(y’) }

S ={jli <k:NLPB(y’) is infeasible and x7 solves F(y*) }

An additional constraint to prevent the previously examined integer realization (y*) from
becoming a solution is also added at each iteration to the Relaxed Master Problem. If
k € S*, the linearizations derived from the solution of the feasibility problem exclude y*
[12] and hence no additional constraint is necessary. If k& € T*, then an integer cut [8] that
excludes y* is added to the Relaxed Master problem. The Relaxed Master Problem solved
at iteration k then is:

( ming ;7
s.t.

n> Li(z7) + VLi(2) (z —27) + cly

Ly(27) + VLy(2?) (x —27) + Biy <0 »VjeTk

92(27) + Vgy(2?)"(x — 27) + Boy <0
ME =4 (7)

Ly(z%) + VLy(2))(x — ') + Biy <0 }Vi c gh
92(2") + Vgo(2")(z — 2%) + Boy < 0

Z_iEBJ' Yi = Diensi Ui < B[ -1,Vj € T*
B ={i:y =1}, NB’ = {i : y] =0}
L zeX,yeY

Remark 2.5.1. Whilst the constraint n < UBD is sufficient to exclude y’, j € T* in the
Relazed Master problem derived by Fletcher and Leyffer [12] for convex MINLPs, in the non-
convex MINLP case UBD is unrelated to previous solutions of the Primal Bounding Problem
and thus an integer cut is necessary.

Remark 2.5.2. The solution of M* represents a lower bound to the corresponding Primal
Bounding Problem due to the convexity of P1, which is a relazation of NLPB(y**!).

Remark 2.5.3. The Relazed Master Problem in Quter Approrimation with Equality Relaz-
ation and Augmented Penalty (OA/ER/AP) proposed by Viswanathan and Grossmann [36]
to solve problems which conform to the form defined by P, translate the linearizations derived
at the local solution of the Primal Problem. FEven though the feasible region is expanded by
such an approach, no theoretical guarantees can be given about the solution since the algo-
rithm may still cut off portions of the feasible region and converge to an suboptimal solution.
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On the other hand, in Algorithms 1 and 2 valid linearizations are derived at the solution of
the Primal Bounding Problem. The feasible region is overestimated and convergence to the
optimal solution of P (Algorithm 1) or a rigorous bound to the global solution (Algorithm 2)
is guaranteed (if P is feasible) by the decomposition strategy proposed in this paper.

3 The Algorithms

3.1 Algorithm 1: Global solution of nonconvex MINLPs

This algorithm is illustrated in Figure 1.
Initialize:

1. Iteration counter k = 0,1 = 1, T°= 0, S°=0, U°=0.
2. UBD — +00, UBDPB — +c0.

3. Integer combination y' is given.

REPEAT

IF (k = 0 or (MP is feasible and n* < UBDPB and n* < UBD)) THEN
REPEAT

Set k =k +1

1. Solve the Primal Bounding Problem (NLPB(y*)). If NLPB(y*) is infeasible, solve the
feasibility problem F(y*). Let the solution be z*.

2. Linearize the objective and active constraint functions of P1 about (z*, y*). Set (S*
= SF1tand TF = T*~1 U {k} ) or (S¥ = S*~L U {k} and T* = T*~1) as the case may
be.

3. If NLPB (y*) is feasible and ¢! y* + L,(z*) <UBDPB, update z* = z*, y* = ¢*, k* =
k and UBDPB = L, (z*)+c] y*.

4. Solve the current relaxation M* (solution n*) of P yielding a new integer assignment
k1
Yy .

UNTIL n* > UBDPB or M* is infeasible.
ENDIF
IF (UBDPB < UBD) THEN

1. Solve the Primal Problem NLP(y*) and find the global minimum. Set U! = U""! U k*.
If NLP(y*) is feasible, let the solution be x’;, and if f(x';)+clTy* < UBD, update z; =
ak, yr = y* and UBD = f(z})+cly;.

11



2. I TF\U' #0, update UBDPB = min (cI'y™+L,(2™)), m € TF\U' (UBDPB corresponds
to the Primal Bounding solution of (z*,y°)). Update z* = z°, y* = y*, k* = s. Set [ =
[ + 1. Otherwise, set UBDPB = +o0.

ENDIF
UNTIL UBDPB > UBD and {M¥ is infeasible or n* > UBD}. The global solution of P is

*

given by the current UBD, z, y;.

3.2 Algorithm 2: Rigorous bound on the global solution of noncon-
vex MINLPs

This Algorithm produces rigorous upper and lower bounds on the global solution of noncon-
vex MINLPs. This algorithm follows Algorithm 1. Replace step:

e Solve the Primal Problem NLP(y*) and find the global minimum.
in Algorithm 1 with the following step:

e Solve the Primal Problem NLP(y*) for any feasible solution, global solution not nec-
essary.

*
p

LBD = min(zlg, ..2055, ..., 2b5) where f is the iteration at which the first feasible Primal
Bounding solution z5p is attained, zhp is the solution of the Primal Bounding Problem
at iteration j, and 2}y is the last feasible Primal Bounding solution before Algorithm 2
terminated. The distance between the global solution of P and the solution found (z}, y;)
will be less than or equal to UBD - LBD.

A potential suboptimal solution of P is given by the current UBD, z7, y7. For this Algorithm,

Remark 3.2.1. If the current minimum of the Primal Bounding solutions corresponds to

more than one integer realization, then any one of them 1is selected arbitrarily to update
UBDPB.

Remark 3.2.2. Algorithms 1 and 2 may be reformulated by adding an integer cut excluding
only those integer realizations for which the Primal Problem are solved and adding a con-
straint based on the UBDPB (similar to the constraint based on UBD) to exclude all the
other previously visited integer realizations. In this case, a Primal Problem will be solved
whenever the Relaxed Master becomes infeasible. This may however be inefficient since the
current Relaxed Master will be resolved with the updated UBDPB.

Remark 3.2.3. Algorithms 1 and 2 can be refined to solve the Primal Problem whenever
the current UBDPB is equal to the solution of the Relaxed Master Problem in the previous
iteration. This will eliminate solving exactly one Relared Master Problem in the unusual
case when the solution of the Relaxed Master, Primal and Primal Bounding Problems are all
equal (objective value) to the global solution of P for a particular integer realization.
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3.3 Theoretical properties of the Algorithms

The following Corollary is based on Theorem 2 of Fletcher and Leyffer [12] and establishes
the convergence properties of Algorithms 1 and 2.

Corollary 3.3.1. If assumptions with respect to problems P and P1 holds, and |Y| < oo,
then Algorithm 1 terminates in a finite number of steps providing an optimal solution of P,
or with an indication that P is infeasible, and Algorithm 2 will terminate in a finite number
of steps providing a rigorous bracket containing the global solution of P, or with an indication
that P s infeasible.

Proof: First it is shown that no integer realization is visited twice. Let | < k . If
I € Sk, it follows from Lemma 1 of Fletcher and Leyffer [12] that the constraints added
from the solution of the feasibility problem F (') eliminates 3’ from further consideration. If
I € T*, then the integer cuts added to the Relaxed Master Problem exclude y' from further
consideration. Since the set Y is finite, Algorithms 1 and 2 therefore terminate in a finite
number of iterations.

Next it is shown that Algorithm 1 always terminates with the optimal solution of P, if P
is feasible. Let a global solution of P be given by (x7, ;) with optimal value clTy;Jr f(zp)-
Assume that Algorithm 1 terminates with the solution (', %) and optimal value UBD =
'y +f(z) > clTy;Jr f(zy). This would imply that the current Relaxed Master does not have
a solution less than ¢y +f(z') and UBDPB > ¢!y +f(z'). Let the Primal Bounding solu-
tion corresponding to y; be x,, with the optimal value, L, (:pr)—i—clTy;. Then, Ll(pr)—i—clTy;
< ciy;+f(z3) < UBDPB (on termination). Let the Relaxed Master yielding the integer
realization y; be M™* with the solution 1*. Since the solution of the Relaxed Master Prob-
lem represents a valid lower bound for the corresponding Primal Bounding Problem, n* <
Ll(pr)+clTy; < UBD, which implies that y; was the solution of the Relaxed Master at
some iteration before termination (in which case an integer cut excludes y, from the current
Relaxed Master) or is feasible in the current Relaxed Master. In the former case, since
UBDPB is updated as the minimum of the Primal Bounding solutions, UBDPB would have
corresponded to Ly (zp)+ci y; at some iteration before termination and the Primal Problem
corresponding to y, would have been solved. In the latter case the solution of the current
Relaxed Master will correspond to y;. The Primal Bounding solution Ll(a:pb)+clTy; < UBD
and therefore the Primal Problem corresponding to y; will be solved yielding the global so-
lution of P. Since the UBD is updated as the infimum of the Primal solutions, the algorithm
terminating with UBD > c{ys+f(z}) is a contradiction.

Since the feasible region of P1 is obtained by overestimating the feasible region of P (i.e.,
P1 is a relaxation of P), if the Problem P is infeasible, P1 may or may not be feasible. If
P1 is infeasible, then all the Primal Bounding Problems are infeasible, the algorithms never
update UBDPB, do not solve a single Primal Problem, and terminate with an UBD = +o0.
On the other hand if P1 is feasible, the algorithms solve those Primal Problems for which
the Primal Bounding Problems are feasible but never updates the UBD (since none of the
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Primal Problems are feasible) and exits with an UBD = +o00.0

Theorem 3.3.2. Let Ny be the number of Relaxed Master Problems solved by Algorithms 1
and 2. Let Npp be the number of integer realizations with Primal Bounding solutions strictly
less than the global solution of P. Then, Np > Nppg.

Proof: Assume that Algorithm 1 terminates with the global solution of P given by
(z5,y,) with optimal value clTy;Jr f(z;)= UBD, without visiting an integer realization with
the Primal Bounding solution (z',y') with optimal value ¢!y +Li(z') < UBD. Let the Re-
laxed Master Problem yielding the solution 4 be M  with the solution . Then, n <
¢y +L,(z') (and (', y') are also feasible in the current Relaxed Master Problem), which
is a contradiction that the algorithm terminates at the UBD without visiting the integer
realization with a Primal Bounding Problem solution less than the global solution of P. Al-
gorithm 2 will terminate at a solution greater than or equal to the global solution of P and
the proof is similar. O

Theorem 3.3.3. Let Np be the number of Primal Problems solved by Algorithm 1 and Nppg
be the number of integer realizations with Primal Bounding solutions less than or equal to
the global solution of P. Then Np > Npp and Np < Nppq.

Proof: First it is shown that the global solution of P cannot be attained at a integer
realization with a Primal Bounding solution greater than the global solution of P. Assume
that the global solution is attained at an integer realization y', with a Primal Bounding
solution cT'y'+ Ly (x') which is greater than the global solution of P. The global solution of P
is 'y + f(x'), which would imply ¢!y’ +f(z') < 'y +Ly(z'). Since L, is a convex underes-
timator of f in X, by definition, f(2') > L,(z'), which is a contradiction and hence proves
that the global solution of P is attained at an integer realization with a Primal Bounding
solution less than or equal to the global solution of P. The Primal Problem corresponding
to the remaining integer realization with the minimum Primal Bounding solution is solved
at each iteration and the algorithm terminates when UBDPB > UBD. Therefore all Primal
Problems corresponding to Primal Bounding solutions strictly greater than the global UBD
are never solved. This proves that Np < Nppgg.

Theorem 3.3.2 proves that Algorithm 1 visits all the integer realizations with Primal
Bounding solutions strictly less than the global solution of P. Algorithm 1 will not terminate
when UBDPB < UBD. Therefore, Np > Npg. O

Remark 3.3.4. Np = Npp when there is no integer realization with a Primal Bounding
solution equal to the global solution of P or when the global solution of P is attained at
an integer realization with the corresponding Primal Bounding solution less than the global
solution of P. If more than one integer realizations have a Primal Bounding solution equal to
the global solution of P and one of these integer realizations corresponds to the global solution
of P, then Np = Nppq only when the integer realization corresponding to the global solution
of P is selected last out of this set.
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In the worst case scenario, the OA algorithms for solving convex MINLPs enumerate
the entire discrete space and converge to the global solution with the distance between the
solution of the Master and Primal Problems reduced to zero. Since the Relaxed Master
Problem is a relaxation of P1, the algorithms proposed in this paper may totally enumerate
the discrete space before the solution of P1 (convex MINLP) is reached. Furthermore, if the
solutions of all the Primal Bounding Problems lie below the global solution of P, then all
the Primal Problems corresponding to each integer realization will be solved. The distance
between the global solution of P and the Relaxed Master Problem on termination would then
be the difference of the solutions of P and P1. Moreover, the solution of P1 may be reached
without total enumeration of the discrete space, but total enumeration of the discrete space
may still occur before the solution of P is reached. The distance between the global solution
of P and the Relaxed Master Problem will then be less than the difference in the global
solutions of P and P1.

4 Results

4.1 Implementation

A variety of general purpose components have been developed to implement Algorithm 1 and
2. Results are presented using MINOS 5.5 [25] for solution of NLP problems with tolerances
of le-4. The computational platform used was a 733 MHz Pentium III processor with 128
MB RAM running Linux 2.2.14.

4.1.1 Primal Bounding Problem

The Primal Bounding Problem (as well as the global solution of the Primal Problem) rely
upon creation of a convex relaxation of the nonconvex functions f(z) and g;(x). A convex-
ification method for factorable nonconvex functions is presented in |24, 32]. This method
proceeds by transforming the original nonconvex function into a set of nonconvex func-
tions involving only simple nonlinear equality constraints for which the convex envelopes
are known. The simple nonlinear equality expressions can then be relaxed, forming a con-
vex problem. This procedure requires the addition of new variables and constraints into
the problem formulation. The functionality of DAEPACK |35|, originally developed for
automatic differentiation and sparsity pattern generation, has now been extended to auto-
matically generate information needed required for convexification of nonconvex expressions.
The resulting convex Primal Bounding Problem can readily be solved and linearized for a
given binary realization. This convexification can also be used in the global solution of the
Primal Problem using the branch-and-reduce method.
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4.1.2 Primal Problem

For some fixed binary realizations of a given problem, the nonconvex Primal Problem must
be solved to global optimality, searching over the possible values for the continuous variables.
A branch-and-reduce optimization routine has been developed based on previous methods
[29, 32, 2|. This method can use the current upper bound from Algorithm 1 to fathom nodes,
resulting in reduced computational effort as Algorithm 1 proceeds. The branch-and-reduce
method applies a variety of bounds tightening techniques in order to reduce the size of a
given partition, resulting in tighter lower bounds for the considered region and improved
convergence characteristics. Bounds tightening techniques based upon interval analysis of
nonlinear constraints and linear constraints have been established. Additionally, Lagrangian
based methods can be used for bounds tightening. For results presented here, up to 5
rounds of tightening are used for each convex lower bounding problem. No optimization
based bounds tightening methods were used for the convex problem at the root node or
during solution of subsequent convex problems in the branch-and-bound search.

Branching variables are selected from the set of possible variables using the ratio rule [4].
The set of possible branching variables can be user specified or derived from the variables
participating in the nonconvex constraint that is most relaxed when evaluated at the convex
solution. Primal Problems are solved to the global solution with a relative tolerance of le-3.
This implementation has been tested on a variety of examples from taken from literature
test problem compilations |14, 29].

4.1.3 Relaxed Master Problem

The Relaxed Master Problem is derived from linearizations of solutions to the Primal Bound-
ing Problem. DAEPACK is used to provide Jacobian values for nonlinear functions. The
resulting MILP is solved using CPLEX 7.0 callable libraries.

4.1.4 Convex Feasibility Problem

A convex feasibility problem must be solved for cases where a binary realization results in an
infeasible Primal Bounding Problem. Positive slack variables augment the problem to relax
all constraints. The sum of all slacks is then minimized and the resulting solution is used to
construct a lineaization of the Primal Bounding Problem.

4.2 Simple Examples

Four MINLP problems are taken from Chapter 12 of [14]. Some of these problems needed
slight transformations to establish constraint functions in the form of Problem 2. In some
cases, a binary realization was infeasible for the convex Primal Bounding Problem, requiring
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solution of a feasibility problem. All elements of Y were enumerated as initial starting points
y! for these problems, converging to the global solution in all cases. Results are shown in
Table 1. The number of Primal Bounding Problems solved equals the number of MILP
Relaxed Master Problems solved. The number of nonconvex Primal Problems started is
reported. Statistics are shown for the number of NLPs solved in the Primal Problem branch-
and-reduce procedure, including both nonconvex local solutions and convex solutions.

Problem A.

min 2x1 4+ 3z9 + 1.5y; + 2yo — 0.5y3

24+y = 125

50+ 1.5y, = 3
r1+y1 < 1.6
1333z + s < 3
—Yy1—Y%+tys < 0
x1, To, 23 > 0
Y1, Y2, y3 € {0, 1}

In order to construct a convex relaxation of the problem, all variables must be bounded.
Results are presented with x1, o < 10. The global minimum of 7.667 is attained at x =
(1.12,1.31)T, y = (0,1, 1)T.

Problem B.

min —x1Tox3

—In(1 —z1) + In(0.1)y; + In(0.2)ys + In(0.15)ys3 = 0
—In(1l — z3) + In(0.05)ys + In(0.2)ys + In(0.15)ys
—In(1 — z3) + In(0.02)y7 + In(0.06)ys

—Y1— Y2 — Y3 < -1

—Ys — Y5 — Ys < —1

—Y7 — Ys < -1

3y1 + Y2 + 2ys + 3ys + 2y5 + Yo + 3yr + 2ys < 10
0< @ <0.9970
0< @ <0.9985
0< T3 < 0.9988

y €{0,1}8
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The minimum objective function value is -0.94347 at y = (0,1,1,1,0,1,1,0) =z =( 0.970,
0.993, 0.980). In this problem, the Primal Problem obtained by fixing the binary variables
can be solved by a simple function evaluation. As a result, the global branch-and-reduce
method readily finds the solution at the root node for each Primal Problem. A tailored
algorithm could solve the Primal Problem using a function evaluation. This insight, which
completely eliminates branching on continuous variables, would be lost using branch-and-
bound procedures branching on both continuous and binary variables.

Problem C.

min 7z, + 10z9

o322y — ey — 9y < —-24

—x1 — 229 < 5

=3z + 29 < 1

41 — 329 < 11

—x1+ Y1+ 2y2 + 4y3 = 0

—To + Ys + 2y5 + Ys = 0
1< 24,29 <5

y €{0,1}5

The minimum objective function value is 31 at y = (1,1,0,1,0,0) z = (3,1). In this
nonconvex integer problem, the Primal Problem can also be solved trivially by a function
evaluation.

Problem D.

min —5x; + 34

275 — 219" — 220925 + 11z + 874 < 39
T — X9 < 3
3x1 + 224 < 24
4xr1 — 329 < 11
—To + Y1 + 2y + 4ys = 0
1< T <10
1< To <6
y €{0,1}3

The minimum objective function value is -17 at y = (1,0,0) z = (4, 1).
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4.3 Large Scale Problem

The heat exchanger network syntheses (HENS) optimization problem as formulated by Yee
and Grossmann [37, 38| is considered here as an example to analyze Algorithm 1. This prob-
lem involves the design of a heat exchanger network with the minimum annualized cost of
operation. The optimization problem confirms to the formulation necessary for Algorithm 1,
with nonconvexity only in the objective function. There are 44 linear inequality constraints
and 20 linear equality constraints. The problem involves 12 binary variables corresponding
to the presence / absence of heat exchangers. The problem includes 40 continuous vari-
ables arising from heat duty for heat exchangers, temperatures for process streams, and
temperature differences.

The global optimum of this problem has been previously reported [5, 2| using a branch-
and-bound based algorithm. This solution coincides with the solution found using Algorithm
1. The results obtained by employing the OA/ER algorithm [19] for this problem have also
been reported previously [5]. The solution attained varied with the starting point employed
(initial guess). Since the problem is an nonconvex MINLP, the OA/ER algorithm may cut off
portions of the feasible space, resulting in convergence to suboptimal solutions as expected.

In [2], a modified formulation of the original problem [37, 38] was used. This modification,
derived from physical insight specific to the problem, tightens some variable bounds based
upon current bounds of other variables. For example, the maximum heat duty for a heat
exchanger may depend upon bounds of the relevant temperature streams. Similarly, a given
heat exchanger may not be used for a given binary realization, resulting in a 0 heat duty. This
type of problem specific bounds tightening can significantly impact algorithm performance.

For the presented results, bounds tightening methods were used in the Primal Problem
branch-and-bound solution that could only be derived from the original mathematical for-
mulation of [37, 38]. For a given binary realization, some heat exchangers may not be used,
resulting in some heat duty variables being forced to 0 by linear constraints. Additionally,
variables representing temperature differences can be unconstrained (but bounded) for a bi-
nary realization, having no affect on the problem solution. These variables should not be
branched upon for a given binary realization, and can be constrained to any single value
in their original bounds without affecting Primal Problem solution. This bounds tightening
application is equivalent to reformulating the Primal Problem at each iteration, removing
variables that cannot affect the solution of the Primal Problem.

Selection of branching variable also impacts performance of the solution of the Primal
Problem. Typically, the nonconvex constraint having a loose underestimate is identified, and
a branching variable is chosen from the set of variables involved in the constraint [29, 32, 2|. A
heuristic was presented in [2] for branching variable selection using a physical insight specific
to the problem: rather than branch on variables involved in the nonconvex expressions (the
duty for heat exchangers and differences in temperature streams) only variables representing
temperatures for process streams should be used. Results using this branching rule are
presented in Table 2 as constraint case A. Without using this branching rule, the current
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branch-and-reduce implementation will eventually solve the Primal Problem for a binary
iteration, but may require extended amounts of time and many thousands of convex lower
bounding problem solutions.

An initial binary realization must be found. Ideally, the binary realization for the global
solution should be used in order to help reduce solution time in Algorithm 1. For the
presented HENS problem results, 25 randomly chosen starting points were selected as the
initial binary realization. Alternatively, Algorithm 2 could be used to generate a potentially
suboptimal initial binary realization.

The original formulation of [37, 38| uses propositional logic constraints for enforcing
equality relationships dependent on the presence of a heat exchanger in the form: z;; =1 =
AT;; = T; — T;. This can be expressed as two inequality constraints (with M large):

ATy =T+ T;
AT+ Ti - T;

< M(1-z;)

< M(1-z;)

The original formulation only uses only one of the inequality constraints. This is justified in
that AT;; variables will always be maximized for this problem [38]. As a result, changes in the
bounds on AT;; will not affect both the upper and lower bounds of 7; and 7 using interval-
based linear bounds tightening techniques. Inclusion of both valid inequality constraints
allows full propagation of changes in bounds using linear tightening methods. All variables
can then be used for branching variable selection rather than a heuristic subset. Results
using the additional inequality constraints while potentially branching on all variables are
presented in Table 2 as constraint case B. Note that this formulation reduces the total
solution time.

The solution statistics for solving this problem using SMIN-aBB algorithm [2| on a HP-
C160 have been reported. The CPU times and the number of iterations varied with the
heuristic employed. The best case reported solution time was 315 CPU s, while most heuris-
tics converge in 500 - 700 CPU s. Heuristics considered different branching rules and methods
of optimization based bounds tightening application. The CPU times previously reported
were an order of magnitude larger than that now reported from Algorithm 2. However, since
Algorithm 2 solves the Primal Problem locally, the results cannot be directly compared.
Use of Algorithm 1 takes an average of 228 CPU s using the same problem constraints
and branching variable selection heuristics, without the addition of problem specific bounds-
tightening procedures, optimization based bounds tightening techniques, or feasibility based
bounds tightening. Use of additional valid constraints and branching on all variables results
in a total solution time of 96 CPU s. The HP C160 has a SPECf{p95 of 16.3, while the
Pentium IIT at 733 MHz has an approximate SPEC{p95 result of 20.1 (published result of
15.1 for 550 MHz), approximately 25 % faster than the HP for floating point operations.
As compared to published branch-and-bound results for this example problem, Algorithm 1
provides a global solution using comparable CPU time.
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5 Conclusions

A decomposition strategy based on outer approximation to solve a class of nonconvex Mixed-
Integer Nonlinear Programming (MINLP) problems has been developed in the current paper
and two algorithms are presented. The convergence and optimality properties of the algo-
rithms were discussed. The computational performance of the proposed strategy is illustrated
by example problems. Numerical results indicate that the proposed decomposition strategy
is more efficient as regards to the computational time required when compared to the cur-
rently available Branch and Bound algorithms for solving nonconvex MINLPs. Furthermore,
the most computationally demanding step in the presented MINLP solution algorithm is typ-
ically the global solution of the Primal Problem, a nonconvex NLP. However, in some cases
the resulting Primal Problem for a fixed binary realization requires only a function evaluation
or solution of a convex problem, as demonstrated in two of the presented example problems.
Additionally, future developments in branch-and-reduce or interval methods for nonconvex
global optimization will benefit the presented MINLP method.
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Table 1: Results for simple MINLP example problems.

Problem ‘ A ‘ B ‘ C D

Continuous Variables 2 3 2 2

Binary Variables 3 8 6 3

Constraints 5 7 6 5

Average solution time (CPU s) 0.8 0.3 0.1 0.4
Primal Problems Started (avg/min/max) T)T)7 5/5/5 1/1/1 3/3/3
Primal Nonconvex NLPs (avg/min/max) |61 /61 /61| 5/5/5 1/1/1 3/3/3
Primal Convex NLPs (avg/min/max) 61/61/61| 5/5/5 1/1/1 9/9/9
Primal Bounding NLPs (avg/min/max) 713/7/81692/6/8(204/1/3[35/3/4
MILP Iterations (avg/min/max) 713 /7 /8 (692/6/8|204/1/3|35/3/4
Feasibility Problems Solved (avg/min/max) | 0.13 /0/1 (072/0/1(064/0/2| 0/0/0
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Table 2: HENS Results using outer approximation methods. Algorithm 1 provides a deter-
ministic global solution, while Algorithm 2 only provides a potentially sub-optimal solution
and bounds on the global solution. Constraint case A uses the original problem formulation,
while constraint case B adds additional valid constraints. 25 random starting points were
selected for initialization of the algorithm.

Algorithm 2 1 2 1
Constraint Case A A B B
Potential Branching Variables 0 8 0 40
Average Solution Time (CPU s) 32 228 39 96
Primal Problems
Started (avg/min/max) 60.08/60/61 60.08/60/61 58.08/58/59 58.08/58/59
Primal Nonconvex
NLPs (avg/min/max) 60.08/60/61 | 1042.08/1048/1049 | 58.08/58/59 | 638.08/638/639
Primal Convex
NLPs (avg/min/max) 0 2258.12/2258 /2259 0 396.88/396/397
MILP Iterations (avg/min/max) | 60.96/60,/61 60.96/60/61 60.96/60/61 60.96/60/61
Feasibility
Problems (avg/min/max) 0.88/0/1 0.88/0/1 0.88/0/1 0.88/0/1
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