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Abstract: A method for combining multiple local models to describe a nonlinear
system. The local model weights are based on the linear interpolation of the current
operating point from the closest local model operating points de�ned as the �ltered
value of the current process input. This local modeling method can be used to describe
systems with changing system gains and dynamics, as well as input multiplicity. A
case study for a benchmark CSTR reactor is presented. Local linear models are used
to synthesize IMC based PID controllers.
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1. INTRODUCTION AND MOTIVATION

Optimization and control of process systems typ-
ically requires an accurate process model. Funda-
mental �rst principles models can be di�cult to
develop if the underlying process is not well un-
derstood. The resulting fundamental model may
also have numerous unknown parameters and se-
vere complexity. At the other extreme, a linear
approximation of a system may be easy develop,
but such linear models can be insu�cient to cap-
ture the process system characteristics requisite
for optimization and control. In many cases, a
methodology that can provide a simple system
model while still accurately representing the com-
plex nonlinear behavior of actual process systems
is desired. Local modeling is such a method for
the development of such system representations.

Many di�erent approaches have been proposed
for using local models to approximate nonlinear
systems. For a detailed review, see (Murray-Smith
and Johansen, 1997). In many cases, the di�erent
approaches can be distinguished by the choice

of model weights. These weights are based on
the current system's location within a partitioned
space. Some authors have used exponential func-
tions to characterize the valid space of a local
model (Banerjee et al., 1997; Balle et al., 1997; Jo-
hansen and Foss, 1993a). Fuzzy logic rules have
been used to chose model weights for combining
local linear models (Rueda, 1996; McGinnity and
Irwin, 1997). These applications use fuzzy mem-
bership functions to partition the operating space
into di�erent model regimes. The basic modeling
methods are very similar no matter the approach:
determine where the local models are to be used
in the operating space and then devise a method
to mesh the local models together.

One obvious extension to such modeling work
is the development of closed-loop control using
local controllers. Work has been presented for
control of nonlinear systems using fuzzy logic
to choose between local controllers (Chak and
Feng, 1994; Logan and Pachter, 1997; Logan and
Pachter, 1994). Arti�cial neural networks have
also been used to piece together linear models
and controllers in attempts to control nonlinear
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nonlinear control on systems that may not be able
to use techniques such as Input-Output Lineariza-
tion (IOL).

We propose a framework where local models can
be easily used to approximate a true nonlinear sys-
tem. Most published results use either exponen-
tial functions or fuzzy logic rules for representing
model regimes. In the method presented here, in-
dividual model weights are based on the distance
of the current operating point from the operating
points of the nearest local models. This is similar
to using fuzzy logic rules with pyramid shaped
membership functions. Some other applications
do not adequately represent system dynamics as
process changes are made. This type of implemen-
tation e�ectively uses discrete switching for jump-
ing between models. Using the proposed method,
a range of nonlinear system dynamics are well-
modeled. The current operating point is taken as
a �ltered value of the known system inputs, which
realistically slows the model response and pre-
vents discrete jumps from one model to another.
This method does not constrain local models to
be linear system models. In some cases, low-order
nonlinear empirical models can greatly improve
model validity, but also be simple to develop.
The linear model mixing methodology is used
with multiple IMC controllers to provide adequate
control in many di�erent situations. This system
can also make use of existing models created at
di�erent steady-state operating points. Given a
system with two standard operating points (for
di�erent product grades) and models at these two
points, minimal work and modeling e�ort would
be required to blend the models to create a more
accurate system model.

2. LOCAL MODELING

A similar treatment of �nite state-space modeling
may be found in (Johansen and Foss, 1993b).
A model of general state-space system may be
written as:

dx

dt
= f(x; u; v)

y = g(x; u; v)

where x 2 Rn is the state vector, u 2 Rm is the
input vector, y 2 Rs is the output vector, and
v 2 Rr is the input disturbance vector. The local
model Mi may then be described by

dxi

dt
= f(xi; u; vi)

yi = g(xi; u; vi)

and disturbance vectors of the other models or the
actual system being modeled. The operating point
� at any time t is a single point in the operating
space �, which is made up of di�erent operating
regimes �i 2 �. The operating point � may be
written as:

�(t) = h(y(t); u(t); x(t))

Typically, � can be parameterized as a function
of the input u(t) or the output y(t). Assume
that for each local model there are model validity
functions �i that map the entire operating space
� to [0; 1]. The overall model for N di�erent model
regimes becomes

wi(�(t)) =
�i(�(t))PN

i=1 �i(�(t))

dxi

dt
=

NX

i=1

f(xi; u; vi)

y =

NX

i=1

g(xi; u; vi)wi(�(t))

The weighting function wi(�) is normalized so
that at any operating point, the local model
weighting functions sum to unity.

3. METHODOLOGY

In process systems where a linear model or con-
troller proves insu�cient, it is desirable to have a
simple representation that can model or control
the nonlinear system. This leads one to consider a
multiple model approach. There are many possible
routes to take depending upon how much is known
about the system.

� For this work, it is assumed that a �rst-
principles model of the system under con-
sideration is not known, although a �rst-
principles model is used for simulation pur-
poses.

� It is also assumed that the system does not
exhibit output multiplicity. This implies that
there could be input multiplicities in the
process, resulting in a process optima with
zero-gain.

� One �nal assumption is that local models
may already be available for some operating
conditions, while new models can be devel-
oped at other operating points.

To best piece together multiple local models, one
must devise a method for partitioning the operat-
ing space for the system. For input multiplicity
systems, it makes sense to partition the space



what existing models may be available, the known
process characteristics (such as process optima),
and the desired system operating range. In the
next step for developing a multiple model system,
one must assume a method for weighting the in-
dependent local models. In order to adequately
capture steady-state values, a linear interpolation
scheme is used in this work. This means that the
model weights are based on the nearest two local
models in the SISO case. When operating exactly
at the point where the model i was devised, the
weight for model i should be equal to 1. When
operating halfway between two models each model
should be weighed equally, resulting in weights
of 0:50. This model weighting scheme removes
the problems often associated with the normal-
ization of overlapping basis functions as presented
in (Murray-Smith and Johansen, 1997). The tail
of a Gaussian model weight can extend well into
another model regime, causing a model to become
active in the wrong region. Typical model weights
for the presented work are shown in Figure 1. In
this �gure, the models would be established at the
operating points 2, 3, 4 and 8 in the input space of
the system. This type of weighting has also been
extended to a 2x2 MIMO case.
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Fig. 1. Model Weighting Function

Using the process inputs to select the correct
operating point works well for steady-state anal-
ysis. When using this method of model switching,
changes in the process inputs will cause the pro-
cess to jump from one model directly to another.
In order to allow for mixing of heterogeneous
models, all local models are given absolute process
inputs and produce absolute process outputs. As
the process input changes from one value to an-
other, the actual system does not respond imme-
diately. This means that the actual state of the
process is not moving instantaneously. To cope
with this reality, the operating point for model

typical of the system. A second order �lter with
unity gain is used in this work. This creates a
realistically smooth response that is continuously
di�erentiable. See Figure 2 for a schematic. If one
considers a linear state-space realization for each
model Mj([Aj ; Bj ; Cj ]), then the corresponding
state-space composite model is given by:

dx1

dt
=A1 x1 +B1 u

...
dxj

dt
=Aj xj +Bj u

...
dxN

dt
=AN xN +BN u

dxF

dt
=AF xF +BF u

y =w1(xF )C1 x1 + :::+ wj(xF )Cj xj + :::

+wN (xF )CN xN

where xF corresponds to the states of the �lter re-
alization. Note that this model is a Wiener struc-
ture, and it is piecewise bilinear. Consequently,
the rich literature on Wiener and bilinear systems
is relevant to this approach.

M j

wj

M1

w1

M N

wN

×

×

×

∑

u

y

...
... ...

...

Fig. 2. Model Weighting Schematic

For control purposes, some work has to be done
to make use of the model switching techniques.
First, a controller must be devised for each local
model. For this study, PI controllers were used for
all local model controllers. These were tuned using
IMC tuning rules and typical process reaction
curve parameters. Use of IMC-PI form allows for
a single tuning parameter for all controllers. The
total system error is given to each controller. The
output of each controller is multiplied by the
current weights for each model. The total of all
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at of these operating points using a Jacobian
linearization of the process model. Other types of
models or methods for model development could
be used. The �lter time constant for adjusting
model weights was chosen as 4 minutes. This
value is typical of the open-loop process system. A
steady state comparison of the actual model and
the multiple model is given in Figure 5. This shows
that at steady-state there is very little modeling
error. At the linearization points, the modeling
error is zero. The greatest amount of error is
found away from the linearization points, between
the selected modeling points. In Figures 6 and
7, the frequency dependent amplitude ratios and
phase angles of the linearized nonlinear system
model are shown for various operating points.
The input levels displayed include the �ve input
values as well as operating points between the �ve
operating points. The amplitude ratio displays the
expected gain approaching zero near the optimal
operating point. The phase angle plots show the
inverse response models rolling o� to -270 and the
non-inverse response models rolling o� to -90 as
expected.

From Figure 8, one can see that the multiple
local models overlay the actual models in most
dynamic simulation cases. The nonlinear model
�ts both the dynamics and steady-state values
of the actual process. A comparison with a sin-
gle linear model (modeled close to the optima,
u = 15h�1) shows that both the steady-state
values as well as the dynamic response of the
linear model were inaccurate. The multiple linear
model correctly predict inverse and non-inverse
response, depending upon the input levels and
recent operating conditions. The multiple model
approach does exhibit a slightly under-damped
behavior in some cases where the actual model
does not. This can be attributed to the fact that
the multiple model approach does not switch to
new models quickly enough in some situations.
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Results from closed-loop simulations also ap-
pear promising (see Figure 9). Here, various step
changes in the process setpoint are given to the
system. The control system successfully tracks
the setpoint at many di�erent levels. One of
the linear controller responses (from model 5,
u = 25h�1) demonstrating linear controller limi-
tations is shown for comparison in Figure 9. The
nonlinear system is more aggressive than a sin-
gle linear controller. When given an unobtainable
setpoint, the nonlinear controller �nds a steady-
state near the optimal value. The linear controller
destabilizes when faced with an unreachable ref-
erence. The nonlinear controller is winding up
error and will take some time to track a new
feasible reference value. The manipulated input
does not constantly remain on one side of the
process optima in this example, managing to cross
the optima and make use of all the system models.
In all simulation cases, input level constraints of
0 and 60 were enforced.
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Fig. 9. Closed-loop Response for Setpoint Changes

Disturbance rejection was also tested. In this ex-
ample, the cooling water 
owrate dropped from
10.5 to 5.0 at time=100. As one can see in Figure
10, the nonlinear control system moves to reject
this disturbance. This disturbance results in a new
system with an optimal value for the concentra-
tion of B below the system setpoint. The multiple
model control system moves to correct as much
as possible. If the disturbance is persistant, the
integral action for the controller eventually causes
problems in the system since the reference is now
unreachable.

6. CONCLUSIONS

In this paper, we have presented a method for
using multiple local models to both approximate
and control nonlinear systems. This method uses
model weighting functions that are based on the



90 100 110 120 130 140 150
0

0.5

1

1.5

C
on

ce
nt

ra
tio

n 
B

 

90 100 110 120 130 140 150

0.6

0.8

1

1.2

C
on

ce
nt

ra
tio

n 
B

90 100 110 120 130 140 150
0

20

40

60

F
ee

d 
F

lo
w

ra
te

90 100 110 120 130 140 150
0

0.5

1

M
od

el
 W

ei
gh

ts

Time (min)

Concentration B
Setpoint
Linear Controller

Actual
Model

Model 1
Model 2
Model 3
Model 4
Model 5
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Rejection

models may be used, while few additional models
must be identi�ed. Both the dynamic and steady-
state characteristics of the nonlinear system may
be approximated within this framework. The local
models are also not required to be linear in form.
The multiple local model controller performs set-
point tracking and disturbance rejection.
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8. APPENDIX A- VAN DER VUSSE CSTR
EQUATIONS AND PARAMETERS

The state-space model employed in this study is
taken from (Chen et al., 1995).

dCA
dt

=
_V
VR

(CAO � CA)� k1(�)CA � k3(�)C
2
A

dCB
dt

= �

_V
VR

CB + k1(�)CA � k2(�)CB

d�
dt

=
_V
VR

(�O � �) +
kwAR
�CpVR

(� � �K )

�

1
�Cp

�
k1CA�HRAB + k2CB�HRBC + k3C

2
A
�HRAD

�
d�K
dt

= 1
mKCPK

(FKCPK(�ko � �K) + kwAR (� � �K))

ki(�) = kioe

�
Ei

�+273:15

�

The model parameters are detailed below.

k1o = 1:287 � 1012h�1 E1 = �9758:3K

k2o = 1:287 � 1012h�1 E2 = �9758:3K

k3o = 9:043 � 109 1
mol Ah

E3 = �8560K

�HRAB = 4:2 kJ
molA

� = 0:9342 � 10�4
kg
l

�HRBC = �11 kJ
mol A

CP = 3:01 kJ
kg K

�HRAD = �41:85 kJ
molA

CPK = 2:0 kJ
kgK

kw = 4032 kJ

hm2 K
mk = 5:0 kg

AR = 0:215m2 VR = 0:1m3
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