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Abstract

A horizon-based method is presented for use in control and estimation
of a dynamic process. Process measurements are used to solve a Mixed
Integer optimization process online for estimating disturbance levels. The
estimated disturbances are then used to update a Model Predictive Con-
trol (MPC) algorithm. The method is applied to two case studies: an
experimental multivariable process and a carbon dioxide absorber simu-
lation.

Keywords: Disturbance Estimation, Model Predictive Control, Mov-

ing Horizon, Mixed Integer Programming, Distributed Computing.



Introduction

Horizon-based control has become an established method for use with difficult
industrial process control applications. Moving horizon methods efficiently use
process models to effectively control multi-variable systems and process con-
straints. It has been shown that model predictive control can benefit from the
use of state estimation. Various methods using horizon-based estimation show
that accurate estimates can be developed for process systems. The work pre-
sented in this paper demonstrate the integrated use of horizon-based estimation
and control on two complex systems: an experimental four-tank system and a
mini-plant simulation system.

There are many advantages in the use of a moving horizon formulation for
both disturbance estimation and process control. The methods are very simi-
lar, in that at every time step an optimization problem is solved using a finite
amount of measurement data and a model of the process. The estimation pro-
cedure attempts to solve for the past disturbances that best reconcile the given
historical data. The control problem uses the process model to solve for the
optimal control moves for the system. Horizon-based formulations allow for the
addition of mathematical constraints to the optimization problem. Horizon-
based formulations can also readily handle multivariable systems.

The estimation formulation currently used takes advantage of step response
models to capture the influence of unmeasured disturbances on the modeled
process outputs. Assuming that a limited number of disturbances are present
over a single optimization window, propositional logic constraints can be added
to the optimization formulation. These constraints include binary decision vari-
able representing the presence or absence of a disturbance. Depending upon the
objective function chosen, this results in either a Mixed Integer Linear Program

(MILP) or a Mixed Integer Quadratic Program (MIQP). The disturbance esti-



mate can potentially be used to improve controller response. Also, the use of
an explicit estimation scheme which detects and isolates disturbances allows for
the added potential for supervisory correction of disturbances, if possible.

The proposed architecture requires that the two optimization problems be
solved at each sampling time: one to reconcile past disturbance effects on mea-
surements and one to predict optimal control moves for a known future trajec-
tory. In addition to the optimization problems to be solved, a separate appli-
cation must handle data moving to and from the process in question, whether
it is a high fidelity simulated model or an actual physical process. Currently,
the most difficult computational problem is the estimation process. The use of
a mixed integer formulation results in problems that can be difficult to solve
in real-time. By taking advantage of prior solutions, exploiting the formulation
structure, and distributing the computational load to multiple machines, the
estimation problem can be handled in a timely manner. This allows the use of
accurate disturbance estimates when solving the control problem.

Two case studies are considered for application of moving horizon estima-
tion and control. A four-tank experimental laboratory apparatus (similar to
the system presented in [11]) is considered. This multivariable system can ex-
hibit a multivariable right-half or left-half plane zero, depending upon the valve
settings for a given operating condition. This system is automated by a Bai-
ley DCS system running Freelance using a Dynamic Data Exchange (DDE)
interface to connect to MATLAB and SIMULINK. The system has two ma-
nipulated variables, two measured variables (both controlled), six unmeasured
disturbances, and time constants on the order of 45 seconds. A high fidelity
simulation of a CO2 absorption/desorption process is also considered, as mod-
eled by [4]. The simulation and modeling is carried out using Aspen Dynamics

and Aspen Custom Modeler with a DDE interface to MATLAB. This system



has one manipulated variable, ten measured variables (one controlled), sixteen

unmeasured disturbances, and time constants on the order of 800 seconds.

Related Work

There are many different methods for combined estimation and control of a
chemical process. Presented below is a partial listing of some relevant work.

Moving horizon control has been effectively used in the process industries
for many years, particularly the petroleum industries. Model Predictive Control
solves an optimization problem at discrete time steps to minimize the error
between the process measurements and a reference. A method for basic MPC
using linear models with Kalman Filter based state estimation is presented in
[17]. Methods for MPC have also been proposed using nonlinear models of a
system to solve a nonlinear optimization problem at each time step [2] as well
as extensions for use of nonlinear estimation techniques [13].

Parameter estimation and disturbance estimation can both be treated as a
general state estimation problem. Kalman filtering has been used extensively
to solve linear estimation problems. Nonlinear estimation techniques have also
been applied. The Extended Kalman Filter (EKF) has met with much success
[18, 22]. Other types of Principal Component Analysis (PCA) can also be used
for determination of the state of a process [6, 5]. Moving horizon methods can
produce results similar to those of Kalman Filtering. An overview of nonlinear
estimation is found in [12]. Work with linear moving horizon methods [18, 19] as
well as nonlinear moving horizon methods [1, 15, 16] have show the effectiveness
and usefulness of moving horizon approaches.

In some cases, disturbances affect a system in deterministic, stepwise man-
ners. This type of effect can be considered similar to a fault detection and

diagnosis problem. Fault diagnosis infers the use of qualitative rules. Parame-



ter estimation can be treated as a moving horizon optimization problem. The
combination of estimation and diagnosis results in a problem that can be for-
mulated and solved using Mixed Integer (MI) optimization methods. Mixed
Integer Quadratic Programming (MIQP) formulations have been proposed in
[20, 21]. A Mixed Integer Linear Programming (MILP) formulation and effi-
cient solution methods have been discussed by [7]. Both MIQP and MILP of
formulations expresses qualitative rules about a system as constraints involving
integer variables.

Other fault detection and isolation methods are available for chemical en-
gineers attempting to minimize process down time and industrial accidents.
Rule-based diagnosis and root cause analysis has been presented in numerous
sources [3]. A method for diagnosis based on digraph representations has also
had some success [10, 14]. Many fault detection and isolation methods are ad-
equate for dealing with faults on a purely qualitative level. In many cases one
desires a more useful estimate of the current system state, so a combined moving

horizon estimation technique with propositional logic constraints is desired.

Methodology

Control Formulation

To solve the control problem, at each time step an optimization problem is
solved for a control move that minimizes the following objective function:
min ] ] )
Ty (y(@) = r(@)Il2 + [ITw Au(@)||2
i=k.k+p
where r(i) is the reference at time 7 for the process measurements y(i). The

process inputs are given as u(i) and Awu(i) is the difference between w(i) and



u(i — 1). The values for the process input beyond a point m in the horizon are

assumed constant:

m@+m)=m(@+m+1)=..=m(i+p)

The values I'y and I', are matrices that can be used to scale and weight
process outputs and changes in process inputs. The I'y, values can express
preference for control of one measurement over another. The I',, values suppress
chatter and extreme moves in the calculated process inputs.

The formulation takes advantage of a prediction of the future process out-

puts.

y(i) = y(i = 1) + Mu(i) + Mad(i) + fa(ym (k) — y(k))

Here, M is the impulse response matrix relating u to y. My is a model
relating the disturbances d to the process outputs y. The model error, or dis-
turbance term, at the current time step relating the actual measurement, y,,,
to the modeled value y(k) can be multiplied by filter f; in order to reduce noise

effects.

Estimation Formulation

Three different factors affect the estimation formulation objective function: the
error between the measurement residuals and the model, the change in parame-
ter estimates across a given window in time, and the change in parameter values
from one time step to another. The current formulation solves the following

problem:



T ) = 5@ + 120G s + llms ArO)]l
i=k—h.k
where k is the current time, y; is the process measurement vector at time ¢,
y(i) is the vector of process model estimates at time 4, my is a scaling vector
for weighting and normalizing the measurements, msy is a scaling vector for
weighting and normalizing the change in the parameter estimates in the given
horizon window, mg is a scaling value for normalizing the change in parameter
estimates across time, h is the length of the moving horizon, and ©; is the vector

of parameter estimate at time 7. The value for A©(7) is given by:

O;_p is the value of the parameter estimate 8;_p1 from the previous horizon
window. An impulse response formulation is used to calculate the response of
the process model estimate, y(i) to changes in the system parameters, ©. An
individual system parameter (or fault) may be described at time ¢ as ©;(i). The

value for A7©(i) is shown as:

AO7(i) = O(i) — Op—1(i +1)

Here, parameter estimates from the previous horizon’s optimization result
are used to minimize the change in a parameter from one time step to another.
The value is shifted in time so that the current estimate corresponds to the
value in the previous estimation window.

The impulse response formulation for (%) is:



o
g0i) = Z M;6; (i) + ... + M;0,(i)

where M are the impulse response coeflicients for model j. The value F' is the
total number of disturbances modeled in the formulation. The index j represents
the number of possible faults (or disturbances).

The formulation up to this point only includes continuous variables and few
constraints. Solving this formulation without additional constraints typically
yields an under specified problem that can match the measurement values with
the estimated measurement, values exactly. One may make the assumption that
only a limited number of disturbances can affect the system during a single hori-
zon. This leads one to use binary decision variables to represent whether or not
a fault has occurred in the current horizon window. The following constraints

are added:

|0;(0)] < Mf; Vi, Vj

F
> fi<s
j=1

for all fault parameters j and all horizon indices (times) i. The value M is a
large number that ensures whenever 6; ,(i) is nonzero, f; switches from 0 to
1. S is the total number of faults that can occur in a horizon window. In the
presented results, response to positive and negative changes in a parameter are

treated as separate fault events.



MIQP Solution Method

To solve the MIQP estimation problem in real-time, various steps are taken to
minimize the time needed for calculation [8]. The type of constraints in this
propositional logic problem allow significant improvement in the solution time.
In a situation where F' disturbances are possible and the system is constrained
to allow only a single disturbance, S = 1, the problem reduces significantly.
A small-scale quadratic programming problem can be solved for each of the
F' disturbances. Because the faults are mutually exclusive, this can easily be
accomplished. This procedure must take into account the effect of previous
solutions in order to be accurate. If fault ©; were found to be optimal at time
k , the objective function at time k + 1 for all other disturbances must show a
cost for changing the values for ©; to zero across the horizon.

Decomposing the MIQP solution into multiple small scale QP problems al-
lows for the use of computing power in parallel. The separate QP optimization
problems can be solved using computational processes on separate CPUs, po-
tentially even in different machines. The QP solution processes can also be
warm started by using the solutions from the previous time step to warm start

the QP calculation.
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Figure 1: Proposed control system schematic
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Application and Results

This section describes two separate case studies. The first case study is a four-
tank experimental apparatus. This system has two measurements and two ma-
nipulated variables with up to 4 external unmeasured disturbances. The second
case study is a COs absorber simulation. This system has ten measurements,
one manipulated input, and up to sixteen unmeasured disturbances. Control
and estimation results from both case studies will be presented.

Figure 2 shows a general schematic for configuring the system. Each box in
the diagram represents a separate physical computer or apparatus. The four-
tank process is controlled by a Bailey Process Station apparatus, which can then
be controlled by a PC. In Figure 2, each line is a flow of information and each
block of text represents a computational process. Information travels between
physical entities using TCP/IP and between processes on a PC using a Dynamic
Data Exchange (DDE) protocol. For the computational processes, the indented
text represents a subroutine of the process. MATLAB code has been developed
to allow direct use of CPLEX and LOQO applications for solving LP, QP, and
mixed integer problems. Independent MATLAB processes can pass and receive
messages from a Java based application, allowing for non-blocking (continuous)
operation of both processes. The Parallel Matlab Interface (PMI) toolbox also
allows for communication between MATLAB processes, but receiving messages

becomes a blocking task and the structure is parent-child instead of peer-to-peer.

Experimental Four-Tank Process

An interacting four-tank process has been implemented at the University of
Delaware [9]. This process is currently used in both the elective multidisciplinary
undergraduate control laboratory and the advanced graduate control course.

The design is inspired by the benchtop apparatus described in [11]. A simple
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Figure 2: Schematic of the control system
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Figure 3: Schematic of the experimental process
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schematic is shown in Figure 3. Two voltage-controlled pumps are used to
pump water from a basin into four overhead tanks. The two upper tanks drain
freely into the two bottom tanks, and the two bottom tanks drain freely into
the reservoir basin. The liquid levels in the bottom two tanks are directly
measured with pressure transducers. As can be seen from the schematic, the
piping system is configured such that each pump affects the liquid levels of both
measured tanks. A portion of the flow from one pump flows directly into one
of the lower level tanks where the level is monitored. The rest of the flow from
a single pump is diverted into an overhead tank, which drains into the other
monitored tank. By adjusting the bypass valves on the system, the amount
of interaction between the two pump flow rates (inputs) and the two lower
tank level heights (outputs) can be varied. For this work, it is assumed that
an external unmeasured disturbance flow may also be present which drains or
fills the top tanks. The original work of [11] employed tanks with volume of
0.5L whereas the present work uses 19L (5 gallon) tanks for a more realistic
experimental process.

A nonlinear model given by [11] has been modified to accommodate the
addition of disturbance flows into and out of the various tanks, d;. This model
is given in the following equations:

Ea R TR T TR e v
% _ _;1‘_33\/2‘(]—%_F (1—22)1@2,/2 B kdjjs
% _ _Z_i\/Qg—h‘l‘F (1—;&)1@1 V- kdz4d4

Although this fundamental model is a reasonably accurate description of the

system dynamics, many of the parameters are not available a priori, which
requires the estimation of several model parameters. The tank areas A; can

be measured directly from the apparatus. Using tank drainage data, the cross

13



sectional outlet areas a; can also be determined. The steady-state operating
point of v; = 55% and v = 55% were used for subsequent results. The system
valves were set for the bypass values 7; such that the operating point exhibits
inverse response (71 + 72 < 1). Time constants, T;, for the linearized system

model are on the order of 40 seconds.

ay,as 2.3cm? ky 6.81cm3/s
as,ay 2.3 ¢em? ko 6.94 cm>/s
Al, A2, A3, A4 730 sz g 981 CS—T
21(0) 5% | 0.102
72(0) 5% | 0.202
h1(0) 11.3¢em | h2(0) 16.4cm
hs(0) 89cm | ha(0) 10.9cem
Yibias -1.8 Y2bias —6.0

Table 1: Model parameters

A suitable test input sequence to generate data for the estimation of the
remaining parameters. In this case, they elected to identify the parameters of
the original nonlinear model, requiring the solution of a nonlinear optimization
problem. The problem was formulated to minimize the 2-norm of the difference
between the nonlinear model and actual measurements, searching over six pa-
rameters. Using dynamic data from the experiment, the optimization routine
found the optimal pump gains k;, gamma values -y;, and measurement bias y;pias
as depicted in Table 1. A similar routine could be employed to model the char-
acteristics of the disturbance introduced by the submersible pumps, kg4, , but
this was not done. The models used for estimation are based on a first-principles
model without first-hand knowledge of the physical parameters.

Linear step response models are derived from the nonlinear process model,
assuming a step in the inputs of 5% and a sample time of 5 seconds, using
60 coefficients. Aggressive controller tuning can result oscillations or unstable
behavior. The controller was tuned with m = 2 and p = 40. The values for

Iy were [1 1] and for T, were [.1.1]. This tuning results in acceptable setpoint
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tracking as well as disturbance rejection. The inverse response of the system

imposes a bound on the performance of the system.

m 2 samples p 40 samples

T, [ 1] T, [0.1 0.1]

my [10 10] ma | [3.53.50.90.90.60.6]
mg | [1.71.70.40.40.30.3] | h 30 samples

Table 2: Control and estimation algorithm parameters

Six faults are identified for this system: four flows into or out of the tanks in
addition to bias changes on the process inputs. Linear response models were de-
termined for the disturbance flows, assuming a level of disturbance that would
result in an open-loop change of approximately 5cm in the process measure-
ments. The input bias models are taken from the models used for the MPC
control calculation. Process measurements are available every second. These
values are filtered to provide measurements every five seconds. The tuning pa-
rameters mj, mo, and mg are given in Table 2. These values are chosen such that
the system can distinguish between the first-order type response of the lower
tanks and the second-order response of the upper tanks, assuming that the dis-
turbance is a step disturbance. Other types of disturbances such as ramps and
pulses can be estimated, but in some cases the system recognizes an incorrect
fault.

Figure 4 shows actual process measurements during four different distur-
bances. This figure also shows the process residuals for the system. The output
values of the nonlinear process model are compared to the actual process mea-
surements for calculation of the process residuals.

Figure 5 shows the estimated values for these four different disturbances.
The input bias disturbances should track the solid lines at a normalized level of
four units. The flow rate disturbances were never modeled exactly, so the actual

level of the disturbance is unknown. A solid line at the normalized level of two
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Process measurements
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Figure 4: Experimental process measurements
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Figure 5: Estimated disturbance levels for different faults
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shows the times at which the flow disturbances were applied to the system.
Note that in some cases the incorrect fault was initially detected. After more

information was available, the correct fault was determined.

Normalized disturbance estimates for leak in tank 2
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Figure 6: Disturbance estimates for leak in tank 2

Figures 6 and 7 show the horizon estimates for two different faults as a
function of time. The small inset graphs on these figures show the optimal
horizon estimates at different times. The estimated from 6 are much smoother
than those of 7. The weights on the change of the disturbance were developed
so that both faults could be distinguished, even though both faults are very
similar in nature. A step-like leak in tank 2 appears as a first-order change in
the residuals. A leak in tank 4 appears as a second-order change in the process
residuals. The disturbance models for both faults can be used to account for the
other fault. As a result, it can become difficult to develop weighting parameters
to distinguish between these two faults.

The Model Predictive Control algorithm can be extended to included the
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Normalized disturbance estimates for leak in tank 4
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Figure 7: Disturbance estimates for leak in tank 4

effects of a measured disturbance on the process. In cases where a disturbance
measurement is not available, an estimation method can be used calculate the
level of the disturbance. This can be considered a soft sensor. The disturbance
estimate is treated as a measured disturbance. In Figure 8, a simulation of the
four-tank system is shown where the MPC algorithm rejects the disturbance of
a leak in tank four without a measured disturbance update. In this simulation,
the 2-norm of the process error is 9.9.

In Figure 9 the same disturbance hits the system, but the value of the
estimated disturbance is used for control. The disturbance estimate is filtered
with a first-order filter of the form:

y(k) = (A = Dy(k — 1) + Au(k)
where A = 0.15. The 2-norm of the process error in this case is 5.7. This is a
significant improvement over the case without a disturbance update. Figure 10

shows a simulation of the run using the non-filtered estimate. The 2-norm of

18



this run is 4.0, but the control moves are erratic.

Simulated disturbance rejection without disturbance estimates for control
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Figure 8: Closed-loop simulation without using estimates for control
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Simulated disturbance rejection with filtered disturbance estimates for control
T

N

i i i i wmm Tank 1 error

= 1 Tank 2 error
111 Reference
Norm
of error =
5.7038

-

o

|
AN

Level error, cm

!
N

0 50 100 150 200 250 300 350 400

e
S

m= Tank 4 leak
= 1 Actual

N

Normalized Estimate
s °
u o w

0 50 100 150 200 250 300 350 400

°
Q\VGO T T ! w— Pump 1
2 = 1 Pump 2
=1
a 50 - 4
E PR L4 VNP R LA PR S Rl
2 40 g
o
<]
a 30 L L L L L L L
50 100 150 200 250 300 350 400
2

m= Tank 1 level
= 1 Tank 2 level

Residuals, cm
riv o
X
’
’
L

0 50 100 150 200 250 300 350 400
Time, sec

Figure 9: Closed-loop simulation using filtered estimates for control

Simulated disturbance rejection with un-filtered disturbance estimates for control
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Figure 10: Closed-loop simulation using estimates for control
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CO,; Processing Simulation

The CO; case study simulated here is taken from the work of [4]. The simulation
considers mass and energy balances, vapor-liquid equilibrium data, chemical
reactions, and mass transfer relations. Monoetanolamine (MEA) is used in the
system to react with the CO5 in the with are considered in the simulation model.
The controlled variable is the CO2 concentration in the product vapor stream
leaving the condenser. The manipulated variable is the reboiler steam flow rate.
Disturbances include the feed COs concentration, the feed CO5 flow rate, the
steam quality to the reboiler, the condenser duty, and variations in the MEA

concentration.

Cooler Condenser

Desorption

Inter-Column Column

? Heat Exchange

P

Absorption
Column

Figure 11: CO, Simulation Schematic

The following assumptions are made in the modeling of the absorber-desorber

system.

e The absorbtion column is adiabatic
e The absorbtion column has no pressure drop

e Plug flow gas phase throughout the the columns
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e Well mixed liquid phase on each tray

e The gas phase is pseudo steady state

e The gas phase is neglected in energy balance

e There are no radical temperature gradients exist throughout the column
e Liquid and gas phase temperatures are equal

e Constant physical properties for the columns

e The MEA in desorption column is non-volatile, no MEA in product stream
e No heat loss in the columns

e No accumulation of mass on desorption trays

e The condenser condensate contains no CO»

e Condenser model is assumed steady state

Using the Aspen simulation model, linear disturbance models were developed
for the six different faults. A sample time of 60 seconds was used, and 60
coefficients were use in the step response models. Table 3 shows the parameters
used in the control and estimation problems. In figure 12, the controlled and
manipulated variables for a step disturbance in the steam flow rate are shown
for two cases. In the first case, the estimated disturbance is not used by the
control algorithm. In the second case, the estimated disturbance is used in
the control move calculation. Use of the disturbance estimate clearly improves
control performance in the simulation environment.

Figure 13 shows the residuals for the eight different process measurements.
The measurements selected include the absorber top tray mole fraction, the

absorber top tray gas leaving mole fraction, the absorber bottom tray gas mole
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m 2 samples p 40 samples
r, [1] ry [0.1]

my | 10 % [11111111] | mo | 0.8 % [11111]
mg | 0.2x[111111] h | 30 samples

Table 3: Control and estimation algorithm parameters for CO- case study

fraction, the reboiler temperature, the desorber top tray mole fraction, the top
tray desorber temperature, the desorber bottom tray mole fraction, and the
desorber bottom tray temperature. As stated, a linear model for the effect of
the manipulated variable (steam flow rate) on the measured outputs is compared

to the actual process measurements for calculation of process residuals.
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Figure 12: Controlled and manipulated variables for CO4 absorber model, steam
flow rate disturbance from t=1000 to t=>5000 sec.

Figure 14 shows a typical horizon estimate for the system. In this case,
there are small estimation errors at the onset of the disturbance. This can be

attributed to model error due to nonlinearitites and initiall offset in the process
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Figure 13: Process variables for steam flow rate disturbance
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Figure 14: Horizon estimates for steam flow rate disturbance
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Conclusions

In this paper a method for solving control and estimation problems has been
demonstrated. The method uses a moving horizon controller in conjunction
with a moving horizon propositional logic estimation method. The estimation
method assumes that only a single, step-like, disturbance is present during a
estimation period. As a result, the estimation method can distinguish between
two faults that produce very similar process outputs. The estimation and control
method has also been shown to be amenable to large scale application. In ad-
dition, the estimation computation can be distributed across multiple machines

so that on-line estimates can be obtained quickly and efficiently.
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