
Paper No. 225d

Moving Horizon Estimation and Control

of an Experimental Process

Edward P.Gatzke, Francis J. Doyle III1

Department of Chemical Engineering

University of Delaware

Keywords: Parameter Estimation, Moving Horizon, Experimental Process,

Mixed Integer Programming

Prepared for Presentation at the November 1999 National Meeting, Dallas

Copyright 1999, University of Delaware

Unpublished

AIChE shall not be responsible for statements or opinions contained in papers

or in its publications.

1Author to whom correspondence should be addressed: fdoyle@udel.edu

1



Abstract

A horizon-based method is presented for use in control and estimation

of a dynamic process. Process measurements are used to solve a Mixed

Integer optimization process online for estimating disturbance levels. The

estimated disturbances are then used to update a Model Predictive Con-

trol (MPC) algorithm. The method is applied to two case studies: an

experimental multivariable process and a carbon dioxide absorber simu-

lation.

Keywords: Disturbance Estimation, Model Predictive Control, Mov-

ing Horizon, Mixed Integer Programming, Distributed Computing.
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Introduction

Horizon-based control has become an established method for use with di�cult

industrial process control applications. Moving horizon methods e�ciently use

process models to e�ectively control multi-variable systems and process con-

straints. It has been shown that model predictive control can bene�t from the

use of state estimation. Various methods using horizon-based estimation show

that accurate estimates can be developed for process systems. The work pre-

sented in this paper demonstrate the integrated use of horizon-based estimation

and control on two complex systems: an experimental four-tank system and a

mini-plant simulation system.

There are many advantages in the use of a moving horizon formulation for

both disturbance estimation and process control. The methods are very simi-

lar, in that at every time step an optimization problem is solved using a �nite

amount of measurement data and a model of the process. The estimation pro-

cedure attempts to solve for the past disturbances that best reconcile the given

historical data. The control problem uses the process model to solve for the

optimal control moves for the system. Horizon-based formulations allow for the

addition of mathematical constraints to the optimization problem. Horizon-

based formulations can also readily handle multivariable systems.

The estimation formulation currently used takes advantage of step response

models to capture the in�uence of unmeasured disturbances on the modeled

process outputs. Assuming that a limited number of disturbances are present

over a single optimization window, propositional logic constraints can be added

to the optimization formulation. These constraints include binary decision vari-

able representing the presence or absence of a disturbance. Depending upon the

objective function chosen, this results in either a Mixed Integer Linear Program

(MILP) or a Mixed Integer Quadratic Program (MIQP). The disturbance esti-
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mate can potentially be used to improve controller response. Also, the use of

an explicit estimation scheme which detects and isolates disturbances allows for

the added potential for supervisory correction of disturbances, if possible.

The proposed architecture requires that the two optimization problems be

solved at each sampling time: one to reconcile past disturbance e�ects on mea-

surements and one to predict optimal control moves for a known future trajec-

tory. In addition to the optimization problems to be solved, a separate appli-

cation must handle data moving to and from the process in question, whether

it is a high �delity simulated model or an actual physical process. Currently,

the most di�cult computational problem is the estimation process. The use of

a mixed integer formulation results in problems that can be di�cult to solve

in real-time. By taking advantage of prior solutions, exploiting the formulation

structure, and distributing the computational load to multiple machines, the

estimation problem can be handled in a timely manner. This allows the use of

accurate disturbance estimates when solving the control problem.

Two case studies are considered for application of moving horizon estima-

tion and control. A four-tank experimental laboratory apparatus (similar to

the system presented in [11]) is considered. This multivariable system can ex-

hibit a multivariable right-half or left-half plane zero, depending upon the valve

settings for a given operating condition. This system is automated by a Bai-

ley DCS system running Freelance using a Dynamic Data Exchange (DDE)

interface to connect to MATLAB and SIMULINK. The system has two ma-

nipulated variables, two measured variables (both controlled), six unmeasured

disturbances, and time constants on the order of 45 seconds. A high �delity

simulation of a CO2 absorption/desorption process is also considered, as mod-

eled by [4]. The simulation and modeling is carried out using Aspen Dynamics

and Aspen Custom Modeler with a DDE interface to MATLAB. This system
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has one manipulated variable, ten measured variables (one controlled), sixteen

unmeasured disturbances, and time constants on the order of 800 seconds.

Related Work

There are many di�erent methods for combined estimation and control of a

chemical process. Presented below is a partial listing of some relevant work.

Moving horizon control has been e�ectively used in the process industries

for many years, particularly the petroleum industries. Model Predictive Control

solves an optimization problem at discrete time steps to minimize the error

between the process measurements and a reference. A method for basic MPC

using linear models with Kalman Filter based state estimation is presented in

[17]. Methods for MPC have also been proposed using nonlinear models of a

system to solve a nonlinear optimization problem at each time step [2] as well

as extensions for use of nonlinear estimation techniques [13].

Parameter estimation and disturbance estimation can both be treated as a

general state estimation problem. Kalman �ltering has been used extensively

to solve linear estimation problems. Nonlinear estimation techniques have also

been applied. The Extended Kalman Filter (EKF) has met with much success

[18, 22]. Other types of Principal Component Analysis (PCA) can also be used

for determination of the state of a process [6, 5]. Moving horizon methods can

produce results similar to those of Kalman Filtering. An overview of nonlinear

estimation is found in [12]. Work with linear moving horizon methods [18, 19] as

well as nonlinear moving horizon methods [1, 15, 16] have show the e�ectiveness

and usefulness of moving horizon approaches.

In some cases, disturbances a�ect a system in deterministic, stepwise man-

ners. This type of e�ect can be considered similar to a fault detection and

diagnosis problem. Fault diagnosis infers the use of qualitative rules. Parame-
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ter estimation can be treated as a moving horizon optimization problem. The

combination of estimation and diagnosis results in a problem that can be for-

mulated and solved using Mixed Integer (MI) optimization methods. Mixed

Integer Quadratic Programming (MIQP) formulations have been proposed in

[20, 21]. A Mixed Integer Linear Programming (MILP) formulation and e�-

cient solution methods have been discussed by [7]. Both MIQP and MILP of

formulations expresses qualitative rules about a system as constraints involving

integer variables.

Other fault detection and isolation methods are available for chemical en-

gineers attempting to minimize process down time and industrial accidents.

Rule-based diagnosis and root cause analysis has been presented in numerous

sources [3]. A method for diagnosis based on digraph representations has also

had some success [10, 14]. Many fault detection and isolation methods are ad-

equate for dealing with faults on a purely qualitative level. In many cases one

desires a more useful estimate of the current system state, so a combined moving

horizon estimation technique with propositional logic constraints is desired.

Methodology

Control Formulation

To solve the control problem, at each time step an optimization problem is

solved for a control move that minimizes the following objective function:

min

i = k:::k + p
jj�y (y(i)� r(i))jj2 + jj�u�u(i)jj2

where r(i) is the reference at time i for the process measurements y(i): The

process inputs are given as u(i) and �u(i) is the di�erence between u(i) and

6



u(i� 1). The values for the process input beyond a point m in the horizon are

assumed constant:

m(i+m) = m(i+m+ 1) = ::: = m(i+ p)

The values �y and �u are matrices that can be used to scale and weight

process outputs and changes in process inputs. The �y values can express

preference for control of one measurement over another. The �u values suppress

chatter and extreme moves in the calculated process inputs.

The formulation takes advantage of a prediction of the future process out-

puts.

y(i) = y(i� 1) +Mu(i) +Mdd(i) + fd(ym(k)� y(k))

Here, M is the impulse response matrix relating u to y. Md is a model

relating the disturbances d to the process outputs y. The model error, or dis-

turbance term, at the current time step relating the actual measurement, ym,

to the modeled value y(k) can be multiplied by �lter fd in order to reduce noise

e�ects.

Estimation Formulation

Three di�erent factors a�ect the estimation formulation objective function: the

error between the measurement residuals and the model, the change in parame-

ter estimates across a given window in time, and the change in parameter values

from one time step to another. The current formulation solves the following

problem:
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min

i = k � h:::k
jjm1(y(i)� by(i))jj2 + jjm2��(i)jj2 + jjm3�T�(i)jj2

where k is the current time, yi is the process measurement vector at time i,

by(i) is the vector of process model estimates at time i, m1 is a scaling vector

for weighting and normalizing the measurements, m2 is a scaling vector for

weighting and normalizing the change in the parameter estimates in the given

horizon window, m3 is a scaling value for normalizing the change in parameter

estimates across time, h is the length of the moving horizon, and �i is the vector

of parameter estimate at time i. The value for ��(i) is given by:

��(i) = �(i)��(i� 1)

�i�h is the value of the parameter estimate �i�h+1 from the previous horizon

window. An impulse response formulation is used to calculate the response of

the process model estimate, by(i) to changes in the system parameters, �. An

individual system parameter (or fault) may be described at time i as �j(i). The

value for �T�(i) is shown as:

��T (i) = �(i)��k�1(i+ 1)

Here, parameter estimates from the previous horizon's optimization result

are used to minimize the change in a parameter from one time step to another.

The value is shifted in time so that the current estimate corresponds to the

value in the previous estimation window.

The impulse response formulation for by(i) is:
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by(i) =
FX
j=1

Mj�j(i) + :::+Mj�j(i)

where Mj are the impulse response coe�cients for model j. The value F is the

total number of disturbances modeled in the formulation. The index j represents

the number of possible faults (or disturbances).

The formulation up to this point only includes continuous variables and few

constraints. Solving this formulation without additional constraints typically

yields an under speci�ed problem that can match the measurement values with

the estimated measurement values exactly. One may make the assumption that

only a limited number of disturbances can a�ect the system during a single hori-

zon. This leads one to use binary decision variables to represent whether or not

a fault has occurred in the current horizon window. The following constraints

are added:

j�j(i)j � Mfj 8i; 8j

FX
j=1

fj � S

for all fault parameters j and all horizon indices (times) i. The value M is a

large number that ensures whenever �j;n(i) is nonzero, fj switches from 0 to

1. S is the total number of faults that can occur in a horizon window. In the

presented results, response to positive and negative changes in a parameter are

treated as separate fault events.

9



MIQP Solution Method

To solve the MIQP estimation problem in real-time, various steps are taken to

minimize the time needed for calculation [8]. The type of constraints in this

propositional logic problem allow signi�cant improvement in the solution time.

In a situation where F disturbances are possible and the system is constrained

to allow only a single disturbance, S = 1, the problem reduces signi�cantly.

A small-scale quadratic programming problem can be solved for each of the

F disturbances. Because the faults are mutually exclusive, this can easily be

accomplished. This procedure must take into account the e�ect of previous

solutions in order to be accurate. If fault �1 were found to be optimal at time

k , the objective function at time k + 1 for all other disturbances must show a

cost for changing the values for �1 to zero across the horizon.

Decomposing the MIQP solution into multiple small scale QP problems al-

lows for the use of computing power in parallel. The separate QP optimization

problems can be solved using computational processes on separate CPUs, po-

tentially even in di�erent machines. The QP solution processes can also be

warm started by using the solutions from the previous time step to warm start

the QP calculation.

Controller Process
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Figure 1: Proposed control system schematic
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Application and Results

This section describes two separate case studies. The �rst case study is a four-

tank experimental apparatus. This system has two measurements and two ma-

nipulated variables with up to 4 external unmeasured disturbances. The second

case study is a CO2 absorber simulation. This system has ten measurements,

one manipulated input, and up to sixteen unmeasured disturbances. Control

and estimation results from both case studies will be presented.

Figure 2 shows a general schematic for con�guring the system. Each box in

the diagram represents a separate physical computer or apparatus. The four-

tank process is controlled by a Bailey Process Station apparatus, which can then

be controlled by a PC. In Figure 2, each line is a �ow of information and each

block of text represents a computational process. Information travels between

physical entities using TCP/IP and between processes on a PC using a Dynamic

Data Exchange (DDE) protocol. For the computational processes, the indented

text represents a subroutine of the process. MATLAB code has been developed

to allow direct use of CPLEX and LOQO applications for solving LP, QP, and

mixed integer problems. Independent MATLAB processes can pass and receive

messages from a Java based application, allowing for non-blocking (continuous)

operation of both processes. The Parallel Matlab Interface (PMI) toolbox also

allows for communication between MATLAB processes, but receiving messages

becomes a blocking task and the structure is parent-child instead of peer-to-peer.

Experimental Four-Tank Process

An interacting four-tank process has been implemented at the University of

Delaware [9]. This process is currently used in both the elective multidisciplinary

undergraduate control laboratory and the advanced graduate control course.

The design is inspired by the benchtop apparatus described in [11]. A simple
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Figure 2: Schematic of the control system
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Figure 3: Schematic of the experimental process
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schematic is shown in Figure 3. Two voltage-controlled pumps are used to

pump water from a basin into four overhead tanks. The two upper tanks drain

freely into the two bottom tanks, and the two bottom tanks drain freely into

the reservoir basin. The liquid levels in the bottom two tanks are directly

measured with pressure transducers. As can be seen from the schematic, the

piping system is con�gured such that each pump a�ects the liquid levels of both

measured tanks. A portion of the �ow from one pump �ows directly into one

of the lower level tanks where the level is monitored. The rest of the �ow from

a single pump is diverted into an overhead tank, which drains into the other

monitored tank. By adjusting the bypass valves on the system, the amount

of interaction between the two pump �ow rates (inputs) and the two lower

tank level heights (outputs) can be varied. For this work, it is assumed that

an external unmeasured disturbance �ow may also be present which drains or

�lls the top tanks. The original work of [11] employed tanks with volume of

0:5L whereas the present work uses 19L (5 gallon) tanks for a more realistic

experimental process.

A nonlinear model given by [11] has been modi�ed to accommodate the

addition of disturbance �ows into and out of the various tanks, di. This model

is given in the following equations:

dh1
dt

= � a1
A1

p
2gh1 +

a3
A1

p
2gh3 +


1k1
A1

�1 � kd1d1
A3

dh2
dt

= � a2
A2

p
2gh2 +

a4
A2

p
2gh4 +


2k2
A2

� � kd2d2
A3

dh3
dt

= � a3
A3

p
2gh3 +

(1�
2)k2
A3

�2 � kd3d3
A3

dh4
dt

= � a4
A4

p
2gh4 +

(1�
1)k1
A4

�1 � kd4d4
A4

Although this fundamental model is a reasonably accurate description of the

system dynamics, many of the parameters are not available a priori, which

requires the estimation of several model parameters. The tank areas Ai can

be measured directly from the apparatus. Using tank drainage data, the cross
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sectional outlet areas ai can also be determined. The steady-state operating

point of �1 = 55% and �2 = 55% were used for subsequent results. The system

valves were set for the bypass values 
i such that the operating point exhibits

inverse response (
1 + 
2 < 1). Time constants, Ti, for the linearized system

model are on the order of 40 seconds.

a1; a2 2:3 cm2 k1 6:81 cm3=s
a3; a4 2:3 cm2 k2 6:94 cm3=s

A1; A2; A3; A4 730 cm2 g 981 cm
s2

�1(0) 55% 
1 0:102
�2(0) 55% 
2 0:202
h1(0) 11:3 cm h2(0) 16:4 cm
h3(0) 8:9 cm h4(0) 10:9 cm
y1bias �1:8 y2bias �6:0

Table 1: Model parameters

A suitable test input sequence to generate data for the estimation of the

remaining parameters. In this case, they elected to identify the parameters of

the original nonlinear model, requiring the solution of a nonlinear optimization

problem. The problem was formulated to minimize the 2-norm of the di�erence

between the nonlinear model and actual measurements, searching over six pa-

rameters. Using dynamic data from the experiment, the optimization routine

found the optimal pump gains ki, gamma values 
i, and measurement bias yibias

as depicted in Table 1. A similar routine could be employed to model the char-

acteristics of the disturbance introduced by the submersible pumps, kdi , but

this was not done. The models used for estimation are based on a �rst-principles

model without �rst-hand knowledge of the physical parameters.

Linear step response models are derived from the nonlinear process model,

assuming a step in the inputs of 5% and a sample time of 5 seconds, using

60 coe�cients. Aggressive controller tuning can result oscillations or unstable

behavior. The controller was tuned with m = 2 and p = 40. The values for

�y were [1 1] and for �u were [:1 :1]. This tuning results in acceptable setpoint
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tracking as well as disturbance rejection. The inverse response of the system

imposes a bound on the performance of the system.

m 2 samples p 40 samples
�y [1 1] �u [0:1 0:1]
m1 [10 10] m2 [3:5 3:5 0:9 0:9 0:6 0:6]
m3 [1:7 1:7 0:4 0:4 0:3 0:3] h 30 samples

Table 2: Control and estimation algorithm parameters

Six faults are identi�ed for this system: four �ows into or out of the tanks in

addition to bias changes on the process inputs. Linear response models were de-

termined for the disturbance �ows, assuming a level of disturbance that would

result in an open-loop change of approximately 5 cm in the process measure-

ments. The input bias models are taken from the models used for the MPC

control calculation. Process measurements are available every second. These

values are �ltered to provide measurements every �ve seconds. The tuning pa-

rametersm1,m2, andm3 are given in Table 2. These values are chosen such that

the system can distinguish between the �rst-order type response of the lower

tanks and the second-order response of the upper tanks, assuming that the dis-

turbance is a step disturbance. Other types of disturbances such as ramps and

pulses can be estimated, but in some cases the system recognizes an incorrect

fault.

Figure 4 shows actual process measurements during four di�erent distur-

bances. This �gure also shows the process residuals for the system. The output

values of the nonlinear process model are compared to the actual process mea-

surements for calculation of the process residuals.

Figure 5 shows the estimated values for these four di�erent disturbances.

The input bias disturbances should track the solid lines at a normalized level of

four units. The �ow rate disturbances were never modeled exactly, so the actual

level of the disturbance is unknown. A solid line at the normalized level of two
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Figure 4: Experimental process measurements
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shows the times at which the �ow disturbances were applied to the system.

Note that in some cases the incorrect fault was initially detected. After more

information was available, the correct fault was determined.
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Figure 6: Disturbance estimates for leak in tank 2

Figures 6 and 7 show the horizon estimates for two di�erent faults as a

function of time. The small inset graphs on these �gures show the optimal

horizon estimates at di�erent times. The estimated from 6 are much smoother

than those of 7. The weights on the change of the disturbance were developed

so that both faults could be distinguished, even though both faults are very

similar in nature. A step-like leak in tank 2 appears as a �rst-order change in

the residuals. A leak in tank 4 appears as a second-order change in the process

residuals. The disturbance models for both faults can be used to account for the

other fault. As a result, it can become di�cult to develop weighting parameters

to distinguish between these two faults.

The Model Predictive Control algorithm can be extended to included the
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Figure 7: Disturbance estimates for leak in tank 4

e�ects of a measured disturbance on the process. In cases where a disturbance

measurement is not available, an estimation method can be used calculate the

level of the disturbance. This can be considered a soft sensor. The disturbance

estimate is treated as a measured disturbance. In Figure 8, a simulation of the

four-tank system is shown where the MPC algorithm rejects the disturbance of

a leak in tank four without a measured disturbance update. In this simulation,

the 2-norm of the process error is 9:9.

In Figure 9 the same disturbance hits the system, but the value of the

estimated disturbance is used for control. The disturbance estimate is �ltered

with a �rst-order �lter of the form:

y(k) = (�� 1)y(k � 1) + �u(k)

where � = 0:15. The 2-norm of the process error in this case is 5:7. This is a

signi�cant improvement over the case without a disturbance update. Figure 10

shows a simulation of the run using the non-�ltered estimate. The 2-norm of
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this run is 4:0, but the control moves are erratic.
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Figure 9: Closed-loop simulation using �ltered estimates for control
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Figure 10: Closed-loop simulation using estimates for control
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CO2 Processing Simulation

The CO2 case study simulated here is taken from the work of [4]. The simulation

considers mass and energy balances, vapor-liquid equilibrium data, chemical

reactions, and mass transfer relations. Monoetanolamine (MEA) is used in the

system to react with the CO2 in the with are considered in the simulation model.

The controlled variable is the CO2 concentration in the product vapor stream

leaving the condenser. The manipulated variable is the reboiler steam �ow rate.

Disturbances include the feed CO2 concentration, the feed CO2 �ow rate, the

steam quality to the reboiler, the condenser duty, and variations in the MEA

concentration.

Absorption
Column

Inter-Column
Heat Exchanger

Cooler Condenser

Desorption
Column

Reboiler

Figure 11: CO2 Simulation Schematic

The following assumptions are made in the modeling of the absorber-desorber

system.

� The absorbtion column is adiabatic

� The absorbtion column has no pressure drop

� Plug �ow gas phase throughout the the columns
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� Well mixed liquid phase on each tray

� The gas phase is pseudo steady state

� The gas phase is neglected in energy balance

� There are no radical temperature gradients exist throughout the column

� Liquid and gas phase temperatures are equal

� Constant physical properties for the columns

� The MEA in desorption column is non-volatile, no MEA in product stream

� No heat loss in the columns

� No accumulation of mass on desorption trays

� The condenser condensate contains no CO2

� Condenser model is assumed steady state

Using the Aspen simulation model, linear disturbance models were developed

for the six di�erent faults. A sample time of 60 seconds was used, and 60

coe�cients were use in the step response models. Table 3 shows the parameters

used in the control and estimation problems. In �gure 12, the controlled and

manipulated variables for a step disturbance in the steam �ow rate are shown

for two cases. In the �rst case, the estimated disturbance is not used by the

control algorithm. In the second case, the estimated disturbance is used in

the control move calculation. Use of the disturbance estimate clearly improves

control performance in the simulation environment.

Figure 13 shows the residuals for the eight di�erent process measurements.

The measurements selected include the absorber top tray mole fraction, the

absorber top tray gas leaving mole fraction, the absorber bottom tray gas mole
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m 2 samples p 40 samples
�y [1] �u [0:1]
m1 10 � [11111111] m2 0:8 � [11111]
m3 0:2 � [111111] h 30 samples

Table 3: Control and estimation algorithm parameters for CO2 case study

fraction, the reboiler temperature, the desorber top tray mole fraction, the top

tray desorber temperature, the desorber bottom tray mole fraction, and the

desorber bottom tray temperature. As stated, a linear model for the e�ect of

the manipulated variable (steam �ow rate) on the measured outputs is compared

to the actual process measurements for calculation of process residuals.
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Figure 12: Controlled and manipulated variables for CO2 absorber model, steam
�ow rate disturbance from t=1000 to t=5000 sec.

Figure 14 shows a typical horizon estimate for the system. In this case,

there are small estimation errors at the onset of the disturbance. This can be

attributed to model error due to nonlinearitites and initiall o�set in the process
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residuals.
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Figure 13: Process variables for steam �ow rate disturbance
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Conclusions

In this paper a method for solving control and estimation problems has been

demonstrated. The method uses a moving horizon controller in conjunction

with a moving horizon propositional logic estimation method. The estimation

method assumes that only a single, step-like, disturbance is present during a

estimation period. As a result, the estimation method can distinguish between

two faults that produce very similar process outputs. The estimation and control

method has also been shown to be amenable to large scale application. In ad-

dition, the estimation computation can be distributed across multiple machines

so that on-line estimates can be obtained quickly and e�ciently.
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