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ABSTRACT

Blackboard{based systems are currently provoking interest as a method of
performing fault diagnosis in complex systems. The components of the blackboard
structure are discussed, including possible knowledge sources and types of process
models. A method is proposed for automating process model development by
combining process information and low{level unit operation models. Preliminary
results are shown, and possible future work is proposed.
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1. INTRODUCTION

The chemical process industry loses millions of dollars every year due to loss

of production and down time caused by problems in the process. Such problems

typically fall into two qualitative categories: abnormal events and catastrophic

events. Abnormal events usually result in lost production, wasted resources,

defective product, or down-time. Catastrophic events lead to environmental disasters,

destruction of expensive facilities, and loss of life. Safeguards and automatic

shuto�s typically keep plants from developing catastrophic events, but these safety

features are not always su�cient. Abnormal events are typically the gateway to

a catastrophic failure. Catastrophic failures rarely happen when everything is

running smoothly. Rather, a plant usually moves through a abnormal-type event

in the progression towards a catastrophic event. Clearly there is a need for more

accurate, well-organized, timely information about a process during the evolution of

abnormal events. Early diagnosis of process faults while the plant is still operating

in a controllable region in conjunction with better qualitative information about

the suspected event can help avoid event progression and reduce the amount of

productivity loss during an abnormal event [17].

This problem of fault diagnosis and subsequent control is made muchmore di�cult

by the scale and complexity of modern chemical plants. Processes are frequently

pushed beyond their designed operating points into more nonlinear operating areas.

Some fault events cause a cascading e�ect, triggering multiple alarms and spawning

additional problems. Other events are slow to develop, taking place over the course

of many shifts. A slight drift in one of many hundreds of sensors could easily go

un-noticed. Operator devised rules for problem solving can break down, especially in
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the case of never-experienced faults. Amethod of recognizing problems and organizing

information needs to be developed to address these concerns.

One proposed solution to the problem makes use of a blackboard architecture to

aid in the diagnosis of plant faults and the management of plant information. Since

no one method can accurately work as a diagnostic tool for all types of imaginable

faults, a hybrid solution is being developed. The blackboard architecture takes

advantage of multiple methods for fault diagnosis, using experts which can work

on one speci�c part of the problem or can work together to solve the problem. The

core of such a method is the actual model of the plant. This model can be used by the

di�erent diagnostic methods to glean current information about the process or to post

current proposed solutions to the problem at hand. To e�ectively model a chemical

process, multiple models should be used. These models include such information as a

physical description of the plant (location and size of equipment), a logical hierarchy

of the plant structure, a goal-tree representing the objectives of the plant, and a

malfunction-tree which represents what can go wrong with the plant. Developing

models for a complex system can be extremely time consuming. Qualitative models

often are biased by the individual developer of the model. Two di�erent people,

working on the same process could develop totally di�erent models. If advanced

diagnostic methods are ever to be used in real-world situations, a better method for

model development must be developed.

In this report, an overview of work related to blackboard implementation is

addressed. This includes a review of types of blackboards and how they are

implemented, a review of advanced knowledge sources necessary for diagnosis in

blackboard systems, and a review of di�erent methods of model automation. This

paper goes on to propose a methodology for the automation of blackboard database

models. The proposed method relies upon developing an overall representation from

developed models residing in a model library. A case-study is given as an example of

this method. Finally, the report suggests directions and related problems for future

work.
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2. BLACKBOARDS

The blackboard-based approach for collective problem solving developed due to

a need to solve complex, computationally intensive problems. This approach is

based upon the method often used by human experts to solve a problem. For

example, assume that a group of engineers are working on a di�cult problem. First,

they may write the problem on a blackboard. Each engineer may have an area

of expertise applicable to the problem, but each individual engineer lacks enough

knowledge to solve the complete problem. Each problem solver would work on parts

of the problem, adding proposed solutions or partial solutions to the blackboard.

The other problem solvers could look to the blackboard for partial solutions and

recent information, eventually adding the product of their own knowledge to the

total blackboard information. Typically, there would be a supervisor that regulates

who should work on which parts of the problem, controls how the engineers interact

while solving the problem, and decides what the �nal solution should be.

This method can easily be cast as an algorithm for computer-aided problem

solving. The engineers correspond to diagnostic applications which have a limited

domain of expertise. These knowledge sources can have overlapping areas of

knowledge, but they should specialize in certain speci�c areas. The blackboard

corresponds to a computer database representing the problem at hand including all

the information currently available. The supervisor would be a scheduler application

which allocates computer resources by starting diagnostic applications and ultimately

pulling all available blackboard information together to arrive at a conclusion.

One example comes from a simple 
ow system such as �gure (2.1) [14]. In this

example, a level controller keeps a tank at a certain level, ensuring that the product
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Figure 2.1 Simple 
ow system

can be supplied by an exit pump. Pump cavitation results if the level drops too low.

A goal model of this system can be developed for the blackboard to use. Separate

experts can also be developed which diagnose the system (see �gure (2.2)). The

sensor expert detects sensor bias, the controller expert ascertains the status of the

controller, the cavitation expert can �nd out if the pump is cavitatiing, and the

production expert monitors the process output. When a problem occurs messages

are sent from the experts to the blackboard. Posting of a message may change the

state of the blackboard such that trigger another expert to take action and present a

new solution.

There are many advantages to using a blackboard system. A blackboard

architecture can be designed such that the system runs in parallel. Since each

knowledge source is basically independent of the other knowledge sources, each one

may run on separate platforms. This modularization is also good for large-scale

development of systems. If the basic structure is speci�ed, the knowledge sources can

be developed independently by di�erent groups of people. Poorly developed experts

can be replaced and additional experts can be added. Blackboard systems also work

well when faced with uncertain problems. When solving the problem, the scheduler

takes all the information from the knowledge sources and formulates the best answer.

This answer should be the best solution, even though experts may give incomplete
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Production Expert
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Sensor Expert

Figure 2.2 Experts and goals

responses, inaccurate responses, or contradicting responses. The scheduler could take

into account each expert's domain of knowledge and give it a weight according to how

probable the information is correct. The blackboard can also become a good tool for

information management. The blackboard may contain models of the actual system

or information about the state of the current problem solution. Even if the scheduler

breaks down and refuses to �nd an answer to a problem, a human operator could

possibly look at the intermediate blackboard information and draw conclusions from

it.

One of the �rst applications of the blackboard architecture was the Hearsay speech

understanding system, developed at Carnegie Mellon University from 1971-1976

[3]. This application was an early attempt at computerized voice recognition. A

description and summary of the project is given by Lee Erman [4]. This system had a

hierarchy of inter-related problems to solve. At the lowest level, data was formed into

segments. Segments form syllables, syllables form words, words form phrases, and

phrases form sentences. At each level, expert systems were developed to cope with the

problem at hand. Con
icts can arise if a result is erroneous (i.e. two proposed words

which cannot follow in a sentence). The scheduler works to resolve con
icts and keep

the experts working productively. Because of limited computer resources, the focus

of attention problem was found. Experts that are computationally intensive should
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only be called if necessary. The overall results from the Hearsay project were not

extremely good, but much was learned from the implementation of this blackboard

system.

Another early use for blackboard systems was for use in military target tracking

problems. An explanation of the HASP program is given by Penny Nii [16] and a

description of the RTBB problem is developed by P. Kersten [9]. The HASP program

was a sonar-based problem for sub detection, and the RTBB was a radar tracking

system for detecting 
ying threats. Both problems share similar characteristics. One

similarity is that large amounts of data are available for analysis. This includes sensor

data and data about known activities in the area of interest. Once a track is formed

for a source, the sensor may lose contact. Tracks fade in and out, forcing a overall

solution based on partial data. The systems work in systems with large amounts of

uncertainty because they are attempting to �nd a source which may be taking evasive

action, obscuring the signal. The blackboard facilitates the interactions of the 40 or

more knowledge sources which work together to solve the problem.

Recently, a blackboard systems have been applied to a chemical processes. A.

Crespo et. al. used a temporal blackboard to reason about control of a cement kiln

process [2]. In this application, past data from the process is used to �nd control

actions and the results of the control actions. Numerous predictions about how the

system will react are posted to the blackboard. As more information comes in from

the process, the probability of each prospective hypothesis can be adjusted up and

down. This helps develop an idea of the current sate of the system. One drawback

to this approach is that the blackboard typically must wait for enough evidence from

the process to evolve in order to weed out false guesses. The only solutions this

blackboard system looks at are the few proposed by the prediction experts. The idea

of using temporal evidence to develop an idea about the current and future status

of the process is obviously similar to fault diagnosis. This type of prediction may be

useful to incorporate into fault diagnosis systems.
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Mylaraswamy has also done much work related to blackboard systems; in his

thesis [14] he describes DKIT, a blackboard-based system for diagnosis of a 
uidized

catalytic cracking unit (FCCU). This system uses multiple experts to diagnose a

variety of faults in a FCCU model. The system contained qualitative models of

the FCCU which were accessible by the experts to aid in diagnosis. This type of

blackboard was modi�ed and further developed in a project with the Abnormal

System Management (ASM) consortium for fault diagnosis involving FCCU units.

The new system developed by ASM is called the Abnormal Event Guidance System

(AEGIS). This blackboard system uses a more advanced plant model so that the

experts can interact more productively with the blackboard. This model is called

the Plant Reference Model (PRM). The PRM will be described in detail in the

methodology section.

Blackboard systems are emerging as viable options for solving real{time

complex problems. For chemical engineering applications involving fault{diagnosis

blackboards are proving both useful and necessary. There are many problem areas to

be addressed. Better knowledge sources, plant models, and development tools need

to evolve before blackboards can be used e�ectively in many industrial applications.
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3. KNOWLEDGE SOURCES

Advanced fault diagnosis systems rely upon procedures for extracting relevant

information about a process from actual process data combined with a process

model. Development of fault diagnosis procedure requires that the method returns a

result quickly, therefore long{running o�{line computation is to be avoided because

of the quick dynamics found in many chemical processes. The method must be

sensitive to small changes in the process, while at the same time false alarms must be

avoided. Two di�erent paths are available for development of fault diagnosis system:

qualitative approaches and quantitative approaches.

3.1 Qualitative Models

The signed digraph is a simple method used for fault diagnosis. This method

relies on the qualitative causal relationship of process variables. If one system

variable deviates above normal, other process variables may change accordingly (up

or down). Iri gives a basic method for diagnosis using signed digraphs to �nd the

root cause of a disturbance [6]. This method has many limitations. The causality

between process variables is assumed �xed. The magnitude of process relationships is

ignored. Resolution is typically bad, resulting in many incorrect results. Some causal

relationships (such as feedback controllers) can develop looping structures which are

di�cult to diagnose. Some of these limitations have been addressed [10], but many

problems still remain.

Related to signed digraphs are Bayesian belief networks. In these applications,

the causal result from one system variable to another is based upon probability.
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Developing the probabilistic relationships can be di�cult or impossible in systems

where humans have little grasp of the relative frequency of events. These probabilities

represent the biases of the developer. Cyclic causal relationships cause computational

problems.

Traditional rule-based expert systems have also been applied to fault diagnosis.

Mandelkern outlines the basic requirements and implementation methods for

rule{based expert systems [12]. Expert systems basically use if{then rules to capture

process relationships. Rules match their predicates with existing evidence. One

matching rule is selected to �re. This may produce new evidence, causing a new rule

to �re. Results of this type of system rely heavily upon the in
uence of the developer.

In large complex systems, large numbers of rules may be needed. The many rules can

time consuming to develop and di�cult to update as the process changes.

3.2 Quantitative Models

Quantitative methods for fault diagnosis involve using process measurements,

information about known inputs, and a mathematical model of a process to calculate

the extent of a fault acting upon a system. A fault in a process system can be

treated as a changing process state, a varying process parameter, or an unknown

process input. Once the fault signal is calculated, it is compared against threshold

values to determine if a fault actually is present. Frank [5] and Iserman [7] describe

two popular methods of fault diagnosis using quantitative models: state estimation

and parameter estimation. These methods are typically implemented with linear

process models as online �lters. Obviously, model mismatch will cause some residual

di�erences to surface, causing false alarms if thresholds are too low or non-diagnosed

faults if thresholds are too low.

Most chemical processes have realistic nonlinear models available for use in

diagnostic applications. Attempts at developing nonlinear observers and estimators

have been limited. For nonlinear systems, multiple linear observers are often used
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Figure 3.1 Horizon-based optimization to reconcile historical measurements

to capture the nonlinearity of the process [18]. Development of nonlinear observers

using actual nonlinear models is achievable, but only for a limited set of problems [8].

As a result, there is much room for development in the realm of advanced observers.

One approach which could be developed is use of horizon-based optimization

methods for state and parameter estimation. These methods are much like existing

Model Predictive Control (MPC) algorithms in that a optimization problem is solved

at each time step. In MPC, the optimal inputs are found to drive a system to a

a desired output using process models of the system. Horizon-based optimization

for parameter estimation �nds the best set of states or parameters which reconcile

the past process measurements (see �gure (3.1)). A typical problem is posed as a

minimization of the 2-norm of the di�erence between measurements and estimated

measurements normalized by V, the variance-covariance.

Objective Function:

min
ŷ(t)

tcX

i=0=tc�H

ky(i)� ŷ(i)k2V
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subject to f [
dŷ(t)

dt
; ŷ(t)] = 0

h[ŷ(t)] = 0; g[ŷ(t)] � 0

Here, H would be the length of the horizon, tc is the current time, y(i) are the

vectors of process measurements, and ŷ(i) are the predictions from the model. The

minimization is subject to constraints created from the process model, including

di�erential, algebraic, and inequality constraints. A robust linear case has been

developed by Tyler and Morari [19]. This implementation uses multiple linear models

to represent both process uncertainty and fault response. The use of linear models

results in �nding a solution to a quadratic programming problem which can be

accomplished in real time. Use of nonlinear equations in the optimization problem

has been approached by Liebman et. al. [11]. Quadratic optimization problems

are solved repeatedly to eventually arrive at a solution. Horizon based estimation

should become an e�ective method for extraction of fault information from process

measurements and models.
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4. MODEL DEVELOPMENT AUTOMATION

Blackboard systems can be used to diagnose system faults by taking advantage

of di�erent types of knowledge sources in order to arrive at a collective solution to

a problem. Obviously, every element of the blackboard architecture must interact

and work properly for accurate answers to the diagnosis problem. The portion of

the blackboard which aids in the interaction between knowledge sources, supervisory

blackboard applications, and human operators is the process model. The AEGIS

system developed by the ASM consortium relies upon the PRM as a backbone of

the system. This knowledge representation of a FCCU was developed in an ad-hoc

manner. In order to use the blackboard system in further applications, a better

method of model development must be found.

Development of digraphs by humans either relies on an expert's opinion of process

relationships or a painstaking analysis of model equations. Complex �rst principles

models such as the model IV FCCU model [13] are often available for such analysis.

This model contains over one hundred process equations and variables. Automated

analysis of such equations should extract the requisite causal relationships needed

for digraph construction. Changing operating points requires production of a new

digraph. Automatic digraph construction would make such changes less painful and

ensure accurate digraph models.

Some work has been done concerning model automation from a signed digraph

model. Nam et. al. [15] have developed a procedure for extracting symptom-fault

associations from a signed digraph. This method basically traces connection back

in the digraph until a root node is found, pairing symptoms directly to possible

faults. The normal restrictions for digraphs limit the usefulness of this method.
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These restrictions include a failure to handle inverse response and problems associated

with ignoring the magnitude of process deviation. Paired with automated digraph

development, these methods could be helpful for fault diagnosis.

Another approach to model development is the use of a model library to aid in the

development of overall process models. Models for all types of process equipment can

be joined together to represent an overall process. This type of model development

is used in HAZOP expert. One advantage of this type of procedure is that minimal

modi�cations are required of the end-user when implementing a model of a speci�c

process. Some base level models will be modi�ed and new base level models will be

created, but the overall amount of work required for developing new process models

should be minimized.

The PRM now being used by the ASM consortium exhibits many of the

characteristics of the multi-view object database described by Karl{Erik Arzen [1].

Information developed and used by all plant personnel (operators, process engineers,

design engineers, maintenance workers, etc.) should be contained and organized in a

communal database. This database would contain information on all types of process

models, process history, process functions, and general process information. Such a

database should automatically be updated as better models are produced or changes

in the process are made.

The objective of this work is to develop a procedure that aids the creation of

multiple model process representations for use in blackboard applications. The

representation will be used by knowledge sources for diagnosis. The model

will also o�er insight and process information to plant operators. The multiple

model knowledge representation will be created from low-level basic models of unit

operations.
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5. METHODOLOGY

In order to understand the creation of the plant reference model, one must

comprehend what the PRM actually is. The PRM is a group of models available

on the blackboard for use by the knowledge experts for diagnosis. The PRM is also

available to a human user for insight about the plant itself. Four di�erent types of

models (or stripes) are currently used in the PRM. These four representations are:

the physical stripe, the logical stripe, the goal stripe, and the malfunction stripe.

The physical stripe is a model of the plant containing the physical information

about process units. Unit location, size, capacity, and related information are stored

here. This is basically a process and instrumentation diagram for the process. The

physical stripe is mostly useful for human operators to help understand the process,

although experts could be developed to use this representation. For example, a

knowledge source cold be developed for steady-state process optimization using the

physical stripe. An expert could also be developed to help contain catastrophic

disasters, it i.e. if reactor 1 has over
owed, what equipment may directly be a�ected?

The logical stripe is another type of model used in the PRM. The logical stripe

contains a model of the plant hierarchy. This model breaks the process down into

systems and sub-systems. This helps show dependencies and relationships in the

plant.

The goal stripe is a goal tree representation of the process. This representation is

related to the logical stripe. At the top node, the goal would be similar to "Maintain

normal operations of overall process". At the next level would be all the goals needed

in order to ensure that the higher level goal is met. The goals and subgoals are

typically similar to the logical dependencies of the process equipment.
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The fourth type of model in the PRM is the malfunction stripe. This

representation is also related to the structure of the plant itself. The top level

malfunction would be a general plant malfunction. This malfunction could be caused

by malfunctions in plant subsystems. A malfunction in a subsystem is caused by

malfunctions in further specialized subsystems. Eventually, a single root cause is

found in the malfunction tree. Each branching of the malfunction tree is an or

connection, representing that one system or another is to blame. Only one system is

the root cause.

The automation of the plant reference model is fairly simple. First, the process

must be represented on the physical stripe. Using this representation, the logical

stripe and hierarchy can be developed with help from the human developer. From

this representation, the goal and malfunction stripes can be created.

5.1 Physical Stripe Development

The physical stripe is the basis for model development. This is the actual

representation of the physical plant. Typically, detailed CAD drawings of process

operations are available. PRM use and development has been done in a Gensym's

G2 environment. New software has been developed which can automatically translate

CAD renderings into G2 objects. This software would recognize a pump from a P&ID

CAD diagram and create a representative G2 pump object. This process would speed

the model development for existing plants.

This software was not available for use during creation of the prm{developer.

Instead of automatically making the physical stripe from a CAD drawing, the user

can create objects from the process equipment library (see �gure (5.1)). Pipe and

wire connections can easily be added to the process diagram. The process equipment

library currently covers the basic types of unit operations (�gure (5.2)).
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Figure 5.1 Model development interface

Figure 5.2 Equipment Library
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5.2 Logical Stripe Development

The logical stripe is the most important representation for model development.

This model must capture the process hierarchy of the entire system. This is the point

where human knowledge of the process must be used to aid in the model development.

The computer cannot recognize a group of unit operations as a feed system or a

reactor as the most important process item. The user is expected to create group

representations for the P&ID. The user selects a group of process equipment and

assigns the equipment a to a named group. After all groupings are made, a preliminary

logical stripe is created.

The algorithm to create the preliminary logical stripe is fairly straightforward.

� Find out the number of basic units in each logical group. Each individual piece

of equipment can be considered a group in itself of size 1.

� Make an overall list of groups. These groups should be the minimum number

of groups which includes the entire basic equipment list.

� Expand each group i:

{ Form a list of the groups which have all their equipment in group i.

{ From the list, continue to do the following until the list is empty

� Find the largest group on the list.

� Make a new logical for the group.

� Expand the group, if possible.

� Remove the logical from the list.

Obviously, depending upon how the user decides on groupings, vastly di�erent

logical representations can come about. After the initial logical stripe is produced,

the user can modify the organization by copying, cloning, and reconnecting logical

group representations.
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Figure 5.3 Basic equipment goals

5.3 Goal and Malfunction Stripe Development

The goal and malfunction stripes can be created directly from a combination of

the logical stripe and the basic models in the equipment library. Some examples of

base level goals are given in �gure (5.3). Examples of base level malfunction models

are shown in �gure (5.4). New models for equipment not in the library can easily be

developed by cloning existing base level models.

The combination of logical stripe and base level malfunction models to form

the malfunction stripe is straightforward. Each logical representing a group of

unit operations should have a corresponding malfunction. The malfunction would

be summarized as deviation of the system from the normal operating conditions.

Each logical group representing on a single unit operation would have corresponding

malfunctions based on the low levelmalfunction model found in the equipment library.

The hierarchy of the malfunction tree is the same as the logical stripe. The group

malfunctions must be correctly connected with the low{level malfunction models from

the equipment library.
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Figure 5.4 Basic equipment malfunctions

The goal tree development is similar to the malfunction tree development. The

only real di�erence is found in the connectivity of the tree levels. In a goal tree, goals

are dependent upon all subgoals being met. Therefore, and connections are used to

represent the connectivity of goals from system to subsystem. Each goal must know

what goals are direct superior goals and direct subordinate goals.

To facilitate use of the various types of models, each goal has a pointer to

corresponding logical and malfunction objects. This model to model connectivity

helps understand the results of faults. Once a malfunction in a system is diagnosed

or proposed, the a�ected goals and systems can be found easily. Also, if a goal is not

being met, the corresponding malfunction would be a likely �rst place to look during

diagnosis.

5.4 Kramer Case Study

The �rst case study is an exothermic stirred{tank reactor system with a product

recycle (�gure (5.5)). This example is taken from a paper on signed digraph models

by Kramer and Palowitch [10]. Fresh feed and cooled product are combined in a

stirred tank reactor. The hot product is taken from the reactor and split into a

product stream and a recycle stream. The recycle is cooled in a counter-current heat

exchanger and fed back to the reactor.
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Figure 5.5 Kramer Case Study
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Figure 5.6 Kramer Case Study-logical groupings
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Figure 5.7 Kramer Case Study-goal stripe

The resulting logical groupings are seen in �gure (5.6). One should notice that

the reactor feed system includes both the fresh feed and the recycle feed. The reactor

system includes the reactor itself, the level control system, and the temperature

control system. The heat-exchanger can be considered part of the temperature control

system. In this representation, the feedback loop is cut after the heat-exchanger and

before the product is fed back into the reactor.

Goal development relies upon the logical groupings. Figure (5.7) shows the overall

goal{tree for the Kramer case study. Obviously, this is a fairly complex structure,

even for such a relatively simple process. A complete process plant would have many

more systems, resulting in a much larger goal-tree representation. Figure (5.8) shows

the feed system of the goal{tree. The feed system depends on the fresh feed and the

recycle feed. Each subsystem is dependent upon the individual unit operation goals,

which are taken from the equipment library. The resulting malfunction{tree is very

similar and just as complex as the goal{tree (�gure (5.9)). Here, a malfunction in

the plant can be caused by a feed system fault, a reactor system fault, or a product

system fault. Figure (5.10) shows the reactor systemmalfunction tree. A malfunction

in the reactor system can be attributed to a malfunction in the reactor level control

system, the reactor temperature control system, or the reactor itself. At a lower

level, a problem with the reactor temperature control system can be caused by a
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Figure 5.8 Kramer Case Study-feed system goals
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Figure 5.9 Kramer Case Study-malfunction stripe

malfunction of the temperature controller, a problem with the coolant feed 
ow, a

malfunction of the coolant control valve, or a fault involving the heat exchanger. The

base-level malfunctions of the heat exchanger include such malfunctions as scaling,

plugging, and broken tubes.
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Figure 5.10 Kramer Case Study-reactor system malfunctions
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6. DISCUSSION AND CONCLUSIONS

Blackboard systems are a viable way to attack the problem of fault diagnosis

in complex chemical plants. The components of a blackboard system have been

discussed. The blackboard framework, the knowledge experts, and the process model

must be understood and integrated to develop a working system. The process model

is the basis for blackboard systems. Accurate process representations must be easily

developed.

The problem of model development and automation has been addressed. Human

development of goal{trees and malfunction{trees for complex systems can be di�cult,

inaccurate, and time consuming. Real systems may have thousands of interrelated

goals, malfunctions, and units. Element by element incremental development by a

human can take months and still contain many errors. A method for developing

process models quickly and e�ectively from process 
ow sheet information has been

proposed. This method relies on combining low{level qualitative models of unit

operations with developer information of the plant hierarchy to create an overall

representation of a chemical process. This method greatly speeds the modeling of

complex systems and helps to ensure that human error is minimized. The physical

representation is used along human input to develop the logical dependencies of the

process. The goal-tree and malfunction{tree models are created from the logical

representation and the low{level models of unit operations from the equipment library.

A fairly simple case study was presented. In this example, a 
ow process involving

a exothermic stirred tank reactor was analyzed. The development tools allow for easy

creation of the di�erent models. The goal and malfunction representations capture

the basic information needed for diagnosis.
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7. FUTURE WORK

There are many di�erent problems associated with blackboard-based diagnosis

which must still be addressed. These problems can be associated with the overall

blackboard system, the knowledge experts, and the blackboard model structure.

Blackboards are often based on heuristic methods for arriving at conclusions. The

scheduler and information aggregator are often implemented as rule-based systems.

Because of this, there are often few guarantees that a result will be found or that

the result produced is correct. Developing bounds on the solution space of each

knowledge expert would help this problem. Using mathematical formulations for

scheduling actions and combining information may lead to performance guarantees.

The current blackboard application only looks at historical information to

ascertain what faults may be present. Using predictive experts which could propose

expected trends in the process could help diagnose when there is not enough

information available for normal experts to �nd a root cause. Prediction could also be

helpful for control. A control input may be optimal for tracking, but a di�erent input

may be needed for fault diagnosis or fault management. This could be considered

an identi�cation problem. Tradeo� between optimal control and fault identi�cation

become evident. The capabilities of the blackboard system could become very

bene�cial.

Quantitative models can be vastly improved. Linear horizon-based estimation

can bene�t from a better problem formulation. Using multiple linear models to

represent a nonlinear and uncertain system can help produce accurate results. The

nonlinear formulation of the horizon-based estimation scheme is dependent upon

e�cient solution methods. Faster algorithms can make the nonlinear horizon{based
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estimation problem tractable. Other types of nonlinear observers could also be

developed.

As far as model development, some issues are still unanswered. The robustness of

models is a de�nite concern. The following items are related to model robustness:

� Slight modi�cations to the P&ID may cause signi�cant changes in the PRM.

Adding a new valve or pipe could restructure the process completely

� Completely recreating models may be di�cult or impossible because of user

in
uence. Standard rules for model development could be developed

� Changes in operating conditions can also change the structure of the models.

At di�erent conditions, the importance of parts of the process may change

� In some cases, a high level goal can be met even though low level goals are

being violated. In the same way, there may not be evidence of a high level

malfunction if two low level malfunctions interact and cancel the results of each

other.

These di�erent problems still need to be dealt with in order for more useful models to

be developed. One approach which may be useful is to keep multiple representations

in the database. With tools for automating model development, models for many

operating points can be created. Knowing when to switch between models could be

a problem similar to gain scheduling.

Loop structures also lead to problems in both cyclic and acyclic loops. It is di�cult

to create a useful representation of a cyclic process. Usually, the cycle must be broken

at some point. When this is done, useful information about causal relationships are

lost. Acyclic graphs with loops have the advantage of no feedback signal. This is still

a di�cult situation to deal with. A general method for dealing with loop structures

is needed.
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These items are interesting areas that still need development. The experience

gained from working with blackboard systems, knowledge experts, and process models

will be useful as new aspects of fault diagnosis are approached.
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