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ABSTRACT

Blackboard—based systems are currently provoking interest as a method of
performing fault diagnosis in complex systems. The components of the blackboard
structure are discussed, including possible knowledge sources and types of process
models. A method is proposed for automating process model development by
combining process information and low—level unit operation models. Preliminary
results are shown, and possible future work is proposed.



1. INTRODUCTION

The chemical process industry loses millions of dollars every year due to loss
of production and down time caused by problems in the process. Such problems
typically fall into two qualitative categories: abnormal events and catastrophic
events.  Abnormal events usually result in lost production, wasted resources,
defective product, or down-time. Catastrophic events lead to environmental disasters,
destruction of expensive facilities, and loss of life. Safeguards and automatic
shutoffs typically keep plants from developing catastrophic events, but these safety
features are not always sufficient. Abnormal events are typically the gateway to
a catastrophic failure. Catastrophic failures rarely happen when everything is
running smoothly. Rather, a plant usually moves through a abnormal-type event
in the progression towards a catastrophic event. Clearly there is a need for more
accurate, well-organized, timely information about a process during the evolution of
abnormal events. Farly diagnosis of process faults while the plant is still operating
in a controllable region in conjunction with better qualitative information about
the suspected event can help avoid event progression and reduce the amount of
productivity loss during an abnormal event [17].

This problem of fault diagnosis and subsequent control is made much more difficult
by the scale and complexity of modern chemical plants. Processes are frequently
pushed beyond their designed operating points into more nonlinear operating areas.
Some fault events cause a cascading effect, triggering multiple alarms and spawning
additional problems. Other events are slow to develop, taking place over the course
of many shifts. A slight drift in one of many hundreds of sensors could easily go

un-noticed. Operator devised rules for problem solving can break down, especially in



the case of never-experienced faults. A method of recognizing problems and organizing
information needs to be developed to address these concerns.

One proposed solution to the problem makes use of a blackboard architecture to
aid in the diagnosis of plant faults and the management of plant information. Since
no one method can accurately work as a diagnostic tool for all types of imaginable
faults, a hybrid solution is being developed. The blackboard architecture takes
advantage of multiple methods for fault diagnosis, using experts which can work
on one specific part of the problem or can work together to solve the problem. The
core of such a method is the actual model of the plant. This model can be used by the
different diagnostic methods to glean current information about the process or to post
current proposed solutions to the problem at hand. To effectively model a chemical
process, multiple models should be used. These models include such information as a
physical description of the plant (location and size of equipment), a logical hierarchy
of the plant structure, a goal-tree representing the objectives of the plant, and a
malfunction-tree which represents what can go wrong with the plant. Developing
models for a complex system can be extremely time consuming. Qualitative models
often are biased by the individual developer of the model. Two different people,
working on the same process could develop totally different models. If advanced
diagnostic methods are ever to be used in real-world situations, a better method for
model development must be developed.

In this report, an overview of work related to blackboard implementation is
addressed. This includes a review of types of blackboards and how they are
implemented, a review of advanced knowledge sources necessary for diagnosis in
blackboard systems, and a review of different methods of model automation. This
paper goes on to propose a methodology for the automation of blackboard database
models. The proposed method relies upon developing an overall representation from
developed models residing in a model library. A case-study is given as an example of
this method. Finally, the report suggests directions and related problems for future

work.



2. BLACKBOARDS

The blackboard-based approach for collective problem solving developed due to
a need to solve complex, computationally intensive problems. This approach is
based upon the method often used by human experts to solve a problem. For
example, assume that a group of engineers are working on a difficult problem. First,
they may write the problem on a blackboard. Fach engineer may have an area
of expertise applicable to the problem, but each individual engineer lacks enough
knowledge to solve the complete problem. Fach problem solver would work on parts
of the problem, adding proposed solutions or partial solutions to the blackboard.
The other problem solvers could look to the blackboard for partial solutions and
recent information, eventually adding the product of their own knowledge to the
total blackboard information. Typically, there would be a supervisor that regulates
who should work on which parts of the problem, controls how the engineers interact
while solving the problem, and decides what the final solution should be.

This method can easily be cast as an algorithm for computer-aided problem
solving. The engineers correspond to diagnostic applications which have a limited
domain of expertise. These knowledge sources can have overlapping areas of
knowledge, but they should specialize in certain specific areas. The blackboard
corresponds to a computer database representing the problem at hand including all
the information currently available. The supervisor would be a scheduler application
which allocates computer resources by starting diagnostic applications and ultimately
pulling all available blackboard information together to arrive at a conclusion.

One example comes from a simple flow system such as figure (2.1) [14]. In this

example, a level controller keeps a tank at a certain level, ensuring that the product
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Figure 2.1 Simple flow system

can be supplied by an exit pump. Pump cavitation results if the level drops too low.
A goal model of this system can be developed for the blackboard to use. Separate
experts can also be developed which diagnose the system (see figure (2.2)). The
sensor expert detects sensor bias, the controller expert ascertains the status of the
controller, the cavitation expert can find out if the pump is cavitatiing, and the
production expert monitors the process output. When a problem occurs messages
are sent from the experts to the blackboard. Posting of a message may change the
state of the blackboard such that trigger another expert to take action and present a
new solution.

There are many advantages to using a blackboard system. A blackboard
architecture can be designed such that the system runs in parallel. Since each
knowledge source is basically independent of the other knowledge sources, each one
may run on separate platforms. This modularization is also good for large-scale
development of systems. If the basic structure is specified, the knowledge sources can
be developed independently by different groups of people. Poorly developed experts
can be replaced and additional experts can be added. Blackboard systems also work
well when faced with uncertain problems. When solving the problem, the scheduler
takes all the information from the knowledge sources and formulates the best answer.

This answer should be the best solution, even though experts may give incomplete
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Figure 2.2 Experts and goals

responses, inaccurate responses, or contradicting responses. The scheduler could take
into account each expert’s domain of knowledge and give it a weight according to how
probable the information is correct. The blackboard can also become a good tool for
information management. The blackboard may contain models of the actual system
or information about the state of the current problem solution. Even if the scheduler
breaks down and refuses to find an answer to a problem, a human operator could
possibly look at the intermediate blackboard information and draw conclusions from
it.

One of the first applications of the blackboard architecture was the Hearsay speech
understanding system, developed at Carnegie Mellon University from 1971-1976
[3]. This application was an early attempt at computerized voice recognition. A
description and summary of the project is given by Lee Erman [4]. This system had a
hierarchy of inter-related problems to solve. At the lowest level, data was formed into
segments. Segments form syllables, syllables form words, words form phrases, and
phrases form sentences. At each level, expert systems were developed to cope with the
problem at hand. Conflicts can arise if a result is erroneous (i.e. two proposed words
which cannot follow in a sentence). The scheduler works to resolve conflicts and keep
the experts working productively. Because of limited computer resources, the focus

of attention problem was found. Experts that are computationally intensive should



only be called if necessary. The overall results from the Hearsay project were not
extremely good, but much was learned from the implementation of this blackboard
system.

Another early use for blackboard systems was for use in military target tracking
problems. An explanation of the HASP program is given by Penny Nii [16] and a
description of the RTBB problem is developed by P. Kersten [9]. The HASP program
was a sonar-based problem for sub detection, and the RTBB was a radar tracking
system for detecting flying threats. Both problems share similar characteristics. One
similarity is that large amounts of data are available for analysis. This includes sensor
data and data about known activities in the area of interest. Once a track is formed
for a source, the sensor may lose contact. Tracks fade in and out, forcing a overall
solution based on partial data. The systems work in systems with large amounts of
uncertainty because they are attempting to find a source which may be taking evasive
action, obscuring the signal. The blackboard facilitates the interactions of the 40 or
more knowledge sources which work together to solve the problem.

Recently, a blackboard systems have been applied to a chemical processes. A.
Crespo et. al. used a temporal blackboard to reason about control of a cement kiln
process [2]. In this application, past data from the process is used to find control
actions and the results of the control actions. Numerous predictions about how the
system will react are posted to the blackboard. As more information comes in from
the process, the probability of each prospective hypothesis can be adjusted up and
down. This helps develop an idea of the current sate of the system. One drawback
to this approach is that the blackboard typically must wait for enough evidence from
the process to evolve in order to weed out false guesses. The only solutions this
blackboard system looks at are the few proposed by the prediction experts. The idea
of using temporal evidence to develop an idea about the current and future status
of the process is obviously similar to fault diagnosis. This type of prediction may be

useful to incorporate into fault diagnosis systems.



Mylaraswamy has also done much work related to blackboard systems; in his
thesis [14] he describes DKIT, a blackboard-based system for diagnosis of a fluidized
catalytic cracking unit (FCCU). This system uses multiple experts to diagnose a
variety of faults in a FCCU model. The system contained qualitative models of
the FCCU which were accessible by the experts to aid in diagnosis. This type of
blackboard was modified and further developed in a project with the Abnormal
System Management (ASM) consortium for fault diagnosis involving FCCU units.
The new system developed by ASM is called the Abnormal Event Guidance System
(AEGIS). This blackboard system uses a more advanced plant model so that the
experts can interact more productively with the blackboard. This model is called
the Plant Reference Model (PRM). The PRM will be described in detail in the
methodology section.

Blackboard systems are emerging as viable options for solving real-time
complex problems. For chemical engineering applications involving fault—diagnosis
blackboards are proving both useful and necessary. There are many problem areas to
be addressed. Better knowledge sources, plant models, and development tools need

to evolve before blackboards can be used effectively in many industrial applications.



3. KNOWLEDGE SOURCES

Advanced fault diagnosis systems rely upon procedures for extracting relevant
information about a process from actual process data combined with a process
model. Development of fault diagnosis procedure requires that the method returns a
result quickly, therefore long—running off-line computation is to be avoided because
of the quick dynamics found in many chemical processes. The method must be
sensitive to small changes in the process, while at the same time false alarms must be
avoided. Two different paths are available for development of fault diagnosis system:

qualitative approaches and quantitative approaches.

3.1  Qualitative Models

The signed digraph is a simple method used for fault diagnosis. This method
relies on the qualitative causal relationship of process variables. If one system
variable deviates above normal, other process variables may change accordingly (up
or down). Iri gives a basic method for diagnosis using signed digraphs to find the
root cause of a disturbance [6]. This method has many limitations. The causality
between process variables is assumed fixed. The magnitude of process relationships is
ignored. Resolution is typically bad, resulting in many incorrect results. Some causal
relationships (such as feedback controllers) can develop looping structures which are
difficult to diagnose. Some of these limitations have been addressed [10], but many
problems still remain.

Related to signed digraphs are Bayesian belief networks. In these applications,

the causal result from one system variable to another is based upon probability.



Developing the probabilistic relationships can be difficult or impossible in systems
where humans have little grasp of the relative frequency of events. These probabilities
represent the biases of the developer. Cyclic causal relationships cause computational
problems.

Traditional rule-based expert systems have also been applied to fault diagnosis.
Mandelkern outlines the basic requirements and implementation methods for
rule-based expert systems [12]. Expert systems basically use if-then rules to capture
process relationships. Rules match their predicates with existing evidence. One
matching rule is selected to fire. This may produce new evidence, causing a new rule
to fire. Results of this type of system rely heavily upon the influence of the developer.
In large complex systems, large numbers of rules may be needed. The many rules can

time consuming to develop and difficult to update as the process changes.

3.2 Quantitative Models

Quantitative methods for fault diagnosis involve using process measurements,
information about known inputs, and a mathematical model of a process to calculate
the extent of a fault acting upon a system. A fault in a process system can be
treated as a changing process state, a varying process parameter, or an unknown
process input. Once the fault signal is calculated, it is compared against threshold
values to determine if a fault actually is present. Frank [5] and Iserman [7] describe
two popular methods of fault diagnosis using quantitative models: state estimation
and parameter estimation. These methods are typically implemented with linear
process models as online filters. Obviously, model mismatch will cause some residual
differences to surface, causing false alarms if thresholds are too low or non-diagnosed
faults if thresholds are too low.

Most chemical processes have realistic nonlinear models available for use in
diagnostic applications. Attempts at developing nonlinear observers and estimators

have been limited. For nonlinear systems, multiple linear observers are often used
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Figure 3.1 Horizon-based optimization to reconcile historical measurements

to capture the nonlinearity of the process [18]. Development of nonlinear observers
using actual nonlinear models is achievable, but only for a limited set of problems [8].
As a result, there is much room for development in the realm of advanced observers.

One approach which could be developed is use of horizon-based optimization
methods for state and parameter estimation. These methods are much like existing
Model Predictive Control (MPC) algorithms in that a optimization problem is solved
at each time step. In MPC, the optimal inputs are found to drive a system to a
a desired output using process models of the system. Horizon-based optimization
for parameter estimation finds the best set of states or parameters which reconcile
the past process measurements (see figure (3.1)). A typical problem is posed as a
minimization of the 2-norm of the difference between measurements and estimated
measurements normalized by V., the variance-covariance.

Objective Function:

min

%(1)
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Here, H would be the length of the horizon, t. is the current time, y(i) are the
vectors of process measurements, and y(¢) are the predictions from the model. The
minimization is subject to constraints created from the process model, including
differential, algebraic, and inequality constraints. A robust linear case has been
developed by Tyler and Morari [19]. This implementation uses multiple linear models
to represent both process uncertainty and fault response. The use of linear models
results in finding a solution to a quadratic programming problem which can be
accomplished in real time. Use of nonlinear equations in the optimization problem
has been approached by Liebman et. al. [11]. Quadratic optimization problems
are solved repeatedly to eventually arrive at a solution. Horizon based estimation
should become an effective method for extraction of fault information from process

measurements and models.
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4. MODEL DEVELOPMENT AUTOMATION

Blackboard systems can be used to diagnose system faults by taking advantage
of different types of knowledge sources in order to arrive at a collective solution to
a problem. Obviously, every element of the blackboard architecture must interact
and work properly for accurate answers to the diagnosis problem. The portion of
the blackboard which aids in the interaction between knowledge sources, supervisory
blackboard applications, and human operators is the process model. The AEGIS
system developed by the ASM consortium relies upon the PRM as a backbone of
the system. This knowledge representation of a FCCU was developed in an ad-hoc
manner. In order to use the blackboard system in further applications, a better
method of model development must be found.

Development of digraphs by humans either relies on an expert’s opinion of process
relationships or a painstaking analysis of model equations. Complex first principles
models such as the model IV FCCU model [13] are often available for such analysis.
This model contains over one hundred process equations and variables. Automated
analysis of such equations should extract the requisite causal relationships needed
for digraph construction. Changing operating points requires production of a new
digraph. Automatic digraph construction would make such changes less painful and
ensure accurate digraph models.

Some work has been done concerning model automation from a signed digraph
model. Nam et. al. [15] have developed a procedure for extracting symptom-fault
associations from a signed digraph. This method basically traces connection back
in the digraph until a root node is found, pairing symptoms directly to possible

faults. The normal restrictions for digraphs limit the usefulness of this method.
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These restrictions include a failure to handle inverse response and problems associated
with ignoring the magnitude of process deviation. Paired with automated digraph
development, these methods could be helpful for fault diagnosis.

Another approach to model development is the use of a model library to aid in the
development of overall process models. Models for all types of process equipment can
be joined together to represent an overall process. This type of model development
is used in HAZOP expert. One advantage of this type of procedure is that minimal
modifications are required of the end-user when implementing a model of a specific
process. Some base level models will be modified and new base level models will be
created, but the overall amount of work required for developing new process models
should be minimized.

The PRM now being used by the ASM consortium exhibits many of the
characteristics of the multi-view object database described by Karl-Erik Arzen [1].
Information developed and used by all plant personnel (operators, process engineers,
design engineers, maintenance workers, etc.) should be contained and organized in a
communal database. This database would contain information on all types of process
models, process history, process functions, and general process information. Such a
database should automatically be updated as better models are produced or changes
in the process are made.

The objective of this work is to develop a procedure that aids the creation of
multiple model process representations for use in blackboard applications. The
representation will be used by knowledge sources for diagnosis.  The model
will also offer insight and process information to plant operators. The multiple
model knowledge representation will be created from low-level basic models of unit

operations.
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5. METHODOLOGY

In order to understand the creation of the plant reference model, one must
comprehend what the PRM actually is. The PRM is a group of models available
on the blackboard for use by the knowledge experts for diagnosis. The PRM is also
available to a human user for insight about the plant itself. Four different types of
models (or stripes) are currently used in the PRM. These four representations are:
the physical stripe, the logical stripe, the goal stripe, and the malfunction stripe.

The physical stripe is a model of the plant containing the physical information
about process units. Unit location, size, capacity, and related information are stored
here. This is basically a process and instrumentation diagram for the process. The
physical stripe is mostly useful for human operators to help understand the process,
although experts could be developed to use this representation. For example, a
knowledge source cold be developed for steady-state process optimization using the
physical stripe. An expert could also be developed to help contain catastrophic
disasters, it i.e. if reactor 1 has overflowed, what equipment may directly be affected?

The logical stripe is another type of model used in the PRM. The logical stripe
contains a model of the plant hierarchy. This model breaks the process down into
systems and sub-systems. This helps show dependencies and relationships in the
plant.

The goal stripe is a goal tree representation of the process. This representation is
related to the logical stripe. At the top node, the goal would be similar to ”Maintain
normal operations of overall process”. At the next level would be all the goals needed
in order to ensure that the higher level goal is met. The goals and subgoals are

typically similar to the logical dependencies of the process equipment.
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The fourth type of model in the PRM is the malfunction stripe.  This
representation is also related to the structure of the plant itself. The top level
malfunction would be a general plant malfunction. This malfunction could be caused
by malfunctions in plant subsystems. A malfunction in a subsystem is caused by
malfunctions in further specialized subsystems. Eventually, a single root cause is
found in the malfunction tree. Each branching of the malfunction tree is an or
connection, representing that one system or another is to blame. Only one system is
the root cause.

The automation of the plant reference model is fairly simple. First, the process
must be represented on the physical stripe. Using this representation, the logical
stripe and hierarchy can be developed with help from the human developer. From

this representation, the goal and malfunction stripes can be created.

5.1 Physical Stripe Development

The physical stripe is the basis for model development. This is the actual
representation of the physical plant. Typically, detailed CAD drawings of process
operations are available. PRM use and development has been done in a Gensym’s
(G2 environment. New software has been developed which can automatically translate
CAD renderings into G2 objects. This software would recognize a pump from a P&ID
CAD diagram and create a representative G2 pump object. This process would speed
the model development for existing plants.

This software was not available for use during creation of the prm-developer.
Instead of automatically making the physical stripe from a CAD drawing, the user
can create objects from the process equipment library (see figure (5.1)). Pipe and
wire connections can easily be added to the process diagram. The process equipment

library currently covers the basic types of unit operations (figure (5.2)).
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5.2 Logical Stripe Development

The logical stripe is the most important representation for model development.
This model must capture the process hierarchy of the entire system. This is the point
where human knowledge of the process must be used to aid in the model development.
The computer cannot recognize a group of unit operations as a feed system or a
reactor as the most important process item. The user is expected to create group
representations for the P&ID. The user selects a group of process equipment and
assigns the equipment a to a named group. After all groupings are made, a preliminary
logical stripe is created.

The algorithm to create the preliminary logical stripe is fairly straightforward.

e Find out the number of basic units in each logical group. Each individual piece

of equipment can be considered a group in itself of size 1.

o Make an overall list of groups. These groups should be the minimum number

of groups which includes the entire basic equipment list.
e Expand each group i:

— Form a list of the groups which have all their equipment in group i.
— From the list, continue to do the following until the list is empty

* Find the largest group on the list.
* Make a new logical for the group.
* Expand the group, if possible.

* Remove the logical from the list.

Obviously, depending upon how the user decides on groupings, vastly different
logical representations can come about. After the initial logical stripe is produced,
the user can modify the organization by copying, cloning, and reconnecting logical

group representations.
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Figure 5.3 Basic equipment goals

5.3 Goal and Malfunction Stripe Development

The goal and malfunction stripes can be created directly from a combination of
the logical stripe and the basic models in the equipment library. Some examples of
base level goals are given in figure (5.3). Examples of base level malfunction models
are shown in figure (5.4). New models for equipment not in the library can easily be
developed by cloning existing base level models.

The combination of logical stripe and base level malfunction models to form
the malfunction stripe is straightforward. Each logical representing a group of
unit operations should have a corresponding malfunction. The malfunction would
be summarized as deviation of the system from the normal operating conditions.
Each logical group representing on a single unit operation would have corresponding
malfunctions based on the low level malfunction model found in the equipment library.
The hierarchy of the malfunction tree is the same as the logical stripe. The group
malfunctions must be correctly connected with the low—level malfunction models from

the equipment library.
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The goal tree development is similar to the malfunction tree development. The
only real difference is found in the connectivity of the tree levels. In a goal tree, goals
are dependent upon all subgoals being met. Therefore, and connections are used to
represent the connectivity of goals from system to subsystem. FEach goal must know
what goals are direct superior goals and direct subordinate goals.

To facilitate use of the various types of models, each goal has a pointer to
corresponding logical and malfunction objects. This model to model connectivity
helps understand the results of faults. Once a malfunction in a system is diagnosed
or proposed, the affected goals and systems can be found easily. Also, if a goal is not
being met, the corresponding malfunction would be a likely first place to look during

diagnosis.

5.4 Kramer Case Study

The first case study is an exothermic stirred-tank reactor system with a product
recycle (figure (5.5)). This example is taken from a paper on signed digraph models
by Kramer and Palowitch [10]. Fresh feed and cooled product are combined in a
stirred tank reactor. The hot product is taken from the reactor and split into a
product stream and a recycle stream. The recycle is cooled in a counter-current heat

exchanger and fed back to the reactor.
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Figure 5.6 Kramer Case Study-logical groupings
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Figure 5.7 Kramer Case Study-goal stripe

The resulting logical groupings are seen in figure (5.6). One should notice that
the reactor feed system includes both the fresh feed and the recycle feed. The reactor
system includes the reactor itself, the level control system, and the temperature
control system. The heat-exchanger can be considered part of the temperature control
system. In this representation, the feedback loop is cut after the heat-exchanger and
before the product is fed back into the reactor.

Goal development relies upon the logical groupings. Figure (5.7) shows the overall
goal-tree for the Kramer case study. Obviously, this is a fairly complex structure,
even for such a relatively simple process. A complete process plant would have many
more systems, resulting in a much larger goal-tree representation. Figure (5.8) shows
the feed system of the goal-tree. The feed system depends on the fresh feed and the
recycle feed. Each subsystem is dependent upon the individual unit operation goals,
which are taken from the equipment library. The resulting malfunction—tree is very
similar and just as complex as the goal-tree (figure (5.9)). Here, a malfunction in
the plant can be caused by a feed system fault, a reactor system fault, or a product
system fault. Figure (5.10) shows the reactor system malfunction tree. A malfunction
in the reactor system can be attributed to a malfunction in the reactor level control
system, the reactor temperature control system, or the reactor itself. At a lower

level, a problem with the reactor temperature control system can be caused by a
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Figure 5.9 Kramer Case Study-malfunction stripe

malfunction of the temperature controller, a problem with the coolant feed flow, a
malfunction of the coolant control valve, or a fault involving the heat exchanger. The
base-level malfunctions of the heat exchanger include such malfunctions as scaling,

plugging, and broken tubes.
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6. DISCUSSION AND CONCLUSIONS

Blackboard systems are a viable way to attack the problem of fault diagnosis
in complex chemical plants. The components of a blackboard system have been
discussed. The blackboard framework, the knowledge experts, and the process model
must be understood and integrated to develop a working system. The process model
is the basis for blackboard systems. Accurate process representations must be easily
developed.

The problem of model development and automation has been addressed. Human
development of goal-trees and malfunction—trees for complex systems can be difficult,
inaccurate, and time consuming. Real systems may have thousands of interrelated
goals, malfunctions, and units. Element by element incremental development by a
human can take months and still contain many errors. A method for developing
process models quickly and effectively from process flow sheet information has been
proposed. This method relies on combining low—level qualitative models of unit
operations with developer information of the plant hierarchy to create an overall
representation of a chemical process. This method greatly speeds the modeling of
complex systems and helps to ensure that human error is minimized. The physical
representation is used along human input to develop the logical dependencies of the
process. The goal-tree and malfunction—tree models are created from the logical
representation and the low-level models of unit operations from the equipment library.

A fairly simple case study was presented. In this example, a flow process involving
a exothermic stirred tank reactor was analyzed. The development tools allow for easy
creation of the different models. The goal and malfunction representations capture

the basic information needed for diagnosis.
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7. FUTURE WORK

There are many different problems associated with blackboard-based diagnosis
which must still be addressed. These problems can be associated with the overall
blackboard system, the knowledge experts, and the blackboard model structure.

Blackboards are often based on heuristic methods for arriving at conclusions. The
scheduler and information aggregator are often implemented as rule-based systems.
Because of this, there are often few guarantees that a result will be found or that
the result produced is correct. Developing bounds on the solution space of each
knowledge expert would help this problem. Using mathematical formulations for
scheduling actions and combining information may lead to performance guarantees.

The current blackboard application only looks at historical information to
ascertain what faults may be present. Using predictive experts which could propose
expected trends in the process could help diagnose when there is not enough
information available for normal experts to find a root cause. Prediction could also be
helpful for control. A control input may be optimal for tracking, but a different input
may be needed for fault diagnosis or fault management. This could be considered
an identification problem. Tradeoff between optimal control and fault identification
become evident. The capabilities of the blackboard system could become very
beneficial.

Quantitative models can be vastly improved. Linear horizon-based estimation
can benefit from a better problem formulation. Using multiple linear models to
represent a nonlinear and uncertain system can help produce accurate results. The
nonlinear formulation of the horizon-based estimation scheme is dependent upon

efficient solution methods. Faster algorithms can make the nonlinear horizon—based
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estimation problem tractable. Other types of nonlinear observers could also be
developed.
As far as model development, some issues are still unanswered. The robustness of

models is a definite concern. The following items are related to model robustness:

e Slight modifications to the P&ID may cause significant changes in the PRM.

Adding a new valve or pipe could restructure the process completely

o Completely recreating models may be difficult or impossible because of user

influence. Standard rules for model development could be developed

e Changes in operating conditions can also change the structure of the models.

At different conditions, the importance of parts of the process may change

e In some cases, a high level goal can be met even though low level goals are
being violated. In the same way, there may not be evidence of a high level
malfunction if two low level malfunctions interact and cancel the results of each

other.

These different problems still need to be dealt with in order for more useful models to
be developed. One approach which may be useful is to keep multiple representations
in the database. With tools for automating model development, models for many
operating points can be created. Knowing when to switch between models could be
a problem similar to gain scheduling.

Loop structures also lead to problems in both cyclic and acyclic loops. It is difficult
to create a useful representation of a cyclic process. Usually, the cycle must be broken
at some point. When this is done, useful information about causal relationships are
lost. Acyclic graphs with loops have the advantage of no feedback signal. This is still
a difficult situation to deal with. A general method for dealing with loop structures

is needed.
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These items are interesting areas that still need development. The experience
gained from working with blackboard systems, knowledge experts, and process models

will be useful as new aspects of fault diagnosis are approached.
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