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Abstract
This paper presents a globally optimal nonlinear Model Predictive Control (NMPC) algo-
rithm. Utilizing local techniques on nonlinear nonconvex problems leaves one susceptible
to suboptimal solutions. In complex problems, local solver reliability is difficult to predict
and often highly dependent upon the choice of initial guess. For the purpose of NMPC,
local solvers can cause the algorithm to fail. Implementing a global solution technique
(Falk and Soland [1969], Horst and Tuy [1990]), which guarantees global optimality,
restores the integrity of NMPC technology. Due to the combinatorial nature of nonconvex
optimization, real-time considerations must be considered. The proposed algorithm’s
capabilities are demonstrated by the application of the controller on the benchmark control
problem of the isothermal operation of a continuous stirred tank reactor (CSTR) with Van
de Vusse reactions (Kremling and Allgöwer [1993]).
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INTRODUCTION

Given that a dynamic process can be approximated by
a linear model near its nominal operating point, linear
Model Predictive Control (MPC) methods typically pro-
vide reasonable control of a system (Morari and Lee
[1991, 1997]). For these methods, a convex optimization
problem is solved online at each time step for the optimal
control sequence that will keep the system within a desired
region of operation. However, in many processing exam-
ples, a process may not exhibit linear dynamics resulting
in unstable or poor closed-loop performance using linear
methods. Alternative formulations that consider nonlin-
ear dynamics must be pursued. For constrained nonlin-
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ear systems, a nonlinear model can be used in nonlinear
Model Predictive Control (NMPC) formulations (Henson
[1998]). The nonlinearity in such formulations, does how-
ever, give rise to a more complex optimization problem
to be solved online. In general, convexity of the resulting
online optimization problem is lost. The nonconvex non-
linear program (NLP) formulation leaves one susceptible
to determination of suboptimal solutions.

With a nonlinear discrete-time state-space representation
of a process, the NMPC problem can be formulated at each
sampling time. The controller output will depend upon on-
line solutions of nonconvex optimization problems which
will include nonconvex constraints representing a projec-
tion of the nonlinear model states and measurements into
the future. This work presents a new NMPC application



that attempts to find the guaranteed global optimum for
problems posed by general NMPC algorithms.

Deterministic methods for the global solution of non-
convex problems typically rely on convex relaxations of
nonconvex functions. Numerous methods (Adjiman, Dal-
liwig, Floudas, and Neumaier [1998], McCormick [1976],
Tawarmalani and Sahinidis [2000], Gatzke, Tolsma, and
Barton [2002]) have been proposed to carry out such re-
laxations. For this work, the nonconvex NLP is reformu-
lated to a convex NLP via variable transformations. A lin-
earization strategy of (Tawarmalani and Sahinidis [2000],
Gatzke et al. [2002]) is then implemented to generate a
Linear Program (LP). Calculating the lower-bounds for
the problem then relies on solution of these LP’s, for
which various methods are available (Dantzig [1963], Kar-
markar [1984], ILOG [2002]). Note that nearly any alge-
braic function can be reformulated for convexification.

This work expands on previous contributions which
considered a relative small class of nonlinear dynamic
systems (Sriniwas and Arkun [1997]). Once the con-
vex relaxation is obtained, branch-and-bound (Falk and
Soland [1969]) or branch-and-reduce (Ryoo and Sahinidis
[1995]) techniques can be applied to solve the modified
program providing a guaranteed global optimum (within
tolerances). For faster convergence to this solution, the
variable space can be reduced using standard techniques
such as interval analysis (Moore [1979]). Although global
optimization methods are combinatorial in nature, the
NMPC formulation does have a relatively restricted vari-
able branching space. In applying this solution technique
to the NMPC, other issues arise regarding the algorithms
use for real-time applications.

CONTROLLER FORMULATION

Assume that a given process with nu inputs, nx states, and
ny outputs can be represented by a nonlinear discrete-time
state space model:

x(k + 1) = f(x(k), u(k))
y(k) = g(x(k), u(k))

(1)

where x(k)∈ R
nx is the state vector at sample time k,

u∈ R
nu is the vector of inputs, and y∈ R

ny is a vector
of the predicted outputs. Note that f : R

nx ×R
nu → R

nx

and g : R
nx × R

nu → R
ny . Without loss of generality, it

is assumed here that g is a linear map.

The NMPC is formulated to choose a sequence of input
moves over the move horizon (m) that minimizes some
cost function. This cost function typically quantifies the
difference between the model predicted evolution of the
system and the desired setpoints over some prediction
horizon (p). A 1-norm objective function may take the
form:

Φ =

p
∑

i=1

Γy(i)e(i) +
m−1
∑

j=0

Γu(j)∆u(j) (2)

where e(i) is the absolute value of error predicted for the
(i)th time step into the future. The error (e) is defined and
constrained as:

|ry(i) − y(i)| ≤ e(i) ∀i = 1...p (3)

∆u is a vector defining changes in input movements. Γy(i)
and Γu(j) are weighting factors used to define the relative
importance of each objective function term.

The optimization problem to be solved at each time step
includes constraints. The predicted state and output values
are constrained by the model. The model predicted output
is updated to account for any plant/model mismatch. This
disturbance update is defined as:

d(i) = ym(0) − yp(0) (4)

where ym(0) and yp(0) are the measurement at the current
time and the predicted value of the output at the current
time, respectively. Constraints on the input movements are
implemented as

|u(i − 1) − u(i − 2)| ≤ ∆u(i − 1)

∀i = 1...m (5)

Hard constraints on the actual inputs of the process are
implemented as:

ul ≤ u ≤ uu (6)

The program to be solved online by the NMPC algorithm
has been completely defined and can be re-written in a
more compact form:

min
z

CT z

s.t. A1z ≤ b

hi(z) = 0 ∀i = 1...M (7)

zl ≤ z ≤ zu

where the vector z∈ R
N

is a vector of N unknowns
including the desired input trajectory, the resulting state,
output, and error projections, as well as the resulting ∆u
terms. All linear inequality constraints are represented by
A1z ≤ b. The M nonlinear constraints that arise from the
model and the objective function are written as hi(z) = 0,
where hi : z → R

M , M = nx ∗ p + 1. Hard constraints
on the inputs are incorporated into the bounds on the
unknown vector (zl and zu).

GLOBAL SOLUTION

Deterministic methods for global optimization depend
on the generation of convex relaxations of the original



nonconvex nonlinear problems. Numerous methods have
been proposed for constructing such relaxations. For this
work, a reformulation method (McCormick [1976]) is
used which converts the original factorable nonconvex
nonlinear problem into an equivalent form by the introduc-
tion of new variables and new constraints. The reformu-
lated problem contains only linear and simple nonlinear
terms for which convex relaxations can be constructed
using the convex envelopes already known for such simple
algebraic functions. The reformulated Nonconvex NLP is
of the form:

min
w,z

CT z

s.t. A1z ≤ b

A2

[

w
z

]

≤ 0 (8)

w = h(w, x)

zl ≤ z ≤ zu

wl ≤ w ≤ wu

where A2[w z]T ≤ 0 defines the new linear constraints
obtained from reformulation, while w = h (w, z) provides
the relationship between the new and original variables.
With Q new variables, w∈ R

Q

and h : w × z → R
Q

.
Bounds on w are determined from the bounds on z. Note
that h consists of simple nonlinear terms relating 2or 3
variables.

Convex relaxations of this problem are then constructed
using DAEPACK (Gatzke et al. [2002], Tolsma and Bar-
ton [2000]), an automated code generation tool. The ad-
vantage of using DAEPACK tool for generating convex
relaxations is it can be applied to legacy models coded
in standard FORTRAN. The convex relaxations can be
denoted as:

ȟ(w, z, wl, wu, zl, zu) ≤ w ≤ ĥ(w, z, wl, wu, zl, zu) (9)

where ȟ and ĥ are the convex under and over estimates of
the reformulated problem.

The linearization strategy (Tawarmalani and Sahinidis
[2000], Gatzke et al. [2002]) is then used to generate an LP
relaxation of the convex NLP created using DAEPACK.
The resulting LP is of the form:

min
w,z

CT z

s.t. A1z ≤ b

A2

[

w
z

]

≤ 0 (10)

A3

[

w
z

]

≤ b3

zl ≤ z ≤ zu

wl ≤ w ≤ wu

where A3[w z]T ≤ b3 expresses the new linear constraints
resulting from the linearization process. This linearization
technique is ideal because it yields an LP for which robust
solvers exist (e.g., ILOG CPLEX 8.0 ILOG [2002] and the
IBM OSL library I. B. M. [1997]).

Upon creation of the linear (convex) underestimates for
the nonconvex nonlinear problem, the branch-and-reduce
method (Ryoo and Sahinidis [1995]) is implemented.
This is an extension of the traditional branch-and-bound
method with bound tightening techniques for accelerat-
ing the algorithm’s convergence. Within this branch-and-
reduce algorithm, infeasible or suboptimal parts of the
feasible region can be eliminated using range reduction
techniques such as optimality based and feasibility based
range reduction tests (Ryoo and Sahinidis [1995]) or inter-
val analysis techniques (Moore [1979]). These techniques
help to derive tighter variable bounds for a given partition
in the search tree. Finally, the algorithm terminates when
the lower bounds for all partitions either exceed or are
sufficiently close (within specified tolerances) to the best
upper bound. At this point, a global optimum has been
found.

In general, global optimization methods are combinatorial
in nature. However, for this specific application, despite
the NMPC formulation involving hundreds of variables,
the problem has a relatively restricted variable branching
space. Only the mnu true decision variables are branched
on during the branch and reduce algorithm. The remainder
of the variable bounds are defined by the selection of
the optimal input sequence bounds. This is promising,
especially with regards to the feasibility of the solution
approach for real-time application in the NMPC context.

A modification of standard branch-and-reduce methods
was required in order to allow for rapid global solution.
Typically, a node is selected from the active node list.
This partition is examined for a new and improved upper
bound to the overall problem by local solution of the cor-
responding nonconvex optimization problem. The node is
then partitioned and lower bounds are derived for the new
partitions based on the convex lower bounding problems.
It may be necessary for rapid convergence to search for
an upper bound for a partition using a local search as any
new partition is created. A partition containing the global
solution that is added to the active node list without a
local solution may not be selected from the list rapidly
in problems that contain partitions with highly degenerate
lower bounds.

CASE STUDY

Consider the benchmark control problem of the isothermal
operation of a two state continuous stirred tank reactor
(CSTR) with Van de Vusse reactions. In this reactor, the
Van de Vusse reactions are:



A → B → C
2A → D

Material balances dictate that the system can then be
described by:

dCa

dt
= (F/V )(Cao − Ca) − k1Ca − k3C

2

a (11)

dCb

dt
= k1Ca − k2Cb − (F/V )Cb (12)

where F is the feed flow rate of A into the reactor, V is
the constant reactor volume, Ca and Cb are the reactant
concentrations in the reactor, and ki are the reaction rate
constants for the three reactions. For this work, let k1 =
50h−1, k2 = 100h−1 , and k3 = 10Lgmol−1 h−1 .
Assume that the volume of the reactor is constant, that the
feed is pure A, and that the nominal concentration of A in
the feed (Cao) is 10 gmol L−1.
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Figure 1. Steady state loci for various feed concentrations
showing steady state operating points in the Local (L)
and Global (G) solution methods.

For this single input single output (SISO) system, the
input (u) is taken as (F/V) , the state vector (x) consists
of the concentrations of A and B in the reactor, and the
single measurement (y) is that of the concentration of
B (i.e., y = x2). An unmeasured disturbance (d) will
be simulated through changes in Cao. The discrete-time
model necessary for the predictive aspects of this type of
control is found by discretizing the nonlinear state-space
model using a backward difference approximation with a
sampling rate of 0.002 hours. It should be noted that this
system happens to exhibit a steady-state input multiplicity.
This is depicted in a plot of the steady-state loci presented
in Figure 1. An upper bound on the input (F/V) is assumed
to be at a value of 200 h−1.

The predictive controller is tested for its abilities in both
setpoint tracking and disturbance rejection. The controller
is tuned with m = 1, p = 30, Γy(p) = 100, and Γu = 0.
Note that Γy(k) = 0 ∀k 6= p. By weighting only the

pth error term in the projection, a terminal error penalty
is enforced. Assume that the process is initially operated
at u = 181 h−1 and y = 1.1 gmol/L. This operating
point is indicated by (1) in Figure 1. At a time of 0.1
hours, the setpoint is stepped to 1 gmol/L. A series of
unmeasured disturbances are then introduced. At a time
of 0.5 hours, the setpoint is again stepped down, this time
under disturbance, to a value of 0.8 gmol/L.

The closed-loop results for the controller using both the lo-
cal solution techniques and the proposed global technique
are shown in Figure 2. At the time of the first setpoint
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Figure 2. Closed-loop results (m=1) with setpoint changes
at 0.1 and 0.5 hours and disturbance loads at 0.2 and
0.35 hours.

change, the local solver moves the system in an improving
direction but ends up at a local minima (against the upper
bound constraint). This is indicated by (2L) in Figure 1.
The global solver is able to realize the full setpoint change
by finding the global solution (2G). This example shows
that the global NMPC can achieve superior performance.
A sample objective function for the optimization problem
encountered under this circumstance is provided in Figure
3.

At t = 0.2 hours, the first disturbance hits and both
algorithms (using local and global solution techniques)
are then able to track the setpoint under this disturbance.
However, the presence of the input multiplicity allows
them to do so at different operating conditions (denoted
3L and 3G in Figure 1).



Figure 3. Sample objective function at the time of a
setpoint change.

From this, it is obvious that the local solver is moving
in the improving direction toward a minimum that is
infeasible due to the upper bound on the input variable.
At t = 0.35 hours, a second disturbance hits that moves
the system to an operating regime in which the setpoint of
1.1 gmol/L can no longer be achieved. Both the local and
global solution techniques move the system to the optimal
operating point denoted as (4) in Figure 1. Finally, at
t = 0.5 hours, the second setpoint change is implemented.
Both algorithms track this reference change without issue.

For a 0.7 hour simulation with a sampling rate of 0.002
hours, 350 optimization problems are solved online. The
required time for finding the global solution for each
problem is presented in Figure 4. In most cases using
Redhat Linux 9.0 on a dual AMD 1900+ MP system,
the global solver is able to guarantee global optimality
sufficiently fast for real-time operation (i.e., the solver
returns the global optimum within 7.2 seconds). However,
at a time of 0.35 hours, the system is under a disturbance
large enough that the desired setpoint can no longer be
achieved. At this particular point, guaranteeing the global
solution takes significantly more time than previous cases
and the solver is no longer fast enough for real-time
purposes. This can be attributed to a flat spot in the
objective function (Figure 5). In order to account for this,
the global solver is terminated at the real-time threshold
and the best solution thus far is implemented. In this case,
there is no degradation in the controller’s performance by
terminating the solve at the real-time threshold. However,
the guarantee on global optimality is lost. It is likely that
the global solution has indeed been found, however, some
suboptimal regions of the solution space have not yet been
fathomed. A measure of this optimality gap is provided in
Figure 4. Convergence is dictated by bringing the lower
bound within some tolerance of the upperbound. This plot
shows the difference between the two upon termination.

Closed-loop results with a larger move horizon are pre-
sented in Figure 6. Again, the controller is choosing the
optimal mnu moves that minimize the objective function.
The controller then implements only the first control move
in that sequence. In an attempt to avoid the scenario in
which the controller chooses not to move the system in this
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the time for the global solution, the global solution
value, and the worst case lower bound upon termina-
tion for real-time application.

Figure 5. Sample objective function exhibiting a region of
insensitivity to changes in the input.

first calculated move, the objective function was modified
from the previous case. An additional error term from
the prediction horizon was included in the objective func-
tion to account for process dynamics. An input movement
penalty was also implemented. The specific controller tun-
ings were m = 3, p = 30, Γy(15) = Γy(30) = 100, and
Γu = 0.005. Again note that Γy(k) = 0 ∀k 6= p , p

2
.

Velocity constraints were also imposed on the system as:

∆u(i) 6 70 ∀i = 1..m (13)

The controller was subjected to the same setpoint track-
ing and disturbance rejection tests as in the m = 1
case. Interestingly enough, the NMPC using local solution
techniques was able to track the reference changes and
reject the disturbances without issue. In particular, when
the initial setpoint change is applied, the controller based
on local solution techniques is able to move the system



to the setpoint instead of moving the input value to the
upper bound as before. On the other hand, the NMPC algo-
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Figure 6. Closed-loop Results (m=3) with setpoint
changes at 0.1 and 0.5 hours and disturbance loads
at 0.2 and 0.35 hours

rithm using the global solution technique did not perform
as well. At the time of this first setpoint transition, the
controller chose not to move. The controller did indeed
return the global solution of the optimization problem at
this point, however, the solution dictated that it was not
necessary for the controller to move the system immedi-
ately (i.e., in the first move of the chosen optimal input
sequence). For the remainder of the simulation, the NMPC
algorithm using the global solution technique was able to
track the reference and reject the disturbances. It should be
noted that it was able to do so at different input values than
the local method, which is made possible by the presence
of the input multiplicity.

CONCLUSIONS

A globally optimal NMPC algorithm has been proposed.
A deterministic approach is used in finding the guaran-
teed global optimum to the nonconvex NLPs associated
with the controller’s operation. The global algorithm was
shown to eliminate the poor performance in a simple
CSTR example resulting from the suboptimal input tra-
jectories supplied by a controller which uses local solu-
tion techniques, provided that the controller was properly
tuned. In doing so, the globally optimal NMPC algorithm

showed promise with regards to its real-time application.
However, backup hybrid control methods should be con-
sidered to handle situations where the desired solution
cannot be obtained in the allotted time.
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