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Abstract

This paper presents a Model Predictive Control (MPC) al-
gorithm capable of controlling the evolution of particle size
distributions used in aggregation/breakage processes such
as granulation. High-shear wet granulation is an important
aggregation/breakage process due to its ability to produce
dense, spherical particles in a short amount of time. Prob-
lems typically arise in high-shear wet granulation while at-
tempting to control final particle size distributions due to
process sensitivity with respect to liquid addition. Thus,
advanced control of high shear granulation processes is
greatly dependent on a model capable of predicting pro-
cess transients during particle growth. A Population Bal-
ance Equation (PBE) model is implemented to capture pro-
cess dynamics for the model based controller. A discrete
element simulation model will act as the process to be
controlled. The model determines the result of particle-
particle interactions based on the physics of the process.
This highly realistic model will act as a test bed for the
newly developed MPC formulation which in the future can
be implemented on an actual granulation process. Com-
plexity arises in the MPC algorithm due to the fact that the
model used by the controller is nonlinear, the process in
question operates in batch, and the non-square nature of
this problem.

1 Introduction

Advanced control and modeling of granulation processes
presents many challenges. In many industrial granular pro-
cesses it is preferential to produce granules with consistent
product quality indicated by size uniformity, flowability, at-
trition resistance, break-up rate, etc. These product quality
indicators can be related by two granular quantities: parti-
cle size distribution and bulk density [16]. In the past, ad-
vanced control strategies such as Model Predictive Control
(MPC) have been used in granulation processes due to the
ability of MPC to accommodate both multivariable systems
and systems with process constraints [3, 19]. Research has
been performed using MPC to control these fundamental
granular quantities when the MPC formulation is applied
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to continuous granulation processes ([6, 16]).

Typical MPC algorithms formulate an optimization func-
tion at discrete time steps to determine the next control
move. That control move is applied to the system at the
next sampling time and a new process measurement is re-
ceived. The model is then updated and a new optimization
problem is solved. Pottman et al. [16] achieved quality
control in a continuous system by adjusting flowrates on a
series of spray nozzles that dry powder passes through to
be nucleated to control the bulk density of the product as
well as the 90th and fifth percentiles of the product. Gatzke
and Doyle [6] extended on traditional MPC controllers by
presenting soft output constraints and prioritized control
moves to the system.

While MPC may be best applied to continuous systems,
many granulation processes are performed in batch. Batch
processes typically exhibit large variations in operating
conditions resulting in an MPC formulation which cannot
be optimized by static formulation [4, 13]. In a batch gran-
ulation process, the bulk density of the system will be uni-
form, under the assumption that the system is well mixed.
The control strategy must only be concerned with the par-
ticle size distribution as it changes with time. Processes
operating in the batch mode are usually required to follow
a given trajectory determined by model-based optimiza-
tion or operator experience. Trajectory tracking of batch
processes presents difficult control problems for batch pro-
cesses due to the nonlinearity of the processes and the dy-
namic nature of the operating points. A highly realistic
model of a high shear granulation process based on dis-
crete element simulation will act as the plant to be con-
trolled. This model simulation scheme depends directly on
the physics of the process to determine an evolving particle
size distribution. This model will act as a test bed until the
final nonlinear Model Predictive Controller can be applied
to an actual high shear granulation process.

2 Plant Model

A high fidelity model of the process was developed using a
discrete element simulation approach. The proposed simu-
lation method is developed from a collection of physically
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Figure 1: The evolution of the PSD by tracking physical inter-
granule changes and interactions.

based models. It is initially assumed that an array of gran-
ules are in a nucleated particle matrix. Each granule is
composed of an identical initial pore saturation due to an
assumed uniform binder dispersion in the granulator. The
binder is assumed to be a compressible Newtonian fluid and
the granule is assumed to react as a simple elastic-plastic
solid as described by Liu et al. [12]. Given initial positions
and velocities, granules move in small increments at each
time step. This discrete element simulation method is ben-
eficial in modeling a granulation process because the sim-
ulation allows for easy application of phenomenologically
based physical changes to the process. Figure 2 shows the
basis of this simulation technique. Changes in each granule
are tracked to predict the evolution of the PSD.

Granule Position-A number of particles is first chosen, and
each particle, i, is randomly given a fixed position, xi, yi,
zi, Initial positions are developed in a manner such that no
two particles initially overlap. Repeating spatial boundary
conditions are used for particles that that move beyond the
borders of the simulation.

Granule Composition-Using granule volume as the intrin-
sic parameter in the simulation, Verkoeijen et al. [17] pro-
posed a method where a particle volume can be described
as a vector G composed of the granule solid volume s, liq-
uid binder volume l, and air volume a, G = [s l a]

T

where the total volume of granule i is the sum of the three
components vi = si+li+ai. Using this initial composition
of phases in each granule, internal granule properties such
as porosity ε, pore saturation S, moisture fraction w, and
liquid fraction L, can be calculated from these quantities.

Granule Velocity-The particles are given a randomly de-
termined velocity in each direction in three dimensional
space. Here, the distribution used is a normal distribution
with a mean velocity of 3 m/s and a standard deviation of 1
m/s. The mean velocity of the normal distribution is based
on the impeller speed of the granulator by: vxi

= ωD
2

,
where vxi

is the velocity of the i th granule in the x direc-
tion, ω is the angular velocity of the impeller (1/s) and D

is the diameter of the granulator, (m).

The granule vector, Gi is expanded to include all gran-
ule components: position, composition, velocity, porosity,
pore saturation, etc. With each of parameters of the gran-
ule known in the vector Gi, the simulation progresses in-
crementally each time step. At each time step, there are
many other aspects of the simulation which must be up-
dated. Consolidation is a continuous process updated at
each time step.

Consolidation-As granules collide against each other or
against walls or impellers in granulators, air is slowly
forced out of the granule. Consolidation controls not only
the amount of air inside a particle, but also controls the rate
that binder is eventually forced out of pores therefore con-
trolling binder layer height on the surface of the particle.
Several models for consolidation have been described by
an exponential decay relationship for porosity as a function
of time [8, 17]:

dε

dt
= −kc (ε − εmin) (1)

where εmin is the minimum porosity attainable and kc is a
consolidation rate constant.

Coalescence-Collisions are detected and conditions for co-
alescence, rebound, and breakage are calculated. Liu et
al. [11] present criteria for coalescence among deformable
surface-wet granules. For a full description of the physics
of granule coalescence, see references [11, 12]. This cri-
teria was first derived using contact mechanics described
by Johnson [9]. Their model assumes that deformation be-
gins when granules are in physical contact, liquid capil-
lary forces are negligible, the interparticle attractive forces
are negligible, and fluid cavitation does not occur during
rebound. If the kinetic energy caused by a collision of
two particles is completely dissipated by the viscous binder
layer, these particles coalesce due to Type I coalescence
[11]. Once the surfaces touch and rebound begins, if the
binder layer is capable of dissipating the energy caused by
this rebound force, the particles then coalesce due to Type
II coalescence. If the energy caused by the collision is too
great to be dissipated by the binder layer, the particles com-
pletely separate and rebound occurs. The rate of granule
growth is greatly dependent on binder content in a granule.
As a granule becomes saturated, the binder layer height in-
creases, causing particles to more readily coalesce via Type
I coalescence. As impeller speed increases, particles are
less likely to coalesce due to Type I coalescence until the
kinetic energy reaches a point where breakage may occur.

Breakage-Breakage occurs in a granulator when the shear-
ing forces of the impeller or chopper are greater than a crit-
ical amount of deformation that a granule is able to with-
stand to remain intact. Breakage can often greatly affect
the final particle size distribution, especially in high shear
granulators. The criteria was first presented in the form of



the Stokes deformation number criteria as Stdef > St∗def

where Stdef is the Stokes deformation number, a measure
of a granule’s impact kinetic energy to the plastic deforma-
tion of the granule [18].

3 Population Balance Equation Model

Models based on Population Balance Equations (PBEs)
are crucial in the field of particulate process analysis be-
cause these models allow for the calculation of size distri-
bution, as well as the determination of controlling granu-
lation mechanisms. Population balances have rate expres-
sions for all granule size changing mechanisms. A common
PBE applied to granulation will determine particles that are
“born” or that “die” due to coalescence. Particle may also
be created from breakage of a mother particle. PBEs also
use rate expressions to model particle growth due to layer-
ing and particle deterioration caused by consolidation or at-
trition. PBEs are particularly useful with respect to process
control through the use of sensitivity analysis to determine
how changes to input conditions effect product quality [2].

Analytical methods of solving PBEs are very difficult,
therefore discrete solutions have been found which con-
sider particles of different sizes to exist in groups or “bins”
and interact collectively with particles in other groups
[7, 10, 1]. These discrete methods are commonly compu-
tationally efficient and accurate enough to be an adequate
substitution to the analytical model. Verkoeijen et al. [17]
proposed a discrete multi-dimensional population balance
which uses volume as the intrinsic parameter. Verkoeijen et
al. included two main agglomeration mechanisms to their
model: coalescence and compaction. This volume-based
model tracks the evolution of the volume of solids, volume
of liquid, and volume of air of a nucleated granule at each
time step in a manner similar to the discrete element sim-
ulation model. Models have been established using these
intrinsic parameters to calculate granulate parameters such
as pore saturation, porosity, and liquid fraction. For a de-
tailed review of this PBE model, see [17]. The continuous
coalescence function derived by Verkoeijen et al. is given
as:

dqsk

dt
=

j=n
∑

j=1

(

βijqsi − βkjqsk

js1Ntot

)

qsj (2)

where qsk is the total solid volume of granules in the kth

size class, β is the coalescence kernel, and Ntot is the to-
tal number of granules at time t. The coalescence kernel,
βij , proposed by Verkoeijen et al. defined a criterion which
stated that coalescence could only take place once the gran-
ule pore saturation, S reached a critical level following con-
solidation, S∗. This degree of saturation corresponds to the
capillary state at which rapid agglomeration begins.

Open-loop results using the discrete element simulation
have shown three factors of granules aggregation that need
to be captured by a coalescence kernel: (i) an induction

behavior is present when granules were not in the capillary
state of moisture content, (ii) increased impeller speeds re-
sult in less granule growth, (iii) and lastly a promotion of
granule growth with an added binded content. The initial
proposed coalescence kernel is shown in Eq.3:

β(u, v) =

{

β0(ln(1.5 + ω))2.5(qlt/qlt−1)
0

(3)

for S ≥ S∗ & ω > 0
for S < S∗ or ω = 0

where ω is the impeller speed of the mixer, qlt is the total
volume of liquid in the granulator at time t, S is the pore
saturation, S∗ is the critical pore saturation (0.85) and β0

is the size independent kernel. This hybrid reduced model
was run in parallel with the discrete simulation model and
has shown to perform very similarly to the full discrete sim-
ulation model, yet less computationally intensive and time
consuming.

4 Controller Formulation

The PBE model of a granulation process can be simplified
to the following nonlinear discrete time system:

x(k + 1) = f (x(k), u1(k), u2(k)) , k = 0, 1, . .
y(k) = x(k)

(4)

where x(k)∈<nx is the state vector at sample time k,
u ∈ <nu is a vector of inputs, and y ∈ <ny is a vector
of predicted outputs. The states in this discrete process are
the total volume of granules, qi, in size class i, at a discrete
time sample time k. The inputs to the process are impeller
speed at time sample k and volumetric flowrate of binder
at time sample k. In this MPC formulation, a controller is
required to calculate a set of control moves that allows the
process to operate following a desired setpoint trajectory.
These control moves are found by minimizing an objective
function, Φ(k), at each time step k:

min
U(k)

Φ(k) =
∑k+p

i=k
eT

y (i)Γyey(i) (5)

+

M−1
∑

i=0

∆u(i)T Γu∆u(i)

Subject to the constraints:

u(i) ∈ [umin, umax] (6)

where ey(i) is the model/reference error vector at time i,
∆u(i) = u(i) − u(i − 1), or the difference between the
the input at time i and time i − 1, M is the move horizon,
and p is the prediction horizon. Γu and Γy are diagonal
weighting matrices with elements γui and γyi. The error
term, ey(i) = ΣN

j (yj(k + i|k) − ysj) compares the pre-
dicted values of the output vectors at each discrete particle
size class, j, to the target desired trajectory, ys, for each
size class, j, over N individual size classes.



With a simulation of the process and an efficient model
available, it is now possible to formulate a batch NMPC
controller which explicitly accounts for process output con-
trol objectives. The constraints on this process state: the
impeller speed is bound by limits, 0 < u1(k) < 1000 rpm,
and volumetric binder flowrate which is a nonnegative
value, u2(k) > 0.

U(k) is a vector of all previous input moves, u1, . .unp and
future input moves u(k), u(k+1), . . u(n), where np is the
previous number of input moves . The objective function,
Φ(k), is minimized over the prediction horizon, p, by ap-
plying selected input moves u(k), u(k + 1), . . u(n), into
U(k). In the formulation of the batch MPC control scheme,
a shrinking horizon over which the objective function is
minimized is considered [15]. The duration of a given
batch is discretized into n time steps, where n spans the
entire desired batch trajectory. The vector of input moves,
U(k), is then separated into two categories: previous input
moves, np, and future input moves, nf , where np +nf = n
such that:

U(k) = [u1, u2, . . unp, (7)

u(k), u(k + 1), . . u(n)]

Input moves u(1). . .u(np) are all of the previously cal-
culated input moves over the shrinking horizon, p and thus
cannot be altered to minimize Φ. Input moves u(k) . . .
u(n) consist of the future input moves. The future moves
provide a degree of freedom for the controller. The con-
troller then can only choose input moves over the horizon
m, for every i greater than m − 1, such that the input u
has identical values: u(k + m − 1) = u(k + m) =. . .
= u(n).Thus, in choosing a move horizon of one, a vec-
tor of uniform future input moves results. The controller
chooses the optimum move at each time step using the PBE
to calculate the proper input moves over the prediction hori-
zon which will minimizes the objective function at each
time step. Only then are these input moves applied to the
actual process.

5 Results

The batch NMPC controller was used to stabilize desired
steady state operating points for batches simulated with five
size classes. The following weights were chosen for the in-
put moves: Γu1 = 0.001, impeller, and Γu2 = 0.0001,
binder. The weights were sufficiently small enough to al-
low for a large degree of variation between time steps. It
is assumed that the initial particle size distribution in the
granulator is known and therefore duplicated for the model.
The desired trajectory used as the setpoint is the result of
an average of 20 open-loop batch operations without distur-
bances. At each time step the NMPC controller attempts to
minimize the objective function over the entire batch trajec-
tory by altering the inputs (impeller speed, binder addition)
into the population balance. Using the population balance
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Figure 2: Comparison of desired trajectory with open loop and
closed loop trajectory for all five size classes using a
batch NMPC controller where the desired particle tra-
jectory had more binder initially present..

model, the batch trajectory can be calculated much more ef-
ficiently than using the discrete element approach.The pop-
ulation balance was discretized into five size classes result-
ing in five individual trajectories in which the NMPC must
use only two inputs to control.

Several different trials were examined. In test 1, the initial
particle size for the granulator and the model were identi-
cal but the granulator particles were nucleated initially with
a higher liquid volume fraction. This extra binder present
will lead to a decreased induction time and a larger mean
particle size according to open loop results [5]. The NMPC
controller was applied and the results are shown in Figure
2. The input moves required to reach this setpoint are dis-
played in Figure 3.

These solutions were found using a shrinking horizon and
a move horizon of two. A move horizon less than two pro-
duced very undesirable results. This can be attributed to
the fact that a controller with a move horizon of one cannot
fully accommodate for process disturbances, and instead
will average out disturbances over the entire trajectory. A
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Figure 3: Input moves formulated by the NMPC controller to
reach the desired setpoint.

Table 1: Comparison of error from desired trajectory occurring
with and without use of the batch NMPC controller for
case A.

Size Open loop Closed loop
Class error

(

m3 × 109
)

error
(

m3 × 109
)

1 3.583 0.7031
2 2.992 0.6744
3 0.5012 0.1486
4 0.5035 0.8688
5 6.984 5.482

Σ error 14.56 7.877

comparison of the error between the open loop trajectory
and the desired trajectory with the closed loop NMPC tra-
jectory and the desired trajectory is given in Table 1. This
table clearly shows that despite the fact that the problem is
non-square, the controller does provide a closed loop tra-
jectory overall with half as much error than the open loop
trajectory. Furthermore, four out of the five particle size
trajectories were significantly closer to the desired trajec-
tory using the NMPC controller.

A primary concern with controlling particle size trajecto-
ries in granulation processes is the determination of the in-
duction period. For this example, the open-loop trajectory
with exhibited an induction time of 40s while the setpoint
trajectory had an induction time of only 20s. The difference
is attributed to a greater initial binder load for the setpoint
trajectory, therefore the granules reach a capillary state of
saturation sooner. The NMPC controller was able to pre-
dict this necessary addition of binder as shown in Figure
3.

The more difficult control problem occurs when the desired
trajectory has a longer induction time than the process at
hand. This is the result of granules with less binder present
being used for the desired batch trajectory. In this situa-
tion, the NMPC controller is unable to remove liquid from
the process. Open-loop tests have shown that increasing
impeller speed does effectively hinder granule growth [14].
This is due to the fact that as the kinetic energy of gran-
ule collisions increase, the binder layer becomes less ef-
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Figure 4: Comparison of desired trajectory with open loop and
closed loop trajectory for all five size classes using a
batch NMPC controller where the desired particle tra-
jectory had less binder initially present.
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Figure 5: Input moves formulated by the NMPC controller to
reach the desired setpoint.



Table 2: Comparison of error from desired trajectory occurring
with and without use of the batch NMPC controller fro
case B.

Size Open loop Closed loop
Class error

(

m3 × 109
)

error
(

m3 × 109
)

1 3.583 0.9214
2 2.992 0.3673
3 0.5012 1.413
4 0.5035 0.6619
5 6.984 0.5835

Σ error 14.56 3.947

fective in dissipating the resulting force, therefore resulting
in more rebounding and less coalescence. In the examples
presented in Figure 4, results are shown for particle trajec-
tories of five individual size classes. Figure 5 shows how
the controller only changed the impeller speed to decrease
the rate of agglomeration of the process. The impeller
speed was increased to its saturation point as determined by
controller formulation constraints. No binder was added to
the process. As can be seen, all five size classes progress
in a manner similar to the setpoint. While the induction
time could not change, the growth rate was manipulated to
find the best solution possible using impeller speed as the
only input that could reduce the model/setpoint error. A
comparison of the error between the open loop trajectory
and closed loop trajectories for this control problem is dis-
played in Table 2. The controller provides a closed loop
over three and a half times closer to the desired setpoint
trajectory than the open-loop case. Furthermore, again four
out of the five particle size trajectories were significantly
closer to the desired trajectory using the NMPC controller.

6 Conclusion

A batch nonlinear MPC controller has been formulated
which effectively follows a desired batch output trajectory
of a particle size distribution for a simulated granulation
process in which five particle size classes are tracked. A
discrete element simulation model which determines the
result of granular interactions based on physical granu-
lar properties was used to simulate the actual granulation
process. A population balance equation model in which
a new coalescence kernel was determined to minimized
plant/model mismatch was used as the model of the process
for efficient error determination. The NMPC controller was
shown to follow desired particle sized trajectories for five
size classes using granulator impeller speed and volume of
binder addition as the two input moves. Two differing ini-
tial conditions were examined: where the setpoint trajec-
tory had more initial binder present and when it had less
initial binder present than the open loop trajectory. Based

on the amount of binder present, the induction time of the
batch process would vary. Despite this, the NMPC con-
troller showed it could handle either condition. More diffi-
culties arise in the latter situation due to the fact that only
impeller speed could be used to change the trajectory. With
only one degree of freedom, the controller was able to de-
crease the error by increasing the impeller speed to its satu-
ration level. More situations will be examined in the future.
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