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Abstract

This paper presents a Model Predictive Control (MPC) algo-
rithm utilizing a state-space approach that allows for infer-
ential control of unmeasured states using a prioritized con-
trol objective formulation. Knowledge of the unmeasured
states is gained through the use of an external state estima-
tion routine, while mixed-integer methods are used to im-
plement the prioritization of the objectives. The capabilities
of the algorithm are demonstrated by the application of the
controller to a fermentation reactor model in a simulation
environment.

1 Introduction

A model of a dynamic system may have many states that de-
scribe the dynamic response of the system. However, at any
given time some of these states may not be known. Some
process states may be too costly, too time consuming, or
simply impossible to directly measure. This lack of avail-
able online measurements is obvious in the case of complex
metabolic and genomic systems, where many of the molec-
ular species and reactions are only accessible with signifi-
cant experimental effort. Nevertheless, it is often desirable
to control these unmeasured states in a systematic manner,
especially during reference change transitions.

Model Predictive Control (MPC) methods have become
quite popular in industry because of their ability to control a
broad range of processes. For a detailed review of MPC, see
references [1, 2, 3]. These methods are capable of handling
multivariable systems, enforcing hard and soft constraints
on both inputs and outputs, and accommodating process
time delays and difficult dynamics. The controller operates
by using process data at discrete time intervals to formulate
an optimization problem, which represents the minimization
of some cost (objective) function. The optimization prob-
lem is solved at a given time step for the optimal control
trajectory and the appropriate control move is implemented.
This is repeated at each time step to provide online real time
control. The MPC works well under the premise that three
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goals can be met. First, the system in question must be mod-
eled in an effective manner. Second, the proper optimization
problem must be formulated using data from that model. Fi-
nally, the optimization problem must be solved efficiently
to yield the necessary control move in the allotted sampling
time. Variations in these three steps affect the efficiency of
a particular MPC method.

This paper demonstrates that an MPC can be designed to
accommodate the needs of a system that has unmeasured
states that need to be regulated. Such a design benefits from
a state-space formulation with prioritized control objectives
and leads to a standard mixed-integer quadratic program-
ming problem. Specifically, a conventional MPC algorithm
minimizes an objective function with weights for penalizing
both setpoint errors and rapid changes in input level. The
problem is typically constrained according to needs from the
problem’s domain. This often requires setpoint constraints
on process outputs, one-sided constraints for soft limits on
process variable upper and lower bounds, and constraints on
the input movements for actuator limitations. In contrast to
a conventional MPC, the use of a state-space model along
with an external state estimation routine can explicitly de-
fine all states for the process across the entire time horizon.
This way, any unmeasured model states that may enter into
unsafe or undesirable operating regions can be inferentially
manipulated. This is accomplished by incorporating into the
optimization problem constraints for unmeasured state es-
timates in the MPC prediction horizon projection, just as
one traditionally deals with process outputs. In the tradi-
tional MPC method, all variables are continuous and the op-
timization problem is formulated either as a linear (LP) or
a quadratic program (QP) depending on the norm used to
characterize deviations from the ideal operating point of the
system.

Mixed integer formulations have been presented in the past
both to discretize and prioritize the traditionally continuous
control objectives [4, 5, 6]. One advantage of methods based
on propositional logic is that control objectives are explic-
itly stated and prioritized, avoiding some uncertainties asso-
ciated with MPC controller tuning. The main disadvantage
of these methods is the computational complexity of the op-



timization problem to be solved online. In mixed-integer
formulations, the objective function is modified and addi-
tional constraints are added that describe whether discrete
objectives have been met at all and whether they were met
in a pre-specified ranking of priority. Large objective func-
tion penalties are assigned if the discretized objectives are
not being met, and even larger penalties are placed on not
meeting objectives in order of their priority. These penalties
are added to those used in the conventional MPC formula-
tion. Using the state-space formulation offers the additional
advantage that constraints can be placed on the explicitly
defined unmeasured states and errors associated with these
states can be penalized in the objective function, just like
they are for measured states. Formulation of the objective
function with priority control incorporates both binary and
continuous variables, as opposed to exclusive use of contin-
uous variables in the conventional case. The result of this
formulation is a standard mixed-integer optimization prob-
lem that is either linear (MILP) or quadratic (MIQP).

A time-efficient solution of these optimization problems is
crucial for real time control, but this issue is beyond the
scope of this article. Given that the MPC task consists of
solving a new optimization problem at each time step, the
limitation of the approach becomes whether the posed prob-
lem can be solved within the allotted time. Efficient solvers
for the LP, QP, MILP, and MIQP problems are available,
but the specifics of the problem (such as the total number
of variables, the number of binary variables, etc...) dictate
whether these solvers are sufficiently efficient for a given
application. For the work presented here, the optimiza-
tion problem is formulated completely in MATLAB [7] and
solved using solvers from the IBM OSL Library [8].

This paper presents an MPC algorithm that is capable of
controlling unmeasured states and uses a state-space formu-
lation with a prioritized control objective. The specific im-
plementation furthermore allows any subset of the contin-
uous objectives to be discretized. Finally, using the “and”
clause from propositional logic [9], multiple discrete objec-
tives can be prioritized in a manner where any number of
objectives are assigned the same priority.

The proposed algorithm’s capabilities have been tested for
a variety of applications in a simulation environment. As
an illustration here, simulation results for the operation of a
fermentation reactor will be presented. Metabolic reactions
inside the cell are modeled using a power-law term for each
individual reaction, a strategy which is often referred to as a
Generalized Mass Action (GMA) model approach [10]. The
fermentation reactor is based on metabolic pathway model
with five states, which is represented in GMA format. We
suppose that the task consists of controlling a single metabo-
lite concentration (ATP) by manipulating the external glu-
cose concentration in the medium. Various discrete control

objectives are used to inferentially constrain concentrations
of other metabolites of interest.

2 Controller Formulation

A given process has, or could be simplified to, n,, inputs, 1,
states, n,, outputs, and ny measured disturbances. Consider
a linear model of the process in the typical state-space form
of:

z(k +1) = Az(k) + Byu(k) + Bad(k) (1)

y(k) = Cx(k) + Dyu(k) + Dad(k) ()

where 2(k)€ R""is the state vector at sample time k, u €
R""is the vector of inputs, yeR " is a vector of the predicted
outputs, and d€ R"* includes any measured disturbances.

Using a prioritized objective control approach [4, 6], take
the objective function to be minimized at every time step k
as:

2(k) = T} P(K) + TLO() + iy [TLelh+ 1)

+ 3T Au(k + ) |
(3)

Here, O and P are vectors of binary elements (0 or 1) that
describe whether or not the discretized objectives have been
met and if they were met in their specified order (according
to their associated priority.) The variables m and p are the
controller’s move and prediction horizons, e is the vector
of errors in either the states or outputs that show the differ-
ence between the modeled value and the reference, and Awu
is a vector defining the input movements (i.e., the difference
between the input positions at two consecutive time steps).
T'y and T, are vectors of weights corresponding to each dis-
cretized objective and to each priority respectively, while
I'e and I' A, are vectors of weights with entries correspond-
ing to each error term and input move term. Each of these
weighting factors provides the ability to assign some relative
importance to each individual term within the control prob-
lem. The optimization problem to be solved at every time
step is constrained. Different types of constraints that could
apply are detailed below.

Using the state space approach, all states and outputs are ex-
plicitly represented by the model using equality constraints.
For states, the constraints are:

x(k+1i) = Ax(k+i—1)+ Byu(k+i—1)+ Bgd(k) (4)
Vi=1...p
For the outputs, the constraints are:
y(k+ 1) = Cx(k + 1) + Du(k + 1) %)

Vi=1..p



Note that the controller can only choose input moves over
the horizon m, for every 7 greater than m — 1, such that the
input w has the same value: u(k = m — 1) = u(k + m) =
.. =u(p).

A process can have numerous objectives that are applied to
a system using setpoint error constraints. These constraints
vary in form depending on the type of constraint required.
Traditionally, only the measured states or outputs are con-
strained, but as mentioned before, it could be important for
the controller to control some of the unmeasured states. To
this end, the controller formulation must have the ability to
constrain both types of states (unmeasured and measured),
as well as the outputs. This can be achieved either with a
setpoint constraint or a one-sided soft upper or lower bound.
A setpoint constraint on a state is written as:

e, (1) — x;(i)] < ex(d)+B; Vi=1l.p  (6)

where T, is the reference value from a reference vector r for
the j*"state and B; is a tolerance value that provides a range
within which the state must stay in order for the constraint
to be satisfied. This single constraint can be split up into two
separate constraints

TTJ(Z) - x](l) < eac(l) + Bj 7
— 1o, (i) 4 (i) < eli) + B
Vi=1.p

The soft upper or lower bound can be placed on a state by
enforcing only one side of the setpoint constraint defined in
Equation 7. The objective function contains a term that pe-
nalizes input movements. These input movements are mea-
sured and constrained by

luk+i—1)—ulk+i—2)| <Au(k+i—-1) (8)
Vi=1.m

This is the last constraint for the traditional MPC algorithms.
The following constraints are imposed in addition and per-
tain specifically to the prioritized objective formulation.

Discretizing the typical continuous control objectives imme-
diately renders it possible to prioritize different objectives
through a series of algebraic constraints. To discretize the
continuous control objectives, a constraint of the form:

is needed where N is a very large value. If the continuous
control objective has a non-positive error at all time steps
over the prediction horizon, the objective is satisfied and O;
will take a value of one. On the other hand, if the control
objective is not satisfied at one of the time steps over the pre-
diction horizon (i.e., there is a positive error at some time),

the O;will take on a value of zero for the constraint to be
satisfied.

To ensure that the objectives are met in order of priority, an-
other constraint is introduced. Previous work [4] in this area
used a formulation in which all continuous objectives were
discretized and each objective was given a different priority.
In this case, the constraints were of the form: P; < O; for all
1 = 1...Np, where N, and N are the number of priorities
and objectives respectively and N, = Np. Using the “and”
clause from propositional logic [9], it is quite easy to extend
this type of constraint to cases where several objectives have
equal priority (N, # No). Specifically , one constraint is
added for each objective that forces the objectives to be met
before the corresponding priority. As an example, one might
require:

P < O

P < 0O

P, < O3 (10)
Py, < O,

In this case, the first two objectives have the same priority,
therefore both O1and O, must be met before P; is satisfied.
An extension to the case of equal priorities is simply a mat-
ter of propositional logic. Similar extensions can further-
more handle any logical clause consisting of combinations
of “and” and “or” statements.

Finally, constraints are needed to enforce the order in which
the objectives are met based on their priorities. These con-
straints are:

P <P Vi=1.N,—1 (11)

All of the elements of the problem are now defined, but it is
still necessary to express them in a more general and com-
pact form that is compatible with the solver. The objective
function can be rewritten in the form:

1
J = §ZTHZ + Tz (12)

H is a diagonal weight matrix that holds the weights of each
term whose magnitude is measured by the /s-norm and f is
a vector holding the weights of each term whose magnitude
is measured by either the /;-norm or /,,-norm. When H
is nonzero, the optimization problem is a constrained Mixed
Integer Quadratic Programming (MIQP) problem. However,
if H = 0, the problem is simplified to a constrained MILP
problem. In the objective function, z is a vector of the un-
knowns. It is defined as:

z = [urTn ZCZ yg eg Au,Tn oT PT]T (13)

where:
U, = [u(0)T...u(m — 1)T]T



Aty = [Au(0)T...Au(m — 1)T)T

It should be noted that from this unknown vector, the con-
troller only has m * n,, true decision variables. Only u,,
must be specified. With the value of w,,, and the current pro-
cess measurements, the rest of z is defined by the constraint
relations (Eqgs. 4-11).

All constraints can then be rearranged into a single math-
ematical expression in the standard matrix-vector notation
of:

Mz<b (14)

where, again, z is the vector of unknowns, M is a matrix that
holds the constant constraint parts, and b is the vector that
holds the portions updated by process measurements. The
optimization problem posed and solved by the controller is
then:

1
min §ZTHZ + Tz (15)

subject to Mz < band z; < z < zy. The selection of
lower and upper bounds on z (z;, and z,;) allow for hard
constraints, such as actuator limits, to be imposed on the
system in addition to those constraints detailed before. The
desired control action is taken, and then the controller waits
for the next sample time to receive the updated process data.
These updated data are the basis for formulating the appro-
priate optimization problem for the next time step.

3 Application to a Fermentation Reactor

3.1 The System

The anaerobic fermentation pathway of yeast (Saccha-
romyces cerevisiae) has been the subject of numerous stud-
ies over the years. In this pathway, yeast takes up glucose
from the medium and, after a series of intermediate reac-
tions, produces ethanol and a number of other metabolites.
A simplified schematic of the pathway, as proposed by Curto
et al (1995), is shown in Figure 1.
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Figure 1: Simplified model of anaerobic fermentation of
glucose to ethanol, glycerol and polysaccharides in Sac-
charomyces cerevisiae. Solid arrows represent reactions
and dotted arrows show modulations. State variables in
the model are: X; = cytosolic glucose; Xo = glucose-
6-phosphate; X3 = fructose-1,6-diphosphate; X, = phos-
phoenol pyruvate; X5 = ATP. Independent variables with
constant values are: Xg = hexose transport; X7 = hexok-
inase/glucokinase; Xg = phosphofructokinase; X9 = glyc-
eraldehyde dehydrogenase; X9 = pyruvate kinase; X1 =
glycogen and trehalose production; X5 = glycerol produc-
tion; X3 = ATPase; X14 = NADH/NAD+ ratio.

The metabolic reactions inside the cell can be modeled in a
variety of ways. One strategy consists of presenting collec-
tively all reaction rates of species entering a pool or leav-
ing a pool by products of power-law functions that con-
tain all contributing metabolites, enzymes, and modifiers.
Thus, each differential equation in the coupled set consists
of a single difference between two products of power-law
functions. This type of model is often referred to as an
S-system model and falls into the domain of Biochemical
Systems Theory [10, 11, 12, 13, 14]. Alternatively, each
individual metabolic reaction can be modeled with its own
power-law, which yields a so-called Generalized Mass Ac-
tion (GMA) model and is closer to biochemical intuition
than the S-system representation. For this work, a fermen-
tation reactor based on a five state GMA metabolic pathway
model [10, 11] is considered. The five states are defined by
the set of differential equations provided at the top of the
next page. The states (X1, X, X3, X4, and X5) of the sys-
tem are five of the intermediate metabolite concentrations
internal to the cell as shown in Figure 1. For illustration
purposes, it is assumed that only a single measurement is
available, namely the concentration of ATP in the system.
The single output is y = X5.



X1 = 0.8122X,; % X, — 2.8632X7 0 x 203 X,
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*0.04725X§'05X2'533Xg0'0822X12
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+0.0945 X5 % X 93 X 70022 x
—2.8632X 07464 x 00243 x© _ 0.0009X 5517 X1,
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This leaves the remaining four states unmeasured. The only
input (u) to the system is the rate of glucose uptake (Xg) by
the cell. Two possible measured disturbances are taken as
the rate of polysaccharide production (glycogen and
trehalose) and the rate of glycerol production (X12). All
remaining variablesin the GMA model are held constant in
order to simplify the problem for demonstration purposes.
Further details of the system can be found in [10, 11]. This
GMA model will act as the process to be controlled by the
MPC.

3.2 Controller Tunings and Specifics

The controller relies on a model of the system both to es-
timate and constrain the states and outputs. A continuous-
time linear state-space model of the system was obtained
using a perturbation-based algorithm in the simulation en-
vironment. This algorithm linearizes the system around a
single steady-state operating point. The steady-state operat-
ing point was chosen so that uss = 19.7 mM/min and that
the two metabolic production rates, which are used as dis-
turbances of the system at steady state, had values of 14.31
and 203 mM/min respectively. The state vector was found
to have a steady state value of:

45 = [0.3458, 1.0099, 9.1969, 0.00953, 1.1247]7

The continuous time model was then discretized using a
zero-order hold approach and a sampling rate of 0.1 min.
From the resulting model it was determined that the five-
state system is completely observable with the single mea-
surement of ATP concentration mentioned above. A Luen-
berger observer was created and used as a means to estimate
the states. The observer poles were placed far enough inside
the unit disk to provide sufficiently fast convergence of the
state estimates to the actual state values.

It should be noted that numerous states of this system can
exhibit an inverse response. In order for the MPC to ac-
comodate this dynamic system, the prediction horizon (p)
must be chosen large enough so that the controller can view

the state estimates far enough into the future. For this illus-
tration we chose m = 2 and p = 30. The weights on all
continuous error variables that arise from the traditional set-
point and from the soft upper and lower bounds are set so
that the diagonal elements of I'. = 100. The weights on the
size of a single input movement are defined by I'a,, = 50.
The elements of I', and I';, are set to values of —1000 and
—2000 respectively.

3.3 Controller Performance

To demonstrate the closed-loop performance of the con-
troller, both its ability to handle a reference transition and
a disturbance load are shown. Specifically, a setpoint tran-
sition is made on the output of the system (ATP concentra-
tion) where the output is stepped from its steady state value
of 1.1247mM to 1.2mM att = 5man. A setpoint con-
straint is utilized to move this concentration with its set-
point. At t = 25min, a disturbance load is imposed by
stepping the rate of glycerol production from its normal op-
erating point of 203mM /min down to 50mM /min. All
the while, a lower bound is placed on the output 0.05mM
below the setpoint to prevent the inverse response of the sys-
tem from taking this output to a undesirably low value. An
upper bound is placed 0.02m M above the new setpoint. The
third state of the system, the unmeasured concentration of
fructose-1,6-phosphate, is also constrained by both a soft
upper and a lower bound. The upper bound is placed at a
level of 10 mM and the lower bound is placed at a concen-
tration of 9 mA . It should be noted that enforcement of all
constraints is delayed by one time step in all cases. Details
of the constraints are provided in Table 1. For this particular
problem, there are 490 constraints and 341 variables, 7 of
which are binary.

Table 1: Summary of Discrete Objectives for the
Fermentation Pathway System

Constraint Constraint Disc. Obj. | Priority
Type Number | Number
Upper Bnd | —ry, + 23 <0.7131 1 1
Upper Bnd —ry +y < 0.05 2 1
Lower Bnd Ty —y < 0.05 3 2
Lower Bnd Tez — 3 < 0.1969 4 3

The closed-loop performance of the system is presented in
Figure 2. When the reference transition occurs, the nature of
the system response wants to take the output in the opposite
direction, and at this time, not all of the control objectives
can be met: the third discrete objective ( lower bound on
the output) is violated. The controller actually rushes to get
this value back above this constraint and does so in just a
few time steps. If this constraint were not present, the in-
verse response could have taken the output to an even lower
value for a substantial amount of time. This objective is of
priority two, but even though it could not be met, the con-
troller successfully attempted to satisfy the fourth objective




which is of lower priority. Figure 3 shows that three of four
objectives have been met but only those of the highest pri-
ority were met in order. After the transient associated with
the reference transition, the system has not been able to re-
alize the desired new setpoint. The upper bound constraint
placed on the unmeasured state is active and effectively lim-
its the level to which the output can reach at these operating
conditions. All of the discretized objectives are met here.
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Figure 2: State, Output, and Input Trajectories for the

Closed-Loop System after a Reference Transition and a Dis-

turbance Load

At t = 25min, the disturbance in carbohydrate production
is imposed. This disturbance is so large that the output is
pushed above its upper bound for a brief moment. This up-
per bound is of the highest priority. Note, however, that the
first objective, which is of the same priority, is met. Here,
the remaining objectives can be met, but not in order of pri-
ority, so none of the priority variables are satisfied (Figure
3). The controller aggressively moves the output back down
below this level, and all discrete objectives are met. The
controller then focuses solely on satisfying the traditional
(non-discretized) setpoint constraint.
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Figure 3: Plot of the Total Number of Discrete Objectives
Met and the Number Met in Order of Their Priority

In summary, an MPC algorithm has been presented that uti-
lizes a linear state-space model and explicitly defines all
states of a system, including those that are typically unmea-
sured. Knowledge of the unmeasured states allows these
to be inferentially controlled using a flexible mixed integer
prioritized objective formulation. The formulation provides
the ability to discretize any or all of the constraints and also
permits the same priority level for any number of discrete
objectives. This design was shown to be effective in the
case of a fermentation pathway system. The ATP concen-
tration was moved to its desired setpoint, while the unmea-
sured state was maintained within some specified bounds.
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